 cancers ﬁw\p\py

Article

Type 1 Sodium Calcium Exchanger Forms a Complex
with Carbonic Anhydrase IX and Via Reverse Mode
Activity Contributes to pH Control in Hypoxic Tumors

Veronika Liskova !, Sona Hudecova !, Lubomira Lencesova !, Filippo Iuliano 2, Marta Sirova !,

Karol Ondrias (7, Silvia Pastorekova % and Olga Krizanova 1-3-*

1 Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences,

Dubravska cesta, 84505 Bratislava, Slovakia

Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta,
84505 Bratislava, Slovakia

Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius,
Namestie J. Herdu 2, 91701 Trnava, Slovakia

*  Correspondence: olga.krizanova@savba.sk; Tel.: +4212-32295312

check for

Received: 16 July 2019; Accepted: 7 August 2019; Published: 9 August 2019 updates

Abstract: Hypoxia and acidosis are among the key microenvironmental factors that contribute to
cancer progression. We have explored a possibility that the type 1Na*t/Ca?* exchanger (NCX1) is
involved in pH control in hypoxic tumors. We focused on changes in intracellular pH, co-localization
of NCX1, carbonic anhydrase IX (CA IX), and sodium proton exchanger type 1 (NHE1) by proximity
ligation assay, immunoprecipitation, spheroid formation assay and migration of cells due to treatment
with KB-R7943, a selective inhibitor of the reverse-mode NCX1. In cancer cells exposed to hypoxia,
reverse-mode NCX1 forms a membrane complex primarily with CA IX and also with NHE1. NCX1/CA
IX/NHE1 assembly operates as a metabolon with a potent ability to extrude protons to the extracellular
space and thereby facilitate acidosis. KB-R7943 prevents formation of this metabolon and reduces cell
migration. Thus, we have shown that in hypoxic cancer cells, NCX1 operates in a reverse mode and
participates in pH regulation in hypoxic tumors via cooperation with CAIX and NHE1.

Keywords: sodium calcium exchanger type 1; sodium proton exchanger type 1; carbonic anhydrase
IX; hypoxic tumors; intracellular pH

1. Introduction

Tumor hypoxia is a constantly evolving factor of tumor tissue microenvironment that critically
affects tumor growth and fate. Clinically, hypoxia is associated with poor patient prognosis and
resistance to chemotherapy and radiotherapy. Development of new strategies targeting hypoxic tumors
is critical for improving patients” outcome. Moreover, hypoxia is closely associated with an interstitial
acidosis [1], which facilitates metastatic dissemination of cancer cells [2].

Majority of solid tumors exhibit acidic extracellular pH (pHe) and slightly alkaline intracellular pH
(pHi). Such reversal of the pH gradient is detectable even in the preliminary stages of tumorigenesis and
is crucial for survival and expansion of tumors, regardless of their pathology, genetics and origins [3].
Moreover, this phenomenon seems to be an ubiquitous feature of all malignant tumors. Most of
the research in this clinically important area has focused on proton extrusion, in particular via the
Na*/H* exchanger 1 (SLC9A1, NHE1) and various H*/ATPases. Also, HCO;™ transporters such as the
electroneutral Na*, HCO;~ cotransporter (SLC4A7, NBCnl), are upregulated and play central roles in
pH regulation by mediating import of HCO3™ ions [4].
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Hypoxic tumors are characterized by the expression of carbonic anhydrase IX (CA IX), a regulator
of pH and tumor growth [5]. CA IXis a hypoxia-induced catalytic component of the HCO3™ import
arm of the pH control machinery [6]. Catalytic domain of this enzyme is exposed at the surface of cells
and contributes to acidification of the outer microenvironment, since it produces extracellular protons
and accelerates CO, diffusion. Also, it promotes neutralization of intracellular pH by facilitating
HCOj3™ uptake and lactate export [7]. Catalytic domain/activity of CA IX was shown to play a role in
cell migration [8]. Importantly, acidification of the tumor microenvironment stimulates breakdown
of the extracellular matrix, and promotes migration, invasion and metastasis [9,10]. Disrupting pH
homeostasis by blocking CA IX with specific antibodies and/or selective CA IX inibitors might broadly
relieve the common resistance of hypoxic tumors to anticancer therapy [11,12].

Sodium hydrogen exchanger (NHE) is a potent acid-extruding membrane transport protein.
Upregulation of the expression and/or activity of one of nine NHE isoforms-NHE1, commonly
correlates with tumor malignancy. NHEs transport one H* out of cells in exchange with one Na* into
cells. Thus, NHEI1 is an important regulator of both pHi and pHe in tumors [13]. Chronic hypoxic
exposure causes an increased NHE activity and H* efflux. NHE1 activity (to maintain resting pHi) is
fundamental for growth in hypoxia [14,15]. During intracellular acidification, allosteric modification
at the proton binding site leads to stimulation of NHE1 activity, that can be modulated through the
C-terminal tail region. These regulatory proteins include carbonic anhydrase II, calmodulin and
calcineurin homologous protein 1 and 2, actin-binding ERM proteins, heat shock protein 70, etc. [16].

Sodium/calcium exchanger (NCX) is definitely an important player in the regulation of intra-
cellular calcium homeostasis. Three types of the NCX were found and characterized up to now: type
1 (which is ubiquitous), type 2 (which was found to be expressed in brain) and type 3 (expressed in
brain and skeletal muscle) [17,18]. However, type 1 NCX (NCX1) is the most abundant and therefore
best studied type. Although majority of papers dealing with the NCX1 were performed on the
cardiac tissue [19,20], importance of this calcium transporter was documented also in other types of
cells and tissues, e.g., brain [21,22], endocrine system and immune system [23], etc., where it can be
involved in apoptosis and proliferation [24]. Also, NCX1 levels are up-regulated by hypoxia [20,25].
Although the forward mode of NCX represents a major physiological form, the reverse mode of NCX
becomes predominant in pathological settings [26]. Coupling of the reverse mode NCX with specific
ion transporters may mediate net fluxes of Na* and/or Ca?*, which may effectively integrate and
regulate important physiological events on the cellular and systemic levels [27,28]. Hypoxia-induced
Ca?* increase in smooth muscle cells of fetal small pulmonary arteries results from cytosolic Ca?*
influx mediated primarily by the reverse mode of the NCX [29]. Also, calcium influx via the reverse
mode NCX is involved in the cascade of NO-induced neuronal apoptosis and NO activation of
the NCX through the guanylate cyclase/PKG pathway. Sodium nitroprusside, a NO donor, causes
Ca?* overload, which may be mediated by the reverse mode of the NCX action. Consequently, the
NCX-mediated Ca®* influx activates a Ca?*-dependent cell death machinery, leading to apoptotic-like
cell death [30]. Recently, it was shown that KB-R7943, a selective inhibitor of the reverse mode NCX1,
promotes cell death in prostate cancer cells by activating the JNK signaling pathway and blocking
autophagic flux [31]. Moreover, reverse mode NCX1 was shown to operate in metastatic human
melanoma cells [32]. Recently, we have shown that in DLD1 and A2780 cells, NHE1 and NCX1 form
complexes that can be partially disrupted due to treatment with a slow sulfide donor GYY4137 leading
to the intracellular acidification. HyS-induced disruption of NHE1/NCX1 complex is associated with
overexpression of these proteins and internalization of NHE1 [33].

Up to now, little is known about the role of sodium/calcium exchanger in development and
progression of tumor growth. Also, to our knowledge, cooperation of the CA IX and NHE1 has not
been described. Thus, the goal of the present work was to elucidate a role of the type 1 NCX in pH
regulation in hypoxic tumors and to examine its cooperation with CA IX and NHEI.
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2. Results

2.1. Changes in Intracellular pH in SiHa, DLD1 and A2780 Cells in Response to KB-R7943 Treatment

During exposure of SiHa, DLD1, and A2780 cells to 1% hypoxia, intracellular pH underwent
considerable changes as shown on Figure 1A—C. After initial 24 h of incubation, a significant intracellular
acidification could be observed in all these cells. Later on, after 48 h of hypoxia, the intracellular pH
became slightly alkaline. Treatment of cells with KB-R7943, a specific blocker of the NCX1 reverse
mode, also led to acidification of intracellular pH under normoxic conditions with no difference in pHi
between 24 and 48 h incubation periods (KBR, Figure 1A-C). When KB-R7943 was added to hypoxic
cells (HyKBR) for 48 h, intracellular pH remained acidic and did not alkalize in contrast to untreated
hypoxic cells (Figure 1A-C). These data suggest that NCX1 operating in the reverse mode, contributes
to control of intracellular pH in hypoxic cancer cells. Involvement of the NCX1 in the pHi regulation in
hypoxia was verified by NCX1 knock-down using NCX1 siRNA, where clear drop of the intracellular
pH was observed after 48 h of hypoxia compared to scr siRNA (Figure 1D).
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Figure 1. Role of the NCX1 in intracellular pH regulation. Firstly, we determined an effect of the
reverse mode NCX1 blocker KB-R7943 on intracellular pH in SiHa (A), A2780 (B) and DLD1 (C) cells
incubated for 24 h (black columns) and 48 h (striped columns) in hypoxia. Results are displayed as
relative changes compared to normoxic, untreated cells. In all types of cells treated with KB-R7943
(KBR) for 24 or 48 h in normoxic conditions, a slight acidification of intracellular pH occurred. Hypoxic
treatment (1%; Hy) for 24 h decreased intracellular pH compared to normoxic control in all types of
cells. After 48 h of hypoxic treatment, intracellular pH increased in all types of cells to a slightly alkaline
pH. Under the same conditions, in the presence of KB-R7943 (HyKBR), intracellular pH remained acidic.
Involvement of the NCX1 in intracellular acidification in hypoxia was verified using NCX1 siRNA
(HysiNCX1) in SiHa cells, where rapid drop of the intracellular pH was observed after 48 h of hypoxia
compared to scrambled siRNA (Hyscr; D). Results are displayed as mean + S.E.M. and represent
measurements of at least three independent cultivations. Statistical significance compared to normoxia

*** corresponds to p <0.001, statistical significance compared to hypoxia + p < 0.05, ++ p < 0.01 and
+++p < 0.001.
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2.2. Co-localization of the NCX1 and CA IX Determined by Proximity Ligation Assay (PLA) in SiHa and
RCC4 Cells

Further, we evaluated a co-localization of NCX1 with CA IX, an established hypoxia-induced pH
regulator, by confocal microscopy. We observed clearly overlapping signals in SiHa cells after 48 h of
exposure to 1% hypoxia (Figure 2A). Moreover, proximity ligation assay revealed a distinct red signal
supporting the view that NCX1 co-localizes and potentially interacts with CA IX in hypoxic SiHa cells
(Figure 2B). This signal was partially diminished upon NCX1 silencing by NCX1 siRNA (Figure 2B),
since the effectivity of NCX1 silencing was approximately 50%. Blocking of the reverse mode NCX1 by
addition of KB-R7943 to hypoxic cells for 48 h completely prevented the PLA detectable co-localization
signal (HyKBR). This observation suggests that either both proteins are not in a close proximity,
or KB-R7943 forms a sterical barrier between these proteins. In RCC4 cells that are pseudo-hypoxic
due to VHL mutation and constitutive upregulation of the hypoxia-induced molecular pathways,
red signal showing co-localization of the CA IX and NCX1 was clearly visible in control cells (No;
Figure 2C) and was significantly decreased in cells treated with KB-R7943 (KBR; Figure 2C).

A
SiHa
24h hypoxia
’ SiHa
£ 48h hypoxia
B HyKBR HysiNCX1 NC
SiHa
48h hypoxia
C KBR NC

RCC4

Figure 2. Co-localization of the NCX1 and CA IX. Co-localization of the NCX1 and CA IX in
hypoxic SiHa cells (A). Cells were subjected to hypoxia (Hy) for 24 h (A, upper row) or 48 h
(A, bottom row). Co-localization was determined by Co-localization Finder plugin, which was used
to assess the co-localization of CA IX and NCX1 signals. The background pixels were excluded
from the co-localization analysis, the co-localizing pixels were determined and marked in green (A).
Co-localization of the NCX1 and CA IX in SiHa cells was detected also by proximity ligation assay
after 48 h in hypoxia (Hy; B), where a clear red signal is visible in hypoxia. When NCX1 was silenced
by NCX1 siRNA (HysiNCX1), PLA signal was much weaker, which corresponds to the effectivity
of silencing (B). Also, PLA signal was not visible in SiHa cells treated by KB-R7943 (HyKBR) in the
presence of hypoxia (B). In RCC4 cells that are spontaneously hypoxic, KB-R7943 (KBR) prevented
co-localization of the NCX1 and CA IX (C). No—normoxia, NC—negative control.

2.3. Formation of NCX1/CA IX/NHE1 Metabolon and Determination of the Cytosolic Ca’* and Na™ Levels in
Hypoxic SiHa, DLD1 and A2780 Cells

Based on the evidence that NCX1 participates in regulation of intracellular pH, we wanted to
confirm that NCX1 cooperates with both CA IX and NHE1. Therefore, we performed a series of
immunoprecipitations (Figure 3). After 48 h of 1% hypoxia, NCX1 co-precipitated with CA IX as well
as with NHE1. The corresponding profile was obtained by using CA IX-mediated co-precipitation
(Figure 3A), thus suggesting a formation of a metabolon, which is potentially involved in pH regulation.
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As demonstrated by the above-mentioned results (Figures 1 and 2), in this metabolon NCX1 operates
in the reverse mode. We proved this orientation of the NCX1 by determining cytosolic Ca** and Na*
levels in SiHa, DLD1 and A2780 cells (Figure 3B,C). In normoxia, KB-R7943 did not change significantly
a level of cytosolic Ca?* compared to normoxia, as shown in our recent paper [33]. Cytosolic Ca?*
was markedly increased after the exposure to hypoxia and this increase was prevented by adding
KB-R7943 (Figure 3B). In accordance with that, decrease in cytosolic Na* due to hypoxic conditions
observed after 24 h was prevented by KB-R7943 (Figure 3C). However, after 48 h of hypoxia, levels of
cytosolic Na™ did not show any further decrease, which might suggest involvement of additional Na*
transporter (possibly NHE1) in pH handling (Figure 3C).
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Figure 3. Immunoprecipitation with the NCX1 (A; IP-NCX1) or CA IX (A; IP-CA IX) antibodies.
Homogenates from the SiHa cells (normoxic (No), hypoxic (Hy) and hypoxic treated with KB-R7943
(HyKBR) for 48 h) were immunoprecipitated with NCX1 antibody or CA IX antibody, blotted onto
PVDF membrane and subsequently incubated with CA IX/NCX1 and NHE1 antibodies. Data show
that NHE1 co-precipitates with NCX1 as well as with CA IX (A). In SiHa DLD1 and A2780 cells,
cytosolic Ca?* was increased by hypoxic stimuli after 24 (B, gray columns) and also 48 h (B, black
columns), while in hypoxic cells treated with KB-R7943 (HyKBR), cytosolic calcium was comparable to
control, normoxic cells (B, No). Cytosolic sodium level was decreased due to 24 h hypoxia (C) and
this decrease was prevented in the hypoxic SiHa cells treated with KB-R7943 (HyKBR). After 48 h of
hypoxia, cytosolic sodium levels were comparable with those from normoxic cells (C). Results (B,C) are
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expressed as mean + S.E.M. and represent an average from at least three independent measurements.
Statistical significance * represents p < 0.05 and *** p < 0.001 compared to normoxic controls. Statistical
significance ++ represents p < 0.01 and +++ p < 0.001 compared to hypoxic untreated cells.

After 48 h, NHE1 is bound to the NCX1, as determined by immunoprecipitation (Figure 4A).
Again, KB-R7943 decreased the signal of NHE1 co-precipitated with NCX1 (Figure 4A). In SiHa cells,
silencing of the NCX1 revealed similar decrease in the NHE1 (Figure 4A). Proximity ligation assay
performed on RCC4 cells verified co-localization of the NCX1 and NHE1 (No; Figure 4B), which was
significantly reduced in the presence of KB-R7943 (KBR; Figure 4B). Negative control (NC), where
NCX1 antibody was omitted, proves the specificity of the PLA signal.
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Figure 4. NCX1 immunoprecipitates with the NHE1, as determined by KB-R7943 (HyKBR), silencing of
the NCX1 (HysiNCX1) in SiHa cells (A) and by proximity ligation assay in RCC4 cells (B). Effectivity of
silencing of the NCX1 was approximately 50%, as determined by Western blot analysis. No—normoxia,
NC—negative control, Hy—hypoxia for 48 h.

2.4. Role of the NCX1 in Spheroid Formation

Importance of the NCX1 functioning in the reverse mode was also supported by spheroid
formation assay (Figure 5).

SiHa
A No KBR
20004
1800-
Day § é ]
5 16004
= ]
&
o 14004
o 12004
Day 1 = 1
10004
of -
KBR
Spheroids 8 days Spheroids 10 days
B No KBR 801

NCX1

HIF 1o

Figure 5. Effect of KB-R7943 on SiHa spheroids. SiHa spheroids were grown either in normal
environment (No), or in the presence of KB-R7943 (KBR). Representative images of these spheroids at
the day 8 and 10 are shown (A). After the day 10, spheroids were subjected to Western blot analysis,
which proved the presence of CA IX, NCX1 and HIF-1x protein (B). In the presence of KB-R7943,
SiHa spheroids disintegrated rapidly compared to untreated spheroids. Size of the spheroids at the
day 8 and 10 is shown in the graph (C). Results are displayed as mean + S.E.M., n = 15. Statistical
significance *—represents p < 0.05 compared to control. (C). Number of apoptotic cells (D, striped
columns) decreased in 8 and 10 days spheroids due to KB-R7943 treatment, while number of necrotic
cells significantly increased (D, black columns). Empty columns represent number of alive cells in 8
and 10 days spheroids (D).
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When spheroids were grown in the presence of KB-R7943, their disruption occurred much earlier
compared to non-treated spheroids (Figure 5A,C). Amount of CA IX, NCX1 and HIF-1« proteins in
spheroids was determined at the end of the experiment and showed no difference in the absence versus
presence of KBR (Figure 5B). Percentage of apoptotic (striped columns) and necrotic (black columns)
cells in spheroids was determined on days 8 and 10 (Figure 5D). We observed a significant increase in a
number of necrotic cells upon KB-R7943 treatment, when compared to untreated spheroids.

2.5. Effect of the Reverse Mode NCX1 on Cell Migration

Since pH regulation is known to affect migration capacity of cancer cells, the proposed pH
modulating role of the reverse mode of the NCX1 was evaluated by the migration assay. KB-R7943
significantly decreased the migration of SiHa cells (Figure 6A) and also SiHa cells treated with
dimethyloxalylglycine (DMOG; Figure 6B), a cell permeable prolyl-4-hydroxylase inhibitor, which
upregulates hypoxia-inducible factor (HIF). In RCC4 cells, area of the wound closure after 36 h was
also significantly broader in cells treated with KB-R7943 than in untreated cells (Figure 6C), supporting
the view that the reverse mode of the NCX1 is implicated in cell migration under hypoxia.

SiHa B RCC4
40 - *cont <KBR

fio ,=-cont <-KBR 40 , +-DMOG =-DMOGHKBR

tyﬁ

(Percent)

Relative Wound Density
Relative Wound Density
(Percent)
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0 4 8 12 16 20 24 28 32 36 0 4 8 12 16 20 24 28 32 36 0 4 8 12 16 20 24 28 32 36
Time (Hours) Time (Hours) Time (Hours)

Figure 6. Effect of KB-R7943 on the SiHa and RCC4 migration. KB-R7943 decreased migration in
normoxic SiHa cells (A), and decrease in KB-R7943 induced migration was even more pronounced when
SiHa cells were theated with DMOG (B). In spontaneously hypoxic RCC4 cells, significant decrease in
migration due to KB-R7943 treatment was also detected (C). Statistical significance * represents p < 0.05
and *** p < 0.001.

3. Discussion

Regulation of intracellular and extracellular pH in hypoxic tumors significantly affects the fate of
tumor cells and therefore, understading its mechanisms and components is of crucial relevance for
cancer biology. In this study we showed that the NCX1 operating in the reverse mode contributes to
pH regulation in hypoxic tumors. We demonstrated that silencing of the NCX1 gene causes decrease
of intracellular pH in hypoxic SiHa cells and that KB-R7943, a specific blocker of the reverse mode of
NCX1 diminishes the abilty of SiHa, DLD1 and A2780 cancer cells exposed for 48 h to 1% hypoxia
to control their intracellular pH. These observations are in agreement with our previous findings in
DLD1 and A2780 cells [33]. Based on results of this study we propose the formation of a metabolon
(Figure 7), composed of NCX1, NHE1 and CA IX under hypoxic conditions. It was already shown
that in certain cancer cells, the NCX1 operates in the reverse mode that allows transport of Ca** ions
into the cell, while extruding sodium ions out of the cell [31,32]. Resulting Ca?* overload of cancer
cells was suggested to be responsible for tumor calcification [34], which in turn is linked with the
presence of necrosis as an extreme manifestation of hypoxia. Interestingly, higher expression levels
of hypoxia-induced CA IX tended to be associated with nonlinear calcification in breast tumors [35].
Similarly, changes in local pH regulation appear to affect the extent and pattern of calcification in
tumors and thus, it is conceivable that CA IX can contribute to this process. Our data suggest that it
can do it also via cooperation with NCX1 functioning in the reverse mode.



Cancers 2019, 11, 1139 8 of 14

Figure 7. Schematic illustration of the proposed model of the cooperation between NCX1, CA IX, and
NHEL1. Right side: Based on the experiments presented here, hypoxia-induced CA IX can interact
with both, NHE1 and NCX1. CA IX may facilitate proton export via NHE]1 in exchange of Na*
import (presumably via a non-catalytic mechanism independent of CO, hydration as explained by
Jamali et al. [7]. Elevated intracellular Na* then supports the reverse mode activity of NCX1 executing
Na* export coupled with Ca* import. Left side: Hydration of CO, catalyzed by CA IX generates
a surplus of extracellular protons in addition to HCO3™ ions. As known from previous studies, CA
IX can interact with NBC1, which takes up the HCO3~ and performs its coupled import with Na™*.
Intracellular bicarbonate consumes intracellular protons producing CO,, which leaves the cell to
pericellular space. As suggested above, NCX1 may operate in the reverse mode and execute Na*
efflux in exchange of Ca" influx. Thereby, this complex metabolon may contribute to intracellular
alkalinization, extracellular acidification and intracellular accumulation of Ca2* which is known to
occur in certain types of cancers [34].

Indeed, it is known that calcification is significantly more common in metastatic than in
nonmetastatic lymph nodes [36], which might be also caused by the reversed action of the NCX1.
Intracellular acidification induced by metabolic changes associated with hypoxia mobilizes mechanisms
that can extrude proton ions from cells. Overload of proton ions in the cells together with relatively
low amount of Na* ions due to the action of reversed NCX1 can activate the hypoxia-inducible NHE1,
as it was already shown in our previous work [33]. This process can involve a pH sensing site on the
internal/cytoplasmic surface of the NHE1 that, if protonated, activates the transport [10]. NHE1 helps
to maintain an alkaline intracellular pH by transporting protons out of the cell against Na* ions that are
transported into the cell [37]. These Na* ions can feed the reverse mode of NCX1 in exchange for Ca*
uptake. Moreover, this action can be further potentiated by hypoxia-induced CA IX, that catalyzes the
reversible hydration of CO, to bicarbonate ions HCO3;~ and protons (H*) at the extracellular surface
and via interaction with Na* HCO;™ transporter (NBC1) facilitates import of HCO5 ™ ions [6]. Thereby,
CA IX controls intracellular and extracellular acid-base balance that regulates both survival and
invasive properties. Recently, it was shown that disrupting pH homeostasis by blocking HCO3;~ import
might broadly relieve the common resistance of hypoxic tumors to anticancer therapy [11]. Thus, we
speculate that NBC1 might be a part of this metabolon (see the Figure 7). NBC1 is one of the major
alkalinizing mechanisms in the cardiomyocytes [38]. Since both NHE1 and NBC1 increase intracelular
Na+ concentration, the reverse mode NCX1 may serve as a major transport system extruding Na* from
the intracellular space. Based on our results, we hypothesized about the physiological relevance of this
complex. Since CA IX as well as NHEL1 are activated in hypoxic conditions and participate in proton
extrusion, proton transport from cells could be considered as an adaptive mechanism in hypoxia that
is essential for the cell’s survival [37,39]. Although functions of these proteins in hypoxic conditions
are known, their mutual co-operation and co-localization with NCX1 was not described until now. We
have shown that KB-R943 as a blocker of the NCX1 reverse mode reduced migration rate of RCC4
cells. Role of the NCX migration was already described, e.g., in human gastric myofibroblasts [40] or
microglia [41]. Complex formation probably increases extracellular pH in a microdomain, which might
boost migration specifically from that region. On this basis, we propose that the complex assembled
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from NCX1, CA IX and NHE1 participates in intracellular alkalinization and extracellular acidification
thereby creating a local microenvironment, which might boost cell migration. Because hypoxia and
acidosis are linked with aggressive tumor phenotype, identification of the metabolon described in
this study opens new opportunities for more efficient targeting of the its components. This can be
accomplished either individually or in combination using specific antibodies and/or selective inhibitors
that interfere with the related adaptive pathways and show anticancer effects, as described for example
for CA IX inhibitors [12].

4. Materials and Methods

4.1. Cell Cultivation and Treatment

For experiments, human cervical carcinoma cell line SiHa (ATCC® HTB-35™), renal cell carcinoma
cell line RCC4 (ECACC, 03112702), ovarian cancer cell line A2780 (Sigma-Aldrich, 93112519) and/or
colon adenocarcinoma cell line DLD1 (ATCC, CCL-221), were cultured in Dulbecco’s Minimal Essential
Medium (DMEM; Sigma, St. Louis, MO, USA) or RPMI medium (Sigma) with a high glucose
(4.5 g/L) and L-glutamine (300 png/mL), supplemented with 10% fetal bovine serum (Sigma), penicillin
(Calbiochem, San Diego, CA, USA; 100 U/mL) and streptomycin (Calbiochem; 100 pg/mL). Cells were
cultured in a water-saturated atmosphere at 37 °C and 5 % CO,. After plating, cells were treated for 24
or 48 h with KB-R7943 mesylate (Santa Cruz Biotechnology, Dallas, TX, USA, 10 umol/L). For some
experiments, cells were grown for 24 or 48 h in hypoxic chamber (1% O,, 2%H;, 5%CO,, (91%N,; Baker
Ruskinn Technology, Maastricht, The Netherlands) or treated with dimethyloxalylglycine (DMOG,
100 uM). Following numbers of cells were used for pH determination and also for determination of
cytosolic Ca?* and Na*: SiHa—1.5x 10%; DLD1—2x 10%; A2780—2x 10°.

4.2. Measurement of Intracellular pH

To determine changes in the intracellular pH (pHi), pH sensitive cell permeabile fluorescent probe
2’,7'-biscarboxyethyl-5,6-carboxyfluorescein-acetoxymethyl ester (BCECF-AM; Sigma Aldrich) was
used as described in Pastorek et al. [5]. Briefly, cells were loaded with 10 umol/L BCECF and 0.5%
pluronate in cultivation media without FBS for 45 min at 37 °C, 5 % CO,, in dark. After subsequent
washing with PBS buffer, fluorescence was measured at 490/535 nm and 440/535 nm on Synergy
fluorescence scanner (BioTek, Bad Friedrichshall, Germany). The pHi signal was calibrated to bvpHO
by adding 10 umol/L nigericin (Sigma Aldrich) with 130 mmol/L KCl. ApHi was ratiometric calculated
from values obtained at 490 and 440/535 nm.

4.3. Immunofluorescence

Cells grown on glass cover slips were fixed in ice-cold methanol for 5 min. Non-specific binding
was blocked by incubation with PBS containing 3% BSA for 1 h at 37 °C. Cells were then incubated
with primary antibodies for 1 h at 37 °C and washed four times with PBS containing 0.02% Tween
20 for 10 min. The following primary antibodies were used: anti-human CA IX mouse monoclonal
antibody M75 in undiluted hybridoma medium [5], rabbit polyclonal antibody NCX1 (p11-13, Swant,
Bellizona, Switzerland) diluted 1:200 in PBS with 1% BSA. After washing the cells were inclubated with
Alexa-conjugated secondary antibodies (Alexa Fluor 594 goat anti-mouse IgG and Alexa Fluor 488
donkey anti-rabbit IgG) diluted 1:1000 in PBS-BSA for 1 h at 37 °C, and washed four times with PBS.
Finally, cells were mounted onto slides in mounting medium with Citifluor (Agar Scientific Ltd., Essex,
UK) analyzed by an LSM 510 Meta confocal microscope (Zeiss, Jena, Germany). Images were taken
with Plan Neofluar 40x/1.3 oil objective at optical zoom 2 in multi-track mode. The acquired images
were processed in Image], the Co-localization. Finder plug-in was used to assess the co-localization of
CA IX and NCX1 signals. The background pixels were excluded from the co-localization analysis, the
co-localizing pixels were determined and marked in green.
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4.4. Proximity Ligation Assay

The proximity ligation assay (PLA) was used for in situ detection of the interaction between CA
IX/NCX1 and NCX1/NHEL1. The assay was performed in a humid chamber at 37 °C according to the
manufacturer’s instructions (Olink Bioscience, Uppsala, Sweden). SiHa cells were seeded on glass
coverslips and allowed to attach before transfer to 1% hypoxia and further cultured for 48 h. RCC4 cells
were seeded on glass coverslips and not exposed to hypoxia, since these cells are pseudohypoxic due
to VHL mutation. The cells were fixed with methanol, blocked with 3% BSA/PBS for 30 min, incubated
with a mixture of antibodies against CA IX and NCX1 or NCX1 and NHET1 for 1 h, washed three times,
and incubated with plus and minus PLA probes for 1 h. Then, the cells were washed (3 x 5 min),
incubated for 40 min with ligation mixture containing connector oligonucleotides, washed again, and
incubated with amplification mixture containing fluorescently labeled DNA probe for 100 min. After a
final wash, the samples were mounted and the signal representing interaction between CA IX and
NCX1 or NCX1 and NHE1 was analyzed using a Zeiss LSM 510 Meta confocal microscope with a Plan
Neofluar 40x/1.3 oil objective. The following antibodies were used: rabbit polyclonal antibody NCX1
(711-13, Swant), mouse monoclonal CA IX antibody M75 in undiluted hybridoma medium [5]. and
mouse monoclonal NHE1 (SLC9A1, Sigma-Aldrich).

4.5. Immunoprecipitation

Appropriate monoclonal antibody was incubated with 60 uL washed magnetic beads (Dynabeads
M-280), coated with M-280 sheep anti-mouse IgG (Invitrogen Dynal AS, Oslo, Norway) for overnight
at4 °C on a rotator (VWR International, Radnor, PA, USA). As negative controls, the coated beads were
incubated with either mouse IgG1k (MOPC21, Sigma) for mAb, or with rabbit y-globulin (Jackson
ImmunoResearch, West Grove, PA, USA) for pAb raised in rabbits. The beads with attached antibody
were washed (twice, 200 pL) with phosphate-buffered saline (PBS). Proteins were immunoprecipitated
from 1 mg of detergent-extracted total protein by incubation for 4 h at 4 °C with antibody-bound beads.
Bead complexes were washed with (four times 200 uL) PTA solution (145 mmol/L NaCl, 10 mmol/L
NaH,POy, 10 mmol/L sodium azide, and 0.5% Tween 20, pH 7.0). Inmunoprecipitated proteins were
then extracted with 60 uL of 2x Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) and boiled for
5 min. Following antibodies were used for immunoprecipitation: mouse monoclonal antibody to
NCX1 (R3F1, Swant), rabbit polyclonal antibody to NCX1 (p11-13, Swant), mouse monoclonal antibody
M75 to CA IX [5].

4.6. Western Blot Analysis

Firstly, cells were scraped into 10 mmol/L Tris-HCl, pH 7.5, 1 mmol/L phenylmethyl-
sulfonylfluoride (PMSF, Serva, Heidelberg, Germany), protease inhibitor cocktail tablets (Complete
EDTA-free, Roche Diagnostics, Mannheim, Germany) and centrifuged for 10 min at 3000x g at 4 °C.
The pellet was re-suspended in Tris-buffer containing the 50 umol/L CHAPS (3-[(3-cholamidopropyl)
dimethylammonio] 1-propanesulfonate, Sigma), and then incubated for 20 min at 4 °C. Concentration
of proteins in the lysate was determined by the method of Lowry et al. [42]. 20-60 ug of protein
extract from each sample was loaded on 8-16% and 4-12% SDS polyacrylamide gradient gels
(Amersham Biosciences, Amersham, Buckinghamshire, UK). Afterwards, proteins were transferred
to the Hybond-PVDF membrane (Amersham Biosciences) using semidry blotting (Owl Inc., Thermo
Scientific, Waltham, MA, USA). Membranes were blocked in 5% non-fat dry milk in Tris-Buffered Saline
with Tween 20 (TBS-T) overnight at 4 °C and then incubated for 1 h with appropriate primary antibody.
Following washing, membranes were incubated with secondary antibodies to mouse or rabbit IgG
conjugated to horseradish peroxidase for 1 h at room temperature. An enhanced chemiluminiscence
detection system (Luminata Crescendo Western HRP Substrate, Millipore, Burlington, MA, USA) was
used to detect bound antibody. The optical density of individual bands was measured on Kodak Image
440 device (Kodak, Zaventem, Belgium) and quantified using PCBAS 2.0 software.
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Antibodies raised against the following proteins were used: rabbit polyclonal antibody to NCX1
(p11-13 Swant), mouse monoclonal antibody to NCX1 (C2C12 Abcam, Cambridge, UK), rabbit
polyclonal antibody to NHE1 (Abcam), mouse monoclonal antibody to CA IX [5].

4.7. Cytosolic [Ca®*]; Staining by Fluo-3AM Fluorescent Dye

Cells were plated on a 24-well plate at the density described in the Section 4.1. After the treatment,
cells were washed with 1 mL of serum-free medium and loaded with 2 uM Fluo-3AM,; (Sigma-Aldrich,
USA) in the presence of 0.5% pluronate (Sigma-Aldrich) for 60 min at 37 °C, 5% CO; in the dark. Cells
were then washed three times with a 500 pL of serum-free medium. Fluorescence was measured on
Synergy H1 Hybrid Multi-Mode Reader (BioTek, Bad Friedrichshall, Germany) at Aex 506 nm; Aem
525 nm. Afterwards, 1 mM CaCl, and 10 uM ionomycin were added to each well and fluorescence
was measured again. Results were expressed as the arbitrary units of fluorescence.

4.8. Cytosolic [Na*]; Staining by SBFI-AM Fluorescent Dye

Intracellular concentration of sodium [Na*]; was measured according to Sathish and co-workers [43]
with small modifications. After loading with 5 umol/L SBFI-AM in the presence of 0.1% pluronate,
10 umol/L gramicidin and 100 umol/L ouabain in the serum free DMEM for 3 h in CO, incubator (hypoxic
cells in 1% hypoxia), cells were washed twice with 5% glucose. For measurement, excitation 340/380 nm
and emission 500 nm was used. Results are displayed as ratio of these two values. Calibration curve
was made from mixture of two solutions with equal ionic strength (Na* and potassium gluconate) with
different concentrations of Na* and K* ions (0, 5, 20, 50, 70, 100, 145 mmol/L).

4.9. NCX1 Silencing by siRNAs

Cells were grown in 6-well plates in DMEM with 10% FBS to the density of 1 x 10°. Transfection
of siRNAs was performed with DharmaFECT1 (Dharmacon, Thermo Scientific, Lafayette, CO, USA)
according to producer’s protocol. ON-TARGET plus mixture of siRNAs for human SLC81 (NCX1;
Dharmacon, Thermo Scientific) was applied to the final concentration of 50 pmoL per well. The
same procedure was performed with Non-Targeting plus siRNAs for scrambled control. Hypoxic
samples were immediately placed into the hypoxic chamber for 24 or 48 h. After this period, cells were
harvested and used in further experiments. Efficacy of the NCX1 silencing was verified by western
blot analysis and was approximately 50%.

4.10. Spheroids

SiHa spheroids were generated by seeding 5000 cells/well in 96 well plate previously coated with
1% agarose. After 4 days of incubation at 37 °C and 5% CO; the treatment began by adding fresh
medium and diluted compounds in DMEM. In all the experiments 30 replica wells were set up for
control and for each compound. Medium was changed every 48 h and pictures (by Axiovert 40 CFL
microscope, Zeiss) were taken to check integrity and measure the spheroids diameter. In a parallel
experiment CA IX expression has been evaluated at the onset of the treatment by Western blot. After 8
and 10 days of treatment cell viability has been evaluated with propidium iodide by Guava EasyCyte
6HT flow cytometer (Millipore, Burlington, MA, USA). Briefly, spheroids were collected, rinsed with
PBS and disrupted by trypsin/EDTA. After been counted, the cells were resuspended in a 5 ng/mL
propidium iodide (PI) solution, kept on ice for 5 min and analysed by flow cytometer.

4.11. Detection of Apoptosis with Annexin-V-FLUOS

Spheroids were pelleted at 1000 rpm for 5 min. Cells were then washed with 1ml of PBS, cell
pellet was resuspended in 200 uL of Annexin-V-FLUQOS/ propidium iodide labeling solution (Roche
Diagnostics, Indianapolis, IN, USA) and incubated at room temperature in dark for 20 min according
to the manufacturer’s protocol. After the incubation, samples were diluted with 400 uL PBS, placed
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on ice and measured on BD FACSCanto II flow cytometer (Becton Dickinson, Ann Arbor, MI, USA).
Results were evaluated with a Flowing software version 2.5.1.

4.12. Cell Migration Assay

Fifteen thousand SIHA cells and 18000 RCC4 cells per well were plated on ImageLock 96-well
plates (Essen BioScience, Ann Arbor, MI, USA), and let to adhere for 24 h. Confluent monolayers were
then wounded with wound making tool (IncuCyte WoundMaker; Essen BioScience), washed twice and
supplemented with fresh culture medium. Some groups of cells were treated with KB-R7943 (10 pmol/L).
Images were taken every 2 h for the next 36 h in the IncuCyte ZOOM™ kinetic imaging system (Essen
BioScience). Cell migration was evaluated by IncuCyte ZOOM™ 2016A software (Essen BioScience)
based on the relative wound density measurements and expressed as means of octaplicates + SEM.

4.13. Statistical Analysis

Each value represents an average of 3-6 wells from at least two independent cultivations of SiHa,
RCC4, DLD1 and A2780 cells. The results are presented as the mean + S.E.M. Significant differences
between the groups were determined by one-way ANOVA. For multiple comparisons, an adjusted t
test with p values corrected by the Bonferroni method was used. Statistical significance of migration
was evaluated by nonparametric Wilcoxon-Mann-Whitney test and Kruskal-Wallis nonparametric test.

5. Conclusions

In summary, in the present study we show that the reverse-mode NCX1 forms a membrane
complex with the CA IX and NHE1. This membrane complex not only represents a potent modulator of
intracellular/extracellular pH, but can play a role in tumor cell’s migration (and potentially metastasis
formation). Since NCX1 also forms complexes with the 1- and (33- but not 32-adrenoceptors [44], it is
likely that this metabolon is assembled of additional protein components that can further modulate
cellular responses to hypoxia and pH imbalances in tumor microenvironment.
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