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Abstract: Forsythia fruit (Forsythia suspensa Vahl (Oleaceae)) is a common component of Kampo
medicines for treating the common cold, influenza, and allergies. The main polyphenolic compounds
in the leaves of F. suspensa are pinoresinol β-D-glucoside, phillyrin and forsythiaside, and their levels
are higher in the leaves of the plant than in the fruit. It is known that polyphenolic compounds
stimulate lipid catabolism in the liver and suppress dyslipidemia, thereby attenuating diet-induced
obesity and polyphenolic anti-oxidants might attenuate obesity in animals consuming high-fat diets.
Recently, phillyrin was reported as a novel cyclic AMP phosphodiesterase 4 (PDE4) inhibitor derived
from forsythia fruit. It was expected that the leaves of F. suspensa might display anti-obesity effects and
serve as a health food material. In this review, we summarized our studies on the biological effects of
forsythia leaves containing phillyrin and other polyphenolic compounds, particularly against obesity,
atopic dermatitis, and influenza A virus infection, and its potential as a phytoestrogen.

Keywords: forsythia leaves; polyphenolic compound; forsythiaside; phillyrin; PDE4 inhibitor;
anti-obesity; atopic dermatitis; influenza A virus infection; phytoestrogen

1. Introduction

Obesity has become an urgent worldwide public health problem in recent decades.
Diet-induced obesity is closely associated with lifestyle-related diseases (e.g., diabetes,
hyperlipidemia, hypertension), which are primary risk factors for cardiovascular dis-
ease [1]. Therefore, preventing obesity is strongly encouraged to alleviate various lifestyle-
related diseases.

Forsythia suspensa Vahl (Oleaceae) is listed in Japanese Pharmacopoeia as the original
plant of the crude drug “forsythia fruit” [2], a common component in Kampo medicines
for treating the common cold, influenza, and allergies. With at least 3000 years of con-
tinuous use, forsythia fruit is traditionally considered a detoxicant for treating so-called
toxic and hot conditions. In addition, forsythia fruit is one of the main components of
“Bofutsushosan” (BOFU), an extremely popular Kampo medicine in Japan with anti-obesity
effects [3]. Wang et al. reported review with the title of “Phytochemistry, pharmacology,
quality control, and future research of Forsythia suspensa (Thunb.) Vahl: A review” [4].
However, we could not find a description of the anti-obesity effects of the forsythia fruit or
leaves alone in the review.

We found that the main polyphenolic compounds in leaves of F. suspensa are pinoresinol
β-D-glucoside, phillyrin and forsythiaside and their levels are higher in the leaves of the
plant than in its fruit [5,6]. Polyphenolic compounds stimulate lipid catabolism in the
liver and suppress dyslipidemia, thereby attenuating diet-induced obesity, and polyphe-
nolic anti-oxidants can attenuate obesity in animals fed a high-fat diets (HFD) [7,8]. We
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found that pinoresinol β-D-glucoside is a strong cyclic AMP phosphodiesterase (PDE)
inhibitor in vitro [9]. However, it was unclear whether pinoresinol β-D-glucoside is a
selective PDE4 inhibitor or not. Phillyrin also showed a moderate inhibition in our analysis.
Phillyrin was recently reported as a novel selective PDE4 inhibitor [10]. As PDE4 inhibition
is a therapeutic strategy for metabolic disorders [11], it is expected that the fruit and leaves
of F. suspensa might display anti-obesity effects.

However, the use of forsythia fruit as a health food is currently prohibited in Japan
by the Regulatory law “Distinction between drugs and food stuffs” from Ministry of
Health, Labor, and Welfare (Japan). Therefore, we studied the biological effects of forsythia
leaves for use as a health food material as an alternative to pharmaceuticals. In addition,
studies of F. suspensa regarding its effects on atopic dermatitis [12] and the prevention of
influenza [13,14] have been reported.

This review summarizes our studies on the biological effects of forsythia leaves
containing phillyrin and other polyphenolic compounds against obesity, atopic dermatitis,
and influenza A virus infection, as well as its potential as a phytoestrogen.

2. Structures of Phillyrin and Forsythiaside

Pinoresinol β-D-glucoside, phillyrin and forsythiaside (caffeoyl glycoside of 3,4-
dihydroxy-β-phenethyl alcohol) were isolated as the main polyphenolic compounds from
the fruit and leaves of F. suspensa, respectively [5,6]. The contents of the compounds
in the leaves are as follows; pinoresinol β-D-glucoside, 0.3–2%, phillyrin, 0.4–3% and
forsythiaside, 0.4–5% [6].

2.1. Phillyrin

Phillyrin, the glucoside of (+)-epipinoresinol monomethyl ether, is widely distributed
in the leaves of Forsythia species [15]. The position (C-4′ or C-4′′) of the glucose linkage
with the aglycone was previously undetermined. We established the position using the
13C-NMR spectra of aglycone derivatives as shown in Figure 1 [16]. The aglycone was
obtained via the hydrolysis of phillyrin by β-glucosidase. Pelter et al. reported that the 1′

and 1′′ carbon atoms of the axial and equatorial aryl groups of 2,6-diaryl-3,7-dioxabicyclo
[3.3.0] octane lignans are clearly distinct from each other in the 13C-NMR spectra, that is,
the signals of former are assigned to approximately 131 ppm, whereas the latter signals are
assigned to approximately 134 ppm for the veratryl group [17].
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Figure 1. Chemical structures of phillyrin and aglycone derivatives.

Comparing the spectral data of these three derivatives, appreciable differences of
chemical shift values for C-1′′ (equatorial aryl group) at 133.8 ppm for phillygenin methyl
ether, 133.1 ppm for phillygenin and 140.3 ppm for phillygenin acetate were observed via
aryl carbon shielding, because of the effect of the substituent at the para position, whereas
differences for C-1′ (axial aryl group) at approximately 131 ppm were not observed. These
results indicated that the glucose linkage in phillyrin is at the C-4′′ position as shown in
Table 1.
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Table 1. Chemical shifts for C-1′ and C-1′′ of phillyrin and phillygenin derivatives.

C-1′ C-1′′

Phillyrin 131.0 135.4

Phillygenin methyl ether 131.0 133.8

Phillygenin 131.0 133.1

Phillygenin acetate 131.0 140.3

2.2. Forsythiaside

We isolated a novel caffeoyl glycoside of 3,4-dihydroxy-β-phenethyl alcohol for the
first time and named the compound forsythiaside [18]. The 1H-NMR spectrum of acetate
of forsythiaside revealed the presence of five alcoholic acetoxyl and four phenolic acetoxyl
groups. Alkaline treatment of forsythiaside followed by acid hydrolysis gave caffeic acid
and 3,4-dihydroxy-β-phenethyl alcohol, which were identified via comparison with authen-
tic samples by gas chromatography (GC) and thin-layer chromatography (TLC). D-glucose
and L-rhamnose were detected in the hydrolysate at a 1:1 ratio by GC. These data suggest
that forsythiaside bears a marked structural resemblance to the acteoside (3,4-dihydroxy-
β-phenethyl-O-α-L-rhamnopyranosyl(1→3)-4-O-caffeoyl-β-D-glucopyranoside), isolated
from Syringa vulgaris (Oleaceae).

The 13C-NMR spectrum of forsythiaside was compared with that of known com-
pounds, i.e., 3,4-dihydroxy-β-phenethyl alcohol, rutin bearing a rutinose moiety and chloro-
genic acid bearing a caffeate moiety. Based on the 13C-NMR data, namely the chemical shifts
of the rutinose moiety of forsythiaside relative to that of rutin, the glycosidation shift of the
α-carbon of forsythiaside relative to that of 3,4-dihydroxy-β-phenethyl alcohol, and the
calculated chemical shift of the α-carbon of forsythiaside relative to that of 3,4-dihydroxy-
β-phenethyl alcohol, the structure of forsythiaside was established as 3,4-dihydroxy-β-
phenethyl-O-α-L-rhamnopyranosyl-(1→6)-4-O-caffeoyl-β-D-glucopyranoside as shown in
Figure 2.
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3. The Anti-Obesity Effects of Forsythia Leaves

Forsythia leaf water extract (FLE) was prepared from the leaves of F. suspensa. The con-
tents of the main compounds in FLE were determined using HPLC as follows: pinoresinol
β-D-glucoside 1.74 g/100 g, phillyrin 3.28 g/100 g, and forsythiaside 26.62 g/100 g [19]. The
anti-obesity effect of 0 (control), 2.5, and 5% FLE was examined in male Sprague–Dawley
(SD) rats fed an HFD. The average body weights of the groups were nearly identical at the
start of the experiment, but body weight was significantly lower in the treatment groups
than in the control group after four weeks of feeding as shown in Figure 3. The effect of the
extract was dose-dependent. Food intake was not significantly different among the groups.
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Figure 3. Effects of FLE on the body weight of rats.

White adipose tissue (WAT) weight was dose-dependently decreased by FLE supple-
mentation and the ratios of peritoneal WAT (WATp) and epididymal WAT (WATe) weight
to body weight were also reduced by treatment. Brown adipose tissue (BAT) weight was
significantly lower in the two FLE groups than in the control group, but the ratio of BAT
weight to body weight was not different among the groups. These findings suggest that
fat accumulation in WAT was decreased and the function for thermogenesis in BAT was
invariable, giving an effective anti-obesity effect. Liver weight was significantly lower in
the two FLE groups than in the control group. Plasma triglyceride (TG) and free fatty acid
(FFA) levels were significantly reduced by FLE treatment as shown in Table 2.

Table 2. Effects of FLE on physical and plasma parameters after four weeks of HFD feeding.

Diet

Control
(n = 9)

2.5% FLE
(n = 8)

5.0% FLE
(n = 8)

Food intake (g/rat/day)

The first week 13.3 ± 0.25 12.6 ± 0.61 12.9 ± 0.26

The fourth week 15.6 ± 0.71 14.9 ± 0.88 14.4 ± 073

Body weight and organ weight
(g/rat)

Initial body weight 74.7 ± 0.58 75.3 ± 1.40 74.8 ± 0.91

Final body weight 255.1 ± 7.41 167.8 ± 1.77 * 148.2 ± 3.74 *

Perirenal white adipose tissue 1.44 ± 0.22 0.47 ± 0.10 * 0.33 ± 0.07 *

Epididymal white adipose tissue 3.14 ± 0.21 1.22 ± 0.07 * 1.02 ± 0.09 *

Brown adipose tissue 1.02 ± 0.04 0.61 ± 0.02 * 0.59 ± 0.03 *

Liver 2.05 ± 0.05 1.55 ± 0.09 * 1.51 ± 0.06 *

Plasma parameters

Triglyceride (mg/dL) 124.4 ± 15.1 65.5 ± 11.4 * 47.4 ± 4.7 *

Free fatty acid (µEq/L) 474.3 ± 29.5 318.8 ± 35.4 * 280 ± 18.6 *

HDL-cholesterol (mg/dL) 38.0 ± 1.3 46.1 ± 2.4 47.8 ± 1.6

LDL-cholesterol (mg/dL) 14.0 ± 0.8 17.0 ± 0.9 15.4 ± 0.7

Total cholesterol (mg/dL) 102.6 ± 3.7 121.9 ± 5.0 115 ± 3.9

Glucose (mg/dL) 168.4 ± 4.3 174.8 ± 16.6 168.1 ± 4.9
Each value represents the mean ± S.E. Sinificantly different from Control: * p < 0.05.

To further explore the mechanism of the anti-obesity effect of FLE, gene expression
analysis by real-time PCR on the fatty acid uptake by the liver were measured [19]. The
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genes were selected according to metabolic function, namely fatty acid β-oxidation, fatty
acid transport, and glucose metabolism. The gene expression of fatty acid transport protein
(Fatp), a regulator of fatty acid transport, was significantly higher in the two FLE groups
than in the control group. The expression of carnitine palmitoyltransferase 1A (Cptla)
and ACADVL, which are related to the activation of β-oxidation, was also significantly
upregulated by FLE exposure as shown in Table 3. The expression of the glycolysis gene
glucokinase (Gck) was only increased in the 2.5% FLE group.

Table 3. Gene expression analysis by real-time PCR in the liver after four weeks of HFD feeding.

Fold Change to Control

Gene Name (Accession No) 2.5% FLE 5.0% FLE

Glycolitic system

Gck (NM012565) 1.66 ± 0.14 * 1.53 ± 0.05

TCA cycle

Cs (NM130755) 1.03 ± 0.07 1.21 ± 0.10

Ogdh (AI412142) 0.89 ± 0.05 0.96 ± 0.04

Electron transfer system

Comp. I (CB5449004) 0.99 ± 0.02 1.03 ± 0.07

Comp. IV (NM017202) 1.84 ± 0.07 * 1.98 ± 0.05 *

Fatty acid synthesis

Fasn (NM017332) 1.19 ± 0.13 1.24 ± 0.08

Fatty acid transporter

Fatp (NM053580) 1.91 ± 0.11 * 1.92 ± 0.04 *

Fatty acid β-oxidation

Cpt1o (NM031559) 1.84 ± 0.03 * 1.81 ± 0.15 *

Acadvl (NM012891) 1.94 ± 0.67 * 1.91 ± 0.10 *
Each value represents the mean ± S.E. (n = 6). Sinificantly different from Control: * p < 0.05.

These results indicated that, in HFD-fed rats, fatty acid uptake by the liver was
increased by FLE, followed by an increase in fatty acid β-oxidation, which may have
decreased plasma FFA levels.

Peroxisome proliferator-activated receptor ã (PPARγ) is a key transcription factor that
regulates adipogenesis and lipid metabolism [20] and uncoupling protein 1 (UCP1) in BAT
is a mediator of thermogenesis and regulator of lipid levels [21]. The gene expressions of
PPARγ and adiponectin were significantly upregulated in WATp in the two FLE groups
as shown in Table 4. The gene expression of UCP1 was significantly enhanced in BAT
in the two FLE groups. Chronic administration of FLE induced PPARγ and adiponectin
gene expression, which depends on the accumulation of visceral fat in WAT to improve
hyperlipidemia and their upregulation might increase non-shivering thermogenesis in BAT
via UCP1.

Adiponectin level in BAT was not checked as adiponectin is secreted by WAT [22].
It is known that polyphenolic compounds can regulate obesity in rats fed an HFD [23].

Zhao et al. reported that phillyrin suppressed nutritive obesity in mice, including re-
ductions of body weight, wet fat weight, the fat index, and the diameter of fat cells,
and decreases of serum TG and cholesterol levels [24]. Phillyrin is a selective PDE4 in-
hibitor [10]. PDE4 inhibition is therapeutic strategy for metabolic disorders and results in
elevated cAMP concentrations in adipose tissues as shown in Figure 4. The direct effects of
cAMP on lipolysis in WAT and thermogenesis via UCP1 upregulation in BAT increase the
thermogenic capacity of BAT and decrease adiposity [11].
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Table 4. Gene expression analysis in adipose tissue by real-time PCR after four weeks of HFD feeding.

Fold Change to Control

Gene Name (Accession No) 2.5% FLE 5.0% FLE

Perirenal white adipose tissue

Fatty acid receptor and adipocytokine

PPARγ (NM013124) 2.74 ± 0.04 ** 2.85 ± 0.13 **

Adiponectin (NM144744) 1.93 ± 0.13 * 1.97 ± 0.03 *

Resistin (AJ555618) 1.56 ± 0.10 1.33 ± 0.13

Brown adipose tissue

Uncopling ATP synthesis from oxidative
metabolism

UCP1 (NM012682) 1.88 ± 0.02 * 1.92 ± 0.11 *
Each value represents the mean ± S.E. (n = 6). Signicantly different from Control: * p < 0.05, ** p < 0.01.
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In addition, Stephen et al. demonstrated that, in the absence of an adrenergic stimulus,
a combination of two PDE inhibitors is required to fully upregulate UCP1 and increase
lipolysis in BAT [25]. Thus, pinoresinol β-D-glucoside and phillyrin in forsythia leaves
might be responsible for the observed anti-obesity effects. These results indicated that FLE
has potential value as a health material for reducing obesity similarly as forsythia fruit in
the Kampo medicine BOFU.

4. Combinations of Forsythia Leaves and Other Materials

BOFU, which is widely used as an anti-obesity pharmaceutical, consists of 18 crude
drug components. Yoshida et al. reported that the mixture of ephedrine and extracts of
glycyrrhiza, schizonepeta spikes, and forsythia fruit also exerted an anti-obesity effect
corresponding to the effect of BOFU [3]. This result indicated that the combination of
both the crude drugs as adrenergic stimuli and PDE inhibitors is needed to enhance the
anti-obesity effect of forsythia leaves. However, most crude drugs in BOFU are barred from
use in health foods in Japan. We attempted to develop a simple and beneficial anti-obesity
health food by combining forsythia leaves with other commonly available herbal materials.

4.1. Gardenia Fruit, Glycyrrhiza, and Immature Orange

Forsythia leaves, gardenia fruit, glycyrrhiza, and immature orange (Citrus aurantium)
were selected [26]. Forsythia leaves and glycyrrhiza contain PDE inhibitors [27]. Immature
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orange, which contains synephrine, is a replacement for ephedra [28]. Gardenia fruit was
selected because of its reported anti-obesity effects in the literature [29].

In the first experiment, the anti-obesity effect of a mixture of herbal extracts (MHE)
was investigated in SD rats fed a normal diet (ND) or HFD, both or without MHE supple-
mentation. MHE consisted of forsythia leaf, immature orange, glycyrrhiza, and gardenia
fruit extracts at a ratio of 3. 3. 5. 3. This ratio was determined by referencing the weight
ratio of the four extracts in BOFU (150. 150. 250. 150 (mg/day)).

Rats fed the ND with MHE for 10 weeks exhibited decreases in WATp and WATe
weight and a significant decrease in plasma TG levels compared to the findings in rats
fed the ND alone as shown in Table 5. These effects of MHE were similar to those in a
previous report using mice fed an ND plus BOFU [30]. The decrease of plasma TG levels
was attributed to the inhibition of TG synthesis in the liver and decomposition of TG in
the visceral adipose tissue by MHE. The decrease of plasma HDL-cholesterol level was
exhibited in the 1% MHE group compared with the ND-control group. In a case using mice
fed an ND plus 1.5% BOFU, the tendency of decrease of plasma total cholesterol value was
also exhibited after three weeks [30]. So far, these reasons for the decrease are unknown.

Table 5. Effects of MHE on physical and plasma parameters in ND-fed rats after 10 weeks.

Diet (ND)

Control
(n = 4)

0.2% MHE
(n = 4)

1% MHE
(n = 4)

5% MHE
(n = 4)

Food intake (g/rat)

Final day 43.2 ± 1.2 44.1 ± 0.3 40.2 ± 0.8 44.2 ± 0.1

Body weight (g/rat)

Final body weight 491 ± 13 445 ± 14 454 ± 16 416 ± 15

Organ weight/(g/100 g body weight)

Perirenal white adipose tissue 0.67 ± 0.16 0.36 ± 0.06 0.36 ± 0.06 0.31 ± 0.05 *

Epididymal white adipose tissue 1.71 ± 0.21 1.14 ± 0.14 * 1.29 ± 0.13 1.03 ± 0.06 *

Brown adipose tissue 0.13 ± 0.01 0.15 ± 0.01 0.18 ± 0.01 0.19 ± 0.02

Plasma parameters

Triglyceride (mg/dL) 232 ± 38 128 ± 19 * 89.0 ± 3.8 * 81.5 ± 4.0 *

Free fatty acid (µEq/L) 355 ± 46 362 ± 30 262 ± 22 313 ± 68

HDL-cholesterol (mg/dL) 32.0 ± 1.7 27.3 ± 1.1 25.8 ± 1.2 * 31.5 ± 2.2

LDL-cholesterol (mg/dL) 11.0 ± 0.7 8.50 ± 0.29 8.50 ± 0.87 8.25 ± 0.25

Total cholesterol (mg/dL) 93.5 ± 7.7 72.0 ± 2.3 68.0 ± 4.2 * 81.5 ± 5.8

Glucose (mg/dL) 150 ± 7 151 ± 3 138 ± 5 154 ± 4

Insulin (ng/mL) 1.27 ± 0.31 1.49 ± 0.06 1.49 ± 0.23 1.90 ± 0.15

Adiponectin (ng/mL) 3881 ± 461 4749 ± 1111 3223 ± 360 3717 ± 544

Each value represents the mean ± S.E. Significantly different from ND-control: * p < 0.05.

Rats fed the HFD containing 5% MHE for 10 weeks exhibited significant decreases
in body, WATp, and WATe weight and significant decreases in plasma TG, FFA, total
cholesterol, glucose, and insulin levels compared to the results in the HFD control group as
shown in Table 6. In addition, the 5% MHE group exhibited a marked increase in plasma
adiponectin levels under the HFD condition. These effects in the 5% MHE group were
similar to those in the previous reports that used mice who were fed an HFD containing
BOFU [3,31,32].
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Table 6. Effects of MHE on physical and plasma parameters in HFD-fed rats after 10 weeks.

Diet (HFD)

Control
(n = 6)

0.2% MHE
(n = 6)

1% MHE
(n = 6)

5% MHE
(n = 6)

Food intake (g/rat)

Final day 35.5 ± 0.4 31.8 ± 0.8 32.9 ± 0.5 39.3 ± 3.7

Body weight (g/rat)

Final body weight 588 ± 6 † 561 ± 23 539 ± 13 410 ± 5 *

Organ weight (g/100g body weight)

Perirenal white adipose tissue 1.64 ± 0.06 † 1.42 ± 0.11 1.40 ± 0.15 0.74 ± 0.11 **

Epididymal white adipose tissue 3.41 ± 0.07 † 3.03 ± 0.22 2.53 ± 0.10 * 1.53 ± 0.17 **

Brown adipose tissue 0.20 ± 0.01 † 0.21 ± 0.02 0.28 ± 0.02 0.24 ± 0.02

Plasma parameters

Triglyceride (mg/dL) 229 ± 6 164 ± 36 207 ± 47 65.3 ± 16.4 **

Free fatty acid (µEq/L) 530 ± 25 † 387 ± 5 * 396 ± 26 * 454 ± 51

HDL-cholesterol (mg/dL) 32.2 ± 2.5 28.7 ± 1.2 34.0 ± 2.1 40.7 ± 1.3 *

LDL-cholesterol (mg/dL) 15.7 ± 1.4 † 11.3 ± 1.0 * 14.3 ± 1.2 13.7 ± 1.7

Total cholesterol (mg/dL) 125 ± 7 † 83.0 ± 2.5 * 101 ± 10 * 110 ± 7

Glucose (mg/dL) 177 ± 5 † 160 ± 6 * 162 ± 3 * 153 ± 3 *

Insulin (ng/mL) 2.62 ± 0.07 † 1.00 ± 0.13 ** 1.49 ± 0.30 * 1.31 ± 0.28 *

Adiponectin (ng/mL) 3332 ± 200 6342 ± 998 * 4079 ± 237 5194 ± 757 *

Each value represents the mean ± S.E. Significantly different from HFD-control: * p < 0.05, ** p < 0.01. Significantly different from
ND-control: † p < 0.05.

A study by Hioki et al. indicated that BOFU improved visceral adiposity and insulin
resistance in obese women with impaired glucose tolerance [33]. Therefore, the results of
this experiment suggested that the fat mass-lowering effect of MHE may be attributable to
a direct pharmacological action on adipose tissues similar to that of BOFU.

In the second experiment, body, WATp, WATe, and BAT weight were compared in
HFD-fed rats treated with 5% MHE or 5% BOFU (ALPS Pharmaceutical Ind. Co.) as shown
in Figure 5 and Table 7. Real-time PCR demonstrated that fatty acid uptake by the liver
was increased by MHE and BOFU in HFD-fed rats, followed by an increase in fatty acid
β-oxidation as shown in Table 8.

Table 7. Effects of MHE and BOFU on body and organ weight after four weeks of feeding.

Diet (HFD)

Control
(n = 9)

5% MHE
(n = 8)

5% BOFU
(n = 8)

Body weight (g/rat)

Initial body weight 74.7 ± 0.6 74.8 ± 0.9 74.2 ± 0.9

Final body weight 255.1 ± 7.4 183.3 ± 7.8 * 189.6 ± 5.9 *

Organ weight (g/100 g body weight)

Perirenal white adipose tissue 0.53 ± 0.08 0.31 ± 0.08 * 0.31 ± 0.07 *

Epididymal white adipose tissue 1.2 ± 0.06 0.63 ± 0.09 * 0.69 ± 0.05 *

Brown adipose tissue 0.38 ± 0.01 0.35 ± 0.02 0.36 ± 0.02
Each value represents the mean ± S.E. Significantly different from Control: * p < 0.05.
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Table 8. Liver gene expression analysis by real-time PCR after four weeks of MHE and BOFU
supplementation.

Fold Change to Control

Gene Name (Accession No) 5% MHE 5% BOFU

Glycolytic system

Gck (NM012565) 0.54 ± 0.05 *** 0.45 ± 0.09 **

TCA cycle

Cs (NM130755) 1.08 ± 0.12 0.97 ± 0.09

Ogdh (AI412142) 1.16 ± 0.06 1.18 ± 0.06

Electron transfer system

Comp. I (CB5449004) 1.49 ± 0.06 0.89 ± 0.06

Comp. IV (NM017202) 1.89 ± 0.04 * 1.84 ± 0.07 *

Fatty acid synthesis

Fasn (NM017332) 0.46 ± 0.03 *** 0.80 ± 0.11

Fatty acid transporter

Fatp (NM053580) 1.87 ± 0.20 * 1.82 ± 0.17 *

Fatty acid β-oxidation

Cpt1α (NM031559) 1.94 ± 0.06 * 1.74 ± 0.06 *

ACADVL (NM012891) 1.87 ± 0.11 * 1.87 ± 0.09 *
Each value represents the mean ± S.E. (n = 6). Significantly different from Control: * p < 0.05, ** p < 0.01,
*** p < 0.001.

To compare the anti-obesity effects among 5% MHE and 5% BOFU groups, rats were
divided into three groups (0% control, 5% MHE, and 5% BOFU groups) based on their
body weight. Gene expressions by fold change to control in 5% MHE and 5% BOFU groups
were calculated with that of the control group as value of 1, respectively.

Obesity is a common risk factor for type 2 diabetes. Adiponectin gene expression and
plasma adiponectin levels were reported to be significantly reduced in obese/diabetic mice
and humans [34].

Under HFD conditions, chronic administration of MHE or BOFU induced the gene
expression of PPARγ and adiponectin as shown in Table 9. These effects were considered
to result in the observed increases of plasma adiponectin levels, decreases of visceral fat
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accumulation in WATp and WATe and reductions of plasma glucose levels in the first
experiment, thereby improving insulin resistance. That is, PPARγ gene expression induces
an increase of plasma adiponectin levels [35]. In addition, Matsuzawa et al. reported
that plasma adiponectin levels decrease with visceral fat accumulation [36]. This finding
indicates that the increase of plasma adiponectin levels is related to the decrease of visceral
fat accumulation.

Table 9. Gene expression analysis in adipose tissue by real-time PCR following four weeks of MHE
and BOFU exposure.

Fold Change to Control

Gene Name (Accession No) 5% MHE 5% BOFU

Perirenal white adipose tissue

Fatty acid receptor and adipocytokine

PPARγ (NM013124) 2.22 ± 0.09 * 1.89 ± 0.25 *

Adiponectin (NM144744) 2.42 ± 0.05 ** 1.92 ± 0.19 *

Resistin (AJ555618) 1.30 ± 0.07 1.60 ± 0.17

Brown adipose tissue

Uncoupling ATP synthesis from
oxidative metabolism

UCP1 (NM012682) 1.86 ± 0.09 * 1.32 ± 0.05
Each value represents the mean ± S.E. (n = 6). Significantly different from Control: * p < 0.05, ** p < 0.01.

It is noteworthy that UCP1 gene expression in BAT was significantly upregulated
in the MHE group. UCP1 expression in BAT is known as a significant component of
whole body energy expenditure and its dysfunction contributes to the development of
obesity [37]. These findings revealed that MHE or BOFU supplementation inhibited visceral
fat accumulation in HFD-fed rats, and both supplements upregulated the UCP1 gene, which
regulates energy metabolism in WAT. These results suggested that MHE exerts similar anti-
obesity effects as BOFU. It can be presumed that gardenoside and geniposide in gardenia
fruit, synephrine in immature orange, pinoresinol β-D-glucoside and phillyrin in forsythia
leaves, and glabridin in glycyrrhiza are partly responsible for the synergistic effects of MHE,
supporting the use of the extract as a simple and beneficial supplement for preventing
diet-induced obesity.

4.2. Eucommia Leaves

We expected that eucommia leaves would synergistically enhance the effects of
forsythia leaves. The leaves of Eucommia ulmoides Oliv. have been used in the health
tea “Tochucha” for anti-hypertensive purposes in Japan [38]. The main constituents of
the leaves are iridoid glucosides, asperuloside, and geniposidic acid, which have similar
chemical structures as iridoid glucosides, gardenoside, and geniposide in gardenia fruit,
respectively [39].

We reported the anti-obesity effects in eucommia leaf extract (ELE) [35] in comparison
with asperuloside [40]. ELE was comprised of asperuloside 13.7 mg/g and geniposidic acid
69.5 mg/g. As presented in Tables 10 and 11, the oral administration of ELE or asperuloside
to HFD-fed rats resulted in anti-obesity effects, confirming that asperuloside is one of the
bioactive compounds responsible for the anti-obesity effects of ELE.
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Table 10. Effects of ELE on physical and plasma parameters in HFD-fed rats after three months.

Diet (HFD)

Control
(n = 8)

3% ELE
(n = 8)

9% ELE
(n = 8)

Final body weight (g/rat) 548.6 ± 16.8 485.3 ± 13.6 * 422.2 ± 17.7 *

Food intake (g/day/rat) 25.3 ± 3.0 19.7 ± 3.6 15.2 ± 1.7 *

WAT weight (g/rat)

Perirenal white adipose tissue 10.0 ± 0.8 5.6 ± 0.4 *** 3.5 ± 0.6 ***

Epididymal white adipose tissue 18.3 ± 0.7 13.9 ± 0.6 *** 5.8 ± 0.4 ***

Plasma parameters

Glucose (mg/L) 1520 ± 17 1458 ± 5 * 1433 ± 17 *

Insulin (ng/mL) 6.6 ± 0.5 4.2 ± 0.5 ** 2.4 ± 0.3 ***

Free fatty acid (µEq/L) 610.4 ± 78.8 450.8 ± 33.8 493.4 ± 26.2

Total cholesterol (mg/L) 780 ± 27 655 ± 28 ** 725 ± 15

Adiponectin (µg/L) 27 ± 3 42 ± 4 53 ± 4 **

TNF-α (pg/mL) 178.5 ± 22.6 137.1 ± 15.1 63.5 ± 8.3 *

Resistin (ng/mL) 187.6 ± 15.9 175.9 ± 15.9 111.4 ± 11.0 **

Leptin (ng/mL) 6.8 ± 0.4 5.9 ± 0.7 6.7 ± 0.8
Each value represents the mean ± S.E. Significantly different from HFD-control: * p < 0.05, ** p < 0.01,
*** p < 0.001(Tukey HSD).

Table 11. Effects of ASP on physical and plasma parameters in HFD-fed rats after three months.

Diet (HFD)

Control
(n = 6)

0.03% ASP
(n = 6)

0.1% ASP
(n = 6)

0.3% ASP
(n = 6)

Initial body weight (g/rat) 71 ± 1.0 71.2 ± 1.5 72.5 ± 0.5 71 ± 0.6

Food intake (g/day/rat) 27.8 ± 2.2 21.3 ± 3.2 * 17.7 ± 2.7 * 14.9 ± 2.0 *

Final body weight (g/rat) 564 ± 9 516 ± 19 * 465 ± 8 * 461 ± 7 *

Body weight gain (g/rat) 493 ± 10 445 ± 18 * 393 ± 8 * 390 ± 7 *

Relative WAT weight (%)

Perirenal white adipose
tissue 2.7 ± 0.3 1.5 ± 0.2 * 1.4 ± 0.1 * 1.3 ± 0.1 *

Epididymal white adipose
tissue 2.6 ± 0.2 2.5 ± 0.2 2.2 ± 0.1 2.0 ± 0.1

Relative BAT weight (%) 0.24 ± 0.02 0.31 ± 0.01 * 0.33 ± 0.02 * 0.37 ± 0.02 *

Relative Sol. M. weight (%) 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01

Plasma parameters

Glucose (mg/L) 1621 ± 71 1501 ± 37 * 1394 ± 42 * 1338 ± 55 *

Insulin (ng/mL) 7.7 ± 0.6 5.2 ± 1.1 * 3.9 ± 0.8 * 3.3 ± 0.6 *

Free fatty acid (µEq/L) 639.1 ± 33.7 449 ± 56.0 * 402.7 ± 21.6 * 397.3 ± 20.9 *

Total cholesterol (mg/L) 880 ± 34 721 ± 25 * 708 ± 24 * 664 ± 26 *

Adiponectin (µg/L) 29 ± 5 39 ± 6 * 48 ± 4 * 53 ± 3 *

TNF-α (pg/mL) 198.3 ± 18.2 136.5 ± 13.1 * 98.7 ± 9.2 * 70.6 ± 8.9 *
Each value represents the mean ± S.E. Significantly different from HFD-control: * p < 0.05. Sol. M.: Soleus Muscle.
ASP: Asperuloside.

We revealed for the first time that oral asperuloside administration to rats increased
the bile acid pool in the intestine [38]. Gardenoside from gardenia fruit is known to
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protect the leaves against insect feeding. Regarding the mechanism, it was demonstrated
that gardenoside is easily hydrolyzed to aglycone in the digestive tract by β-glucosidase,
followed by its binding with proteins of transporters to cause lethal damage (Figure 6) [41].
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It has long been known that the leaves of Eucommia are hardly damaged by insects.
This suggests that the leaves contain the protective compound. In the same manner,
asperuloside is easily hydrolyzed to aglycone by β-glucosidase. It has been reported
that aglycone binds with amino acids to produce resinous substances in vitro similarly
as gardenoside [42]. Meanwhile, asperuloside plasma levels are extremely low in rats
(Cmax = 198 ng/mL at 50 mg/kg p.o., unpublished data). In addition, a review article
stated that metformin increases the bile acid pool within the intestine, predominantly
through reduced ileal absorption [43]. Therefore, it is assumed that the increase of the bile
acid pool in the intestine following asperuloside administration in rats is also attributable
to the reduction of ileal absorption of bile acid by the transporter bound by the aglycone of
asperuloside. Further research is required to clarify the mechanism.

Prior research recorded increases of the bile acid pool in the intestine and cholic acid
levels in plasma after oral cholic acid treatment in HFD-fed mice [44]. An increased plasma
LDL level is also observed, following increases of the bile acid pool in the intestine [45].
The increasing cholic acid content in the blood acts on TGR5 receptors of BAT in rodents
and muscle skeletal in humans to exert its anti-obesity effect (Figure 7) [46]. Therefore, it is
assumed that the anti-obesity effect of asperuloside in rodents might depend on an indirect
effect of cholic acid, as opposed to a direct effect of asperuloside.
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Furthermore, the increase of the bile acid pool following metformin was accompa-
nied by a marked increase of Akkermansia muciniphila counts in the gut gastrointestinal
tract [43], and similar increases in A. muciniphila counts in the gastrointestinal tract were
induced by asperuloside [47]. In addition, it was recently reported that BOFU containing
gardenoside from gardenia fruit can induce marked increases of A. muciniphila counts in
the gastrointestinal tract [48]. A. muciniphila is expected to emerge as a beneficial microbe,
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which produces active short chain fatty acids for anti-obesity effects from the dietary fiber
in the gut [49].

Conversely, the anti-obesity effects of the ELE product were weak in humans unlike
the case of rodents [50]. This finding is believed to be associated with the lack of BAT
activation by cholic acid via TGR5 in humans [51]. Thermogenesis in skeletal muscle is
low in humans compared to that in BAT (skeletal muscle:BAT = 1:100) [52]. A prior report
indicated that mitochondrial activity in skeletal muscle is enhanced by PDE4 inhibition as
shown in Figure 8 [53].
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BOFU contains the active iridoid glucosides, gardenoside and geniposide from gar-
denia fruit, and polyphenol, phillyrin from forsythia fruit. Similarly, eucommia leaves
contain the active iridoid glucosides, asperuloside, and geniposidic acid, and forsythia
leaves contain polyphenol, phillyrin.

From the aforementioned results, the simple combination of forsythia leaves and
eucommia leaves as an herbal tea are expected to have synergistic effects on obesity
in humans.

5. Other Biological Activities
5.1. Effects for Forsythia Leaves on Atopic Dermatitis

It has been known for more than 40 years that high numbers of Staphylococcus aureus
grow when samples from the skin of patients with atopic dermatitis are cultured. It has
long been debated whether S. aureus, which grows on the skin, is the cause of inflammation
or the result of chronic inflammation. Kobayashi et al. revealed using ADAM17 cKO mice
that when atopic dermatitis becomes severe, the diversity of bacteria on the skin surface is
significantly reduced, and S. aureus becomes dominant [54]. A causal relationship between
atopic dermatitis and S. aureus has not been established to date because of the lack of a
suitable animal model.

Since colonization by S. aureus is the cause of inflammation in atopic dermatitis, it is
suggested that a component with antibacterial activity against S. aureus could suppress
inflammation. We previously reported that forsythia extract (MIC = 6% w/v) and its main
constituent forsythiaside (MIC = 3.2 mM) have strong antibacterial effects against S. aureus
Terashima [55,56]. Qu et al. evaluated the anti-microbial activity of forsythiaside and
phillyrin against Escherichia coli-10B, Pseudomonas aeruginosa and S. aureus Rn4220 using the
microtiter plate method. Forsythiaside exhibited strong antibacterial activity against all



Molecules 2021, 26, 2362 14 of 21

three bacteria, and it was more effective against S. aureus (MIC = 76.67 µg/mL) than tetra-
cycline (MIC = 119.05 µg/mL). However, the activity of phillyrin was not remarkable [57].
These results support the use of forsythia as an herbal medicine for skin diseases.

Furthermore, Sung et al. evaluated the in vivo and in vitro therapeutic effects of
Forsythia suspensa fruit extract (FSE) in an NC/Nga mouse model exposed to Dermatophagoides
farinae crude extract (DfE). Topical application of FSE on lesional skin of DfE-induced atopic
dermatitis mice effectively alleviated the development of atopic dermatitis-like lesions
by suppressing the expression of chemokines, cytokines, and adhesion molecules in ker-
atinocytes. In addition, among the components of FSE, forsythiaside and phillyrin inhibited
the production of thymus- and activation-regulated chemokine (TARC), macrophage-
derived chemokine (MDC), and regulated activation, normal T cell expressed, and secreted
(RANTES) in human keratinocytes [12]. These results suggested that forsythia fruit or
leaves might be also useful candidate for treating allergic skin inflammatory disorders.

Ahluwalia et al. summarized the effects of PDE4 inhibitors on atopic dermatitis in a
review article [58]. In particular, increased PDE4 activity is correlated with inflammatory
dysregulation in patients with atopic dermatitis [59–61]. Increased PDE4 activity was also
detected in cord blood cells from newborns with atopic parents. leading to speculation
about a genetic abnormality [61].

Multiple in vitro assays have revealed decreased production of PGE2, IL-4, and IL-
10 in atopic leukocytes exposed to high-potency PDE4 inhibitors [62]. These predictions
were later confirmed in vivo by the finding that PDE4 inhibitors reduced cytokine and me-
diator release, either by directly acting on IL-4 production or the Th2 cell balance [59]. This
clinical anti-inflammatory effect serves as the rationale for developing PDE4 inhibitors for
atopic dermatitis. Currently, several PDE4 inhibitors including topical and oral formulation,
have been developed to target the inflammatory cascade of atopic dermatitis [58].

From these results, forsythia leaves are expected to have efficacy against atopic der-
matitis as indicated in the clinical photos sent from Dr. O. Katayama (Figure 9).
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5.2. Effects of Forsythia Leaves against Influenza A Virus Infection

Deng et al. reported that forsythiaside controlled influenza A virus infection and im-
proved the course after infection in SPF C57BL/6j mice [14]. Specifically, body weight was
reduced by virus infection, and this change was alleviated in forsythiaside and oseltamivir-
administered mice. The drugs also suppressed pathological damage in the lungs and
reversed the upregulation of TLR7 mRNA expression. These findings suggested that
forsythiaside can improve the outcome of influenza A virus infection by inhibiting replica-
tion of the virus.
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The anti-viral effect of phillyrin against influenza A virus infection in vivo was inves-
tigated to identify a novel anti-viral drug [13]. The administration of phillyrin at a dose of
20 mg/kg/day for three days significantly prolonged the mean survival time, reduced the
lung index, decreased viral titers and IL-6 levels, reduced lung hemagglutinin levels, and
attenuated lung tissue damage in mice infected with influenza A virus. PDE4 inhibition
has been demonstrated to ameliorate acute lung injury caused by influenza A virus in
mice [10]. Thus, PDE4 inhibitors such as phillyrin may specifically ameliorate airway and
lung inflammation.

From these reports, forsythia leaves are expected to have effects against influenza A
virus infection. Table 12 presents the results of a preliminary test of the preventive effects of
forsythia leaf tea against influenza A virus in a Japanese middle school between December
2018 and February 2019. The experiment indicated that forsythia leaf tea may be effective
for preventing influenza virus infection. More detailed intake tests are needed in the future.

Table 12. Preliminary test of the preventive effect of forsythia leaf tea against influenza A virus infection.

Non-Intake Number (%) Intake Number (%)

Infected 15 (12.2) 6 (7.9)

Non-infected 108 (87.8) 70 (92.1)

Totals 123 76

5.3. Function of Phillyrin as a Phytoestrogen

Phytoestrogens, also termed plant estrogens, are exogenous estrogens that have the
same function as female hormones. As the major phytoestrogens, soy isoflavone, its
intestinal bacterial metabolite, equol, and enterolactone, a plant lignan metabolite generated
by intestinal bacteria, have been described. These compounds have estrogen-like activity,
and they are expected to have effects such as preventing breast cancer, menopause and
osteoporosis in women and thyroid cancer in men [63].

We conducted joint research on metabolites of lignans produced by gastrointestinal
flora [6,64], confirming that enterolactone was excreted in urine when phillyrin was orally
administered to male SD rats as shown in Figure 10. The results demonstrated that the
risk of breast cancer was decreased as shown in Figure 11 and menopausal symptoms
were suppressed as the urinary excretion of enterolactone increases in humans [65]. It
was clarified that phillyrin is metabolized by intestinal bacteria to the phytoestrogen
enterolactone. The estimated metabolic pathway by intestinal bacteria is presented in
Figure 12 [6].
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Based on these findings, forsythia leaves are expected to be beneficial materials based
on the phytoestrogen content.

6. Toxicity and Safety of Forsythia Leaves

We examined the toxicity of FLE following a single oral dose and repeated admin-
istration for 14 days in male ddY mice [66]. Following a single oral dose of as much as
6.67 g/kg/day FLE (equivalent to 18.4 g/kg forsythia leaves), some mice displayed slight
sedation and subsequent excitement immediately after administration, but this effect was
not observed on subsequent days. The treatment did not influence body weight as shown
in Table 13.

Table 13. Influence of a single oral dose of FLE (6.67 g/kg/day) to male ddYmice on body weight.

Days 0 1 2 3 7 14

Cont (5) 32.9 ± 3.15 29.1 ± 3.59 33.0 ± 3.26 33.4 ± 2.80 35.1 ± 1.88 37.0 ± 1.58

FLE (5) 33.5 ± 3.35 29.1 ± 3.15 34.1 ± 2.97 33.7 ± 3.13 36.1 ± 1.89 37.6 ± 1.67
Each value represents the mean ± S.D. (n = 5) (g).

Repeated oral administration of 0.166 g/kg/day FLE (0.46 g/kg equivalent to forsythia
leaves) for 14 days did not cause any obvious changes to general symptoms, body weight,
and organ weight as shown in Table 14.
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Table 14. Influence of repeated oral administration of FLE (0.166 g/kg/day) to male ddY mice on body weight and organ weight.

(n) BW (g) Spleen (g) Liver (g) Renal (g) Lung (g) Heart (g) Adrenal (mg) Thymus (mg) Testis (g) Brain (g) Hypophysis
(mg)

Cont (5) 37.1 ± 1.00 0.12 ± 0.019 1.8 ± 0.12 0.63 ± 0.023 0.18 ± 0.012 0.17 ± 0.012 5.3 ± 0.87 50.1 ± 2.23 0.23 ± 0.013 0.48 ± 0.025 1.2 ± 0.42

FLE (5) 38.2 ± 1.31 0.12 ± 0.026 1.9 ± 0.13 0.59 ± 0.043 0.19 ± 0.018 0.17 ± 0.008 5.3 ± 0.88 51.9 ± 14.55 0.24 ± 0.027 0.48 ± 0.021 1.3 ± 0.56

Each value represents the mean ± S.D. (n = 5).

There were no deaths in mice that received a single dose, and the LD50 of FLE was
estimated to be at least 10 g/kg or more, suggesting that its toxicity was low at the moment.

Prior research identified no acute toxicity of FLE or the ethanol extract of forsythia
leaves in mice, even at a daily dose of 61.60 g/kg [67]. Conversely, forsythiaside dis-
played cytotoxicity in PK-15, Mark-145, and CHK cells with IC50 values of 0.138, 0.087, and
0.384 mg/mL, respectively [68] and also caused acute toxicity in mice (IC50 = 1.98 g/kg) [69].

Han et al. reported the toxicity and safety of phillyrin, following a single oral dose of
18,100 mg/kg in NIH mice [70]. Mortality was not observed after 14 days, and no clinically
relevant adverse effects or variations in body weight or food consumption were observed.
The maximum tolerated dose of phillyrin was determined to exceed 18,100 mg/kg. Further-
more, sub-chronic toxicity was evaluated, following the oral administration of 0, 540, 1620,
and 6480 mg/kg phillyrin for 30 days in SD rats. After 30 days, no mortality or significant
toxicological effects such as decreased food consumption, body weight, or changes of
biochemical parameters in serum and vital signs were observed. The no-observed-adverse-
effect level after 30 days was 6480 mg/kg body weight. These results indicated that the
oral phillyrin has low or no toxicity.

The additional biochemical and histopathological examinations will be required for
further evaluation of the toxicity and safety of forsythia leaves by us.

Regarding human intake, no adverse events have been reported for forsythia leaf tea
even though it has been on the market in Niigata Prefecture, Japan for more than 17 years.

7. Limitations of the Study

In this review, we demonstrated that forsythia leaves have potential value as a health
material for reducing obesity in SD rats fed an HFD. However, anti-obesity effects in
humans are still to be determined.

8. Conclusions

Forsythia fruit, the dried fruit of F. suspensa, is listed in Japanese, Chinese, and Korean
Pharmacopoeias. Up to now, many compounds have been identified in the fruit. The
major compounds are phillyrin, pinoresinol α-D-glucoside, and forsythiaside. Many
pharmacological studies have confirmed that forsythia fruit possesses anti-inflammatory,
antioxidant, antiviral, antivomiting, and antitumor activities, as well as hepatoprotective,
neuroprotective, and cardiovascular protective effects [71].

Forsythia fruit is used in many Kampo medicines in Japan as a principal drug. How-
ever, there are a number of factors that limit the wide use of the forsythia fruit. Fruits
cannot be harvested in Japan because F. suspensa growing in Japan does not have fruits.
Forsythia fruit used in Kampo medicines is imported from the People’s Republic of China.
In addition, the use of forsythia fruit as a health food is prohibited in Japan.

We found that the major compounds in forsythia leaves are also phillyrin, pinoresinol
α-D-glucoside, and forsythiaside, similar to those of forsythia fruit [5,6]. Therefore, we
studied the biological effects of forsythia leaves as an alternative to forsythia fruit.

In particular, phillyrin was reported as a novel selective PDE4 inhibitor [10]. PDE4 in-
hibition is a therapeutic strategy for metabolic disorders [11]. Increased PDE4 activity is
correlated with inflammatory dysregulation in patients with atopic dermatitis [59–61].

Furthermore, PDE4 inhibition has been demonstrated to ameliorate acute lung injury
caused by influenza A virus in mice [10]. We reported that phillyrin is metabolized to
enterolactone as phytoestrogen by gastrointestinal flora.
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In this review, we summarized our studies on the biological effects of forsythia leaves
containing phillyrin and other polyphenolic compounds, particulary against obesity, atopic
dermatitis, and influenza A virus infection, and its potential as a phytoestrogen.

In conclusion, forsythia leaves were revealed to be useful and safe as a health food
containing a PDE4 inhibitor, supporting its use in the treatments of metabolic disorders
and inflammatory dysregulation. Furthermore, we expect that forsythia leaves will also be
used as one of the new drug sources in the future.
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