
Complete Genome Sequence of “Candidatus Nanosynbacter”
Strain HMT-348_TM7c-JB, a Member of Saccharibacteria Clade G1

Jonathon L. Bakera,b

aGenomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
bDepartment of Pediatrics, U.C. San Diego School of Medicine, La Jolla, California, USA

ABSTRACT Saccharibacteria are abundant and diverse members of the human oral
microbiome; however, they are poorly understood and appear to exhibit an epibiont/
parasitic lifestyle dependent on host bacteria. Here, a complete metagenome-assembled
genome (MAG) sequence of an organism from Saccharibacteria clade G1 human micro-
bial taxon (HMT) 348 is reported, strain HMT-348_TM7c-JB.

Saccharibacteria have a small cell size, reduced genomes, and appear to have an epi-
parasitic lifestyle, dependent on host bacteria (1–3). Saccharibacteria are common

constituents of the oral microbiota, and although they have been correlated with
inflammation and disease, their relationship to human health and their overall physiol-
ogy and lifestyle are poorly understood (4–7). There are at least 6 major clades of oral
Saccharibacteria, with the clade G1 group, human microbial taxon (HMT) 348, being
one of the most abundant Saccharibacteria groups detected in supragingival and sub-
gingival plaque, and on the buccal mucosa (6, 8, 9). Draft genomes of HMT-348 have
been binned out of saliva and plaque sequencing libraries (4, 9) or assembled as sin-
gle-cell amplified genomes (SAGs) (10, 11). Although one study was able to isolate an
HMT-348 organism along with a putative host species (10), at the time of this work, no
complete genomes of HMT-348 were available. Obtaining complete genomes is of special
importance for Saccharibacteria, as they frequently lack the “essential” core genes and path-
ways that are used for determining draft genome completeness (3, 8). Furthermore, com-
plete Saccharibacteria genomes are also helpful in guiding the isolation, culture, and subse-
quent study of Saccharibacteria, which has proven to be an immense challenge (12). In this
study, Nanopore sequencing was used to obtain the complete genome sequence of a
Saccharibacteria HMT-348 organism, HMT-348_TM7c-JB.

The draft assembly of HMT-348_TM7c-JB, “Candidatus Nanosynbacter sp.” isolate
JCVI_32_bin.19, was reported in 2021, obtained from human saliva in Los Angeles, CA,
USA, and fragmented into 7 contigs (4). From the same saliva sample used to obtain the
original draft genome sequence, high-molecular-weight genomic DNA was extracted
using a phenol:chloroform-based protocol (13) and examined for purity, size, and con-
centration using a TapeStation instrument (Agilent Technologies). The DNA was not
sheared or size selected. A long-read library was prepared using a ligation sequencing
kit (Oxford Nanopore Technologies) and sequenced on a GridION using an R9.4.1 flow
cell (Oxford Nanopore Technologies). Base calling, quality control, error correction, and
adapter trimming were performed using Guppy v4.0.11/MinKNOW v20.06.9 (Oxford
Nanopore Technologies), resulting in 9.7 million reads (N50, 6,360 bp). Human reads were
removed using minimap2 v2.17-r941 (14), and the remaining long reads were assembled
using meta-Flye v2.9-b1768 (15). Among the contigs generated in the Flye metagenomic
assembly, a circular 841,116-bp fragment was obtained with .99% average nucleotide
identity (ANI; determined using Anvi’o [16]) to “Candidatus Nanosynbacter sp.” isolate
JCVI_32_bin.19. Illumina reads from the original short-read library (used to generate the

Editor Irene L. G. Newton, Indiana University,
Bloomington

Copyright © 2022 Baker. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to jobaker@jcvi.org.

The author declares no conflict of interest.

Received 19 January 2022
Accepted 24 March 2022
Published 11 April 2022

May 2022 Volume 11 Issue 5 10.1128/mra.00023-22 1

GENOME SEQUENCES

https://orcid.org/0000-0001-5378-322X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mra.00023-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00023-22&domain=pdf&date_stamp=2022-4-11


sequence for “Candidatus Nanosynbacter sp.” isolate JCVI_32_bin.19) were mapped to
the Flye contig using BWA-MEM v0.7.17-r1188 (17) and used with Polypolish v0.4.3 to
remove errors remaining in the circular Flye draft genome. HMT-348_TM7c-JB was anno-
tated using the NCBI Prokaryotic Genome Annotation Pipeline v5.1. Circulator v1.5.5 (18)
was used to rotate the genome start to dnaA. For all software, default parameters were
used unless otherwise noted. The resulting chromosome was 841,302 bp long with a GC
content of 38.21%, and is predicted to encode 852 genes. This complete metagenome-
assembled genome (MAG) will provide valuable information regarding the lifestyle and
evolution of “Candidatus Nanosynbacter sp.” HMT-348.

Data availability. The complete genome sequence of HMT-348_TM7c-JB is avail-
able via GenBank under the accession number CP090820.1. The BioProject accession
number for the genome is PRJNA624185. The short reads used to polish the draft ge-
nome are available in the Sequence Read Archive (SRA) database under the accession
number SRX4318835, and the long reads used to generate the draft assembly are avail-
able under SRA accession number SRX13639916.
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