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Abstract

Human T cells are a highly heterogeneous population and can recognize a wide variety of antigens by their T cell

receptors (TCRs). Tumor cells display a large repertoire of antigens that serve as potential targets for recognition,

thus making T cells in the tumor micro-environment more complicated. Making a connection between TCRs and

the transcriptional information of individual T cells will be interesting for investigating clonal expansion within T

cell populations under pathologic conditions. Advances in single cell RNA-sequencing (scRNA-seq) have allowed

for comprehensive analysis of T cells. In this review, we briefly describe the research progress on tumor micro-

environment T cells using single cell RNA sequencing, and then discuss how scRNA-seq can be used to resolve

immune system heterogeneity in health and disease.  Finally,  we point out future directions in this field and

potential for immunotherapy.
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Introduction

Human immune system is composed of multiple cells that
coordinately  protect  against  various  pathogens.  Among
these  cells,  T cells  recognize  a  broad  range  of  self  and
foreign antigens via a large heterogeneous population of
surface  antigen receptors,  the  T cell  receptors  (TCRs).
TCRs  vary  from  cell  to  cell  and  represent  a  sort  of
“molecular tag” for T cells.  T cells  are key elements of
cancer  immunology  and  T  cells  found  in  the  tumor
microenvironment  are  named  tumor-infi ltrating
lymphocytes  (TILs)  (1).  In  a  subset  of  solid  tumors
(colorectal  cancer,  breast  cancer,  renal  cell  carcinoma,
ovarian  cancer,  and  gastrointestinal  stromal  cancer),
activated CD8+  T cells  in the tumor microenvironment
have positive prognostic value (1-8).

However, increasing data show that T cell tolerance is
associated with a failure in antitumor immunity. Firstly,

Treg cells prevent cytotoxic T cells activity and promote
tumor growth by secreting a volume of T cell suppressive
molecules,  including  IL-10,  IL-35,  and  TGF-β  (9,10).
Furthermore,  TIL  cells  are  regulated  by  a  complex
immunosuppressive  network,  which  drives  T  cells  to
terminally  exhausted  T  cells  (11).  T  cell  exhaustion
increase  high  levels  of  inhibitory  receptors  such  as
programmed  cell  death  protein  1  (PD-1),  lymphocyte
activation gene 3 protein (LAG-3), cytotoxic T lymphocyte
antigen-4  (CTLA-4),  and  T-cell  immunoglobulin  and
immunoreceptor tyrosine-based inhibitory motif domain
(TIGHT) (12-17). Impaired production of effectors, such
as IL-2, TNF-α, TFN-γ and GzmB, also are demonstrated
by exhausted T cells (18). Thus, therapeutic strategies to
overcome T cell exhaustion and modulate Tregs are key for
solving immune escape by cancers.

The  success  of  cancer  immunotherapies  based  on
CTLA-4  or  PD-1  blockade  has  been  attributed  to  the
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prevention of  T cell  exhaustion (19).  These  treatments
have been successful in treating melanoma, lung cancer,
and kidney cancer (20,21). However, effective responses
have only been observed in a subset of patients and cancer
types. The variation in treatment efficacy is linked to the
heterogeneity in the immune cell composition of individual
tumors in individual  patients.  It  has  been reported that
significant heterogeneity in the immune composition is
observed across tumor subtypes and patients with breast
cancer (22). Thus, the question becomes whether T cell
state could be an indicator of  treatment and prognostic
markers. To better define T cell subtypes in tumors, large-
scale and high-dimensional analyses are needed.

Application  of  single  cell  RNA-sequencing
(scRNA-seq) to study heterogeneous T cells

Flow cytometry,  immunohistochemistry  and bulk  RNA
analysis  using  a  limited  number  of  established  markers
cannot  meet  the  needs  of  solving  issues  surrounding
heterogeneity  in  the  T  cell  composition  of  individual
tumors. scRNA-seq is a powerful technology for resolving
heterogeneous cell types and states in human tissues such as
the  intestine  (23,24),  brain  (25),  spleen  (26),  pancreas
(27,28), and blood (29-31). scRNA-seq provides insights
into cell functional heterogeneity that were hidden in the
bulk  cell  population.  Nowadays,  the  application of  this
technique to immune profiling has begun to be realized
(32-34). In different tumor micro-environments, different
T  cell  subtypes  can  be  influenced  and  display  several
dominant TCR display clones. In addition to transcriptome
analysis, the development of scRNA-seq technologies has
opened new perspectives for TCR analysis. Studying paired
TCR sequences  in  individual  cells  will  be  powerful  for
understanding the adaptive immune response. Individual
phenotypic  states  are  likely  shaped  by  antigenic  TCR
stimulation  and  environmental  stimuli.  Furthermore,
TCRs can be used to monitor the dynamics of T cells in
tumor immunology (32,35).  Thus, making a connection
between  TCR  c lonotype  compos i t ion  and  the
transcriptional  landscape  of  individual  T  cells  will  be
interesting  for  investigating  the  dynamics  of  clonal
expansion  within  T  cell  populations  under  normal  or
pathologic conditions.

Fluorescence-activated  cell  sorting  (FACS)-purified
CD45+CD3+ cell populations are commonly subjected to
sequencing.  10X Genomics  or  SAMRT-seq2 is  used  to

isolate cells and amplify transcripts (36-39). 10X Genomics
captures  cells  using  microfluidic  devices  that  trap  cells
inside a hydrogel. SMART-seq2 relies on FACS into 96-
well plates that physically separate one cell from another.
Once cells are lysed, sequencing protocols are characterized
by a reverse transcription and amplification step before
library preparation. The scRNA-seq data generated using
3’/5’  or  full-length  approaches  have  been  exploited  to
extract  information  about  T  cell  properties  and
heterogeneity.  The  assembly  of  full-length  (TCR)
sequences from scRNA-seq data allows for alpha and beta
chain  sequence  pairing,  which  is  not  possible  when
performing  “bulk”  analyses,  and  for  the  integration  of
clonality information using the transcriptome of a single T
cell (Figure 1). In Table 1, we summarize the methods of
scRNA-seq that are used or potential to be used in T cell
analysis.

scRNA-seq of T cells in tumors

Many research groups have studied transcriptional maps of
T cells  in  different  tumors  using scRNA-seq.  Here,  we
summarize several pioneering studies that highlight how
scRNA-seq can be used for the discovery of T cell cellular
states in tumors.

Breast cancer

Breast  cancer  is  the  most  common  cancer  in  women.
Although breast cancer has not been considered as a cancer
for  the  application  of  immunotherapeutic  treatments,
recent  studies  have  demonstrated  evidence  that  the
immune  system  plays  a  complex  role  in  breast  cancer
biology by promoting tumor growth and mediating the
eradication of this disease. TILs are significantly increased
in  a  subset  of  patients,  including  triple-negative  and
HER2-positive  breast  cancers  (22,42),  making  them  a
prognostic marker for chemotherapy and survival.

Recently, researchers from Memorial Sloan Kettering
Cancer Center profiled 45,000 immune cells from 8 breast
carcinomas and matched normal breast tissue, blood, and
lymph nodes. This group derived an immune map of breast
cancer,  pointing  to  continuous  T  cell  activation  and
differentiation  states  (35).  In  agreement  with  previous
reports  (22,43),  these  researchers  found  an  activation
gradient in CD8+ T cells in tumors. Moreover, T cells in
the blood and lymph nodes exhibited varying phenotypes
compared with T cells in breast tissue. Tumor-resident T
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Figure 1 Overview of scRNA-seq technology in study of T cells. T cells are usually isolated from tumors using fluorescence-activated cell
sorting (FACS). Step 1: Cell isolation. 10X Genomics: first isolate T cells and then capture cells using microfluidic devices that trap cells
inside hydrogel droplets; SMART-seq2: isolate individual cells into 96-well plates and profile single-cell transcriptomes separately. Step 2:
Amplification method. In this step, T cells are lysed, and reverse transcription and PCR amplification are performed. 10X Genomics uses
cellular barcoding techniques and only one PCR reaction, while SMART-seq2 requires the number of PCR reactions to equal to the
number of profiled cells. Step 3: Sequencing method. 10X Genomics uses sequencing of the 3’/5’ end of each transcript while SMART-seq2
can sequence full-length transcripts. Either can choose to analyze single-cell 5’ V(D)J regions. Step 4: Quality control and data analysis.
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cells, including CD4/CD8 effector cells, central memory
clusters and Treg clusters,  might be exposed to varying
degrees of inflammation, hypoxia and nutrient deprivation,
thus  exhibiting  the  expression  of  anti-inflammatory,
exhaustion, hypoxia and anergy genes. Further analysis of
paired single-cell  RNA and TCR sequencing data from
27,000 additional T cells revealed the combinatorial impact
of the TCR on phenotypic diversity.  When analyzed in
conjunction with TCR utilization, it appears that T cell
populations are associated with unique combinations of
TCR clonotypes. In addition, these TCR patterns together
with unique gene expression programs and environmental
exposure define the states of intratumoral T cells.

Another  group  from Melbourne  later  performed  the
same profiling of tissue-resident memory T cells (TRM) in
breast cancer (44). Although only examining two tumors,
they identified five CD4+ and four CD8+ T cell clusters,
including an unexpected CD8+ TRM-like population. CD8+

TRM cells have been reported to be very effective cytokine
producers and superior to TEM cells in their re-infection
response  (45).  TRM  cells  in  human breast  cancer  tissue
expressing more granzyme B transcripts than the TEM-like
population. Furthermore, a subset of the TRM population
appeared to be proliferating based on the expression of cell
cycle genes, indicative that the population is expanding in
response  to  tumor  antigens.  The  authors  further
substantiated  this  finding  by  bulk  RNA  sequencing  of
FACS sorted CD103+ and CD103− populations of CD8+ T
cells, finding significantly higher granzyme B and perforin
expression in the CD103+ population, implying a greater
cytotoxic function. Thus, CD8+  TRM  cells contribute to
breast cancer immune surveillance and may be key targets
for modulating immune checkpoint inhibition.

Lung cancer

Non-small-cell  lung  cancer  (NSCLC)  accounts  for
approximately 85% of lung cancer cases and is the leading
cause of cancer-related mortality (46). Continuing clinical
responses  can  be  obtained  in  NSCLC  when  using

immunotherapies (47-49); however, efficacies vary partially
due to the amounts and properties of TILs (50-52).  To
examine  this  problem,  Zemin  Zhang  and  colleagues
dissected the landscape of TILs from 14 untreated NSCLC
patients (53). The researchers observed two clusters of cells
exhibiting states preceding exhaustion and a high ratio of
“pre-exhausted” to exhausted T cells was associated with
better prognosis. Furthermore, Tregs with TNSFSR9 and
IL1R2 correlate with poor prognosis. By examining genes
that are cancer immunotherapy targets in clinical trials, it
was  found  that  genes  are  in  the  category  of  effector
reactivation  or  anti-Treg.  By  dissecting  the  TCR
repertoire, it was concluded that Treg cells do not clonally
enrich  in  tumors,  suggesting  recruitment  from  the
periphery, and CD8+ T cells are clonally enriched, which
points to clonal activation and expansion inside tumors.

At  the same time,  Berbard Thienpont and colleagues
reported  the  tumor  microenvironment  (TME)
transcriptome  in  human  NSCLC  (54).  This  analysis
included immune cells (myeloid, T and B cells), fibroblasts,
endothelial cells, alveolar cells, and epithelial cells but not
cancer cells. This group found that CD8+ and regulatory T
cells are enriched in tumors, while CD4+ and natural killer
cells appear to be depleted. Higher cytotoxic activities are
curtailed by high checkpoint expression in CD8+ T cells.
Cell proliferation pathways were generally lower in TILs
and  CD8+  T  cells;  however,  there  was  accordingly
increased  oxidative  phosphorylation  and  fatty  acid
oxidation (55). In this case, targeting these pathways may
enhance immunotherapy and provide exciting avenues for
the design of novel therapies.

Liver cancer

Hepatocellular  carcinoma (HCC) is  the  most  prevalent
tumor type in the liver, and it is often related to chronic
hepatitis B virus infection, obesity, or alcohol. However,
there are limited treatment options and a lack of clinical
success  in  immunotherapies  (56).  TILs  in  HCC  are
significantly increased, but they are dysfunctional (57). To

Table 1 Summary of current scRNA-seq methods used or potential to be used in T cells analysis

Method Amplification Coverage VDJ analysis Reference

Single-cell PCR Multiplexed PCR Targeted genes NA (40)

10X Genomics In vitro transcription 3’/5’ end of mRNA Application (37)

Smart-seq2 Template switching Full-length mRNA Application (38)

Microwell-seq In vitro transcription 3’ end of mRNA NA (41)

scRNA-seq, single cell RNA-sequencing; NA, not application.
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characterize  the  TILs  in  HCC,  Zemin  Zhang’s  group
analyzed greater than 5,000 single T cells isolated from
HCC patients and studied their complete TCR sequences
and  transcriptomes  simultaneously  (58).  A  total  of  11
unique T cell subtypes, including 5 CD8+ and 6 CD4+ T
cell sub-clusters could be distinguished by gene expression.
This group found that exhausted CD8+ T cells and Tregs
are  enriched  and  clonally  expanded  in  HCC.  Primary
CD8+ T cells, which overexpress layilin (LAYN), resulted
in  interferon  (IFN)-γ  reduction,  CD4+  Treg  cell
suppression,  and CD8+  T cell  exhaustion as  a  response.
IFN-γ is required for active tumor cell killing, and LAYN
is  associated  with  exhausted  CD8+  TILs  and  poor
prognosis. Based on the clonal TCR data, it appears that
most  of  the  Treg  cells  in  HCC are  unique  clones,  and
CD8+ T cells more likely evolve from other types of CD8+

T cells inside HCC tumors. Targeting the layilin pathway
may  be  a  potential  avenue  for  HCC  treatment  in  the
future.

Colorectal cancer

Recent clinical trials have demonstrated that patients with
colorectal  cancer  who  display  microsatellite  instability
(MSI)  but  not  microsatellite-stable  (MSS)  phenotypes
respond to the immune-checkpoint blockade of PD-1 (59).
Zhang’s group used STARTRAC, an integrated approach
of  RNA  sequencing  and  TCR  tracking,  to  obtain
transcriptomes of 11,138 single T cells from 12 patients
with colorectal cancer. They quantitatively analyzed the
dynamic relationships among 20 identified T cell subsets
with distinct functions and clonalities (60). It showed that
both CD8+ effector and “exhausted” T cells exhibited high
clonal  expansion.  Most  CD4+  TIL cells  and  Treg  cells
showed clonal exclusivity, whereas certain Treg cell clones
were linked to several T helper cell clones. It’s noticed that
two  IFNG+Th1-like  cell  clusters  were  identified  with
distinct IFN-γ-regulating transcription factors. One is the
GZMK+ effector memory T cells, which were associated
w i t h  E O M E S  a n d  R U N X 3 .  T h e  o t h e r  i s
CXCL13+BHLHE40+ Th1-like cell clusters, which were
associated with BHLHE40. Only CXCL13+BHLHE40+

Th1-like cells were enriched in colorectal cancer patients
with  MSI,  and  this  could  explain  their  responses  to
immune-checkpoint blockade. Furthermore, IGFLR1 was
highly expressed in both CXCL13+BHLHE40+Th1-like
cells  and  CD8+exhausted  T  cells  and  possessed  co-
stimulatory functions. These distinct populations can be

used as a resource for T cell exploration and therapeutic
targets.

The findings of TILs are summarized in Table 2.

Conclusions

Before the development of scRNA-seq, the discovery of
new  cell  subsets  involved  using  cell  surface  markers.
scRNA-seq  opens  up  a  new  era  in  which  we  can  now
construct a T cell atlas from normal and tumor tissues or
cancerous lymph nodes, thus revealing the diversity in the
tumor micro-environment, discovering variations in gene
expression,  and building  developmental  trajectories.  In
sum, T cells are heterogeneous in tumors, and Tregs are
usually enriched, while CD8+  T cells become exhausted
TILs  or  TRM  cells  in  tumors.  Anti-inflammatory,
exhaustion, hypoxia and anergy genes are up-regulated in
these cells, and cancer immunotherapy target genes exhibit
distinct  expression  patterns  among  the  cells.  In  this
manner, different T cell populations could be targeted by
different immunotherapies. The T cell composition may be
an  important  biomarker  for  subtyping  tumors  and  an
indicator for patient treatment.

It is important to note that the above-mentioned T cells
are  αβ  T cells,  but  there  is  another  T cell  subtype that
occupies  5%−10%  of  all  peripheral  T  cells  in  healthy
individuals called γδ T cells (61). Unlike αβ T cells, γδ T
cells  target  cancer  cells  without  requiring  MHC
presentation.  γδ  T  cells  have  been  studied  for  their
therapeutic potential in cancer treatment (62). In this way,
taking advantage of  scRNA-seq in underlying γδ  T cell
immune states in tumors is vital for developing strategies
for immunotherapy.

Although mouse models have been shown to be useful
for  understanding  immune  system  effects,  scRNA-seq
allows for the profiling of human tissues. Furthermore, the
diversity of T cells is not only reflected in transcriptome
differences, activation state ranges, and TCR clone type
diversity, it is also reflected in methylation and chromatin.
We anticipate that the development of new technologies
will extend single-cell profiling beyond the transcriptome
with  advances  in  methylation  (63-66),  proteome  (67),
chromatin  (68,69),  and  genome (70)  assays.  Single-cell
multi-omics analysis of individual cells will take place in the
near  future  and  help  better  understand  the  biology  of
immune-mediated diseases and monitor immune responses
in cancer and post-therapies.
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