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TherapeuTic advances in 
drug safety

Molnupiravir (MOV) is an antiviral prodrug used 
to treat mild to moderate coronavirus 2019 dis-
ease (COVID-19) in adults. Targeted to specifi-
cally treat those most at risk of severe illness and 
approved for emergency use by the US Food and 
Drug Administration in December 2021, MOV is 
one of many therapeutics used to combat the 
COVID-19 pandemic.1 It disrupts the fidelity of 
severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) genome replication by fostering 
error accumulation of positive-sense RNA 
sequences. MOV is the first oral, direct-acting 
antiviral shown to be highly effective at reducing 
nasopharyngeal SARS-CoV-2 infectious virus 
and viral RNA – a powerful and wide-spectrum 
nucleoside antiviral that is 100 times more potent 
than either ribavirin or favipiravir.2,3 The active 
ingredient of MOV is beta-d-N4-hydroxycyti-
dine (NHC). As a ribonucleoside analogue of 
cytosine, NHC replaces cytosine and uracil to 
induce catastrophic coding of viral RNA pro-
teins and thereby prevents viral propagation.4 
Unfortunately, exposure to MOV may induce 

lethal mutagenesis of mammalian host cell DNA,5 
which has raised significant safety concerns 
regarding the authorisation of this drug. Specific 
off-target risks include broad-scale genotoxicity, 
including modification of the human genome, 
altered germ cell presentation, selective tumori-
genesis, and disease resistance through modifica-
tion of viral RNA.2,3,5 The latter even has the 
potential to prolong the COVID-19 pandemic by 
generating new SARS-CoV-2 variants that evade 
host immunity.

Until such time as clinical data are provided to 
support in vitro laboratory findings on which 
therapeutic administration was approved, con-
cern for toxic mutagenesis induced by MOV 
and other nucleotide analogues (NAs) will con-
tinue to be widely and routinely expressed.2,5–7 
Abrogation of potential risks, especially toxic 
host cell mutagenicities induced by MOV and 
other NAs, should include means to reduce oxi-
dative stress.6 Antioxidant treatments for acute 
respiratory diseases seldom result in medically 

Could chlorophyllins improve the safety 
profile of beta-d-N4-hydroxycytidine versus 
N-hydroxycytidine, the active ingredient of 
the SARS-CoV-2 antiviral molnupiravir?
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Plain Language Summary
Could natural plant pigment (chlorophyll) derivatives (chlorophyllins) improve the 
safety of the antiviral Molnupiravir, used to treat COVID-19 disease?

Molnupiravir, a specific SARS-CoV-2 antiviral, may cause adverse genetic changes and 
thereby create potential host cell damage (through genotoxicity and DNA stressors). In 
our opinion, this side effect of treatment could be reduced if the antiviral was taken as 
a combined therapy with chlorophyllins. Specifically, we hypothesise that chlorophyllins 
might improve the overall effectiveness of molnupiravir, typically used to treat patients 
suffering from COVID-19. Chlorophyllins, antioxidants derived from natural plant 
chlorophyll, are safe, effective and non-toxic antioxidants that could combat possible 
genotoxic flow-on effects of molnupiravir. In addition, as they possess antiviral properties, 
treatment with chlorophyllins may enhance the overall antiviral effect via a mechanism 
different to molnupiravir.
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relevant outcomes, rarely producing repeatable 
results.8 When taken alongside antivirals, how-
ever, antioxidants are known to intercept NAs9 
without compromising efficacy, and, in many 
cases, even having an enhancing effect.10 When 
taken in combination with antivirals,11,12 oxida-
tive stress is reduced. Thus, combined therapy of 
antioxidants and MOV could generate antimuta-
genic effects, thereby improving the safety profile 
of NAs such as NHC. Clinical advancement of 
combined drug therapy of antioxidants and NAs 
largely focuses on chronic viral infections such as 
hepatitis C.10,11 However, small-scale in vivo 
studies do indicate co-administration of antioxi-
dants and NAs improve treatment outcomes in 
mice with respiratory distress induced by lethal 
influenza.12

Known mostly as a cancer treatment, chloro-
phyllins are powerful antioxidants that confer 
antiviral properties.13,14 As therapeutics, chloro-
phyllins provide a direct dose-dependent thera-
peutic effect, largely attributable to broad-scale 
antioxidant activity.14 Derived from natural chlo-
rophyll α, the central magnesium ion is most 
often replaced with copper, iron or zinc.15 
Capable of enhancing proliferative properties of 
immune-modulating proteins, chlorophyllin 
therapy can prevent many diseases or improve 
treatment outcomes, including for immune pro-
liferative disorders, hyperinflammation, patho-
genic viruses, fungi and bacteria.16 Importantly, 
unlike several dietary antioxidants, and exclud-
ing potential embryotoxicity,17 high doses of 
chlorophyllins, notably sodium copper chloro-
phyllin (SCC) and sodium zinc chlorophyllin 
(SZC), are not toxic when administered by a 
variety of routes. In fact, metal toxicity induced 
by chlorophyllins has never been reported, even 
when such doses greatly surpass recommended 
intake of the central ion.18 Significantly, patient 
outcomes of treating with chlorophyllins are fre-
quently reported as beneficial or show greater 
efficacy than other medications typically pre-
scribed for the same purpose, for example, equiv-
alent treatment for leukopenia.19,20 Some 
therapeutics, such as NHC, may cause imbal-
ance to steady-state intercellular redox reac-
tions5,6 and toxic mutagenesis.7 In contrast, 
several derivatives of chlorophyll α effectively 
mediate cell mutagenicities and cytotoxicities 
caused by harmful reactive oxygen species 
(ROS), including reactions that preserve mito-
chondrial function.21–23 Notably, chlorophyllins 

can prevent exogenous damage caused by plant 
toxins and ultraviolet radiation.14 Likewise, chlo-
rophyllins may abrogate cytotoxicities that lead 
to mutagenesis, as they act to prevent endoge-
nous nuclear mutagenesis induced by ROS.24,25

Although mechanisms by which chlorophyllins 
control steady-state redox reactions in the host 
cell environment remain unclear13 several studies 
suggest that chlorophyllins alone as well as with a 
centralised metal ion, such as copper and zinc, 
contribute critically to this process.22 Essential to 
immune competence and pathogenic control, 
both metals play a host modular role in mediating 
inflammatory and apoptotic events, binding to 
several enzyme complexes that produce ROS.22 
As key contributors to antioxidant states, copper 
and zinc could be enhanced by chlorophyllin and 
other chlorophyll α compounds,15,22 thereby 
enhancing natural defence systems and intercept-
ing inadvertent host cell mutagenesis. Despite 
producing a greater antioxidant effect, chorophyl-
lins are rarely recognised alongside dietary anti-
oxidant compounds such as vitamin A, C and E. 
For instance, chlorophyllins containing both cop-
per and zinc produce enhanced antioxidant activ-
ity when compared with vitamin C.20,21 Moreover, 
unlike dietary antioxidants, this protective effect 
extends to significant dose-dependent therapeutic 
outcomes, such as when treating leukopenia,20 
cancer26 and viral infections.16 Furthermore, 
chlorophyllins protect mitochondrial DNA in 
human cells, including lymphocytes indicating 
strong protective effects against destruction of 
lymphocytes and mutagenesis of epithelial lung 
cell tissue.24,25

Chlorophyllins could be used to improve the 
safety profile of NAs such as those used to treat 
SARS-CoV-2, including – but not limited to – 
MOV. Chlorophyllins taken orally, during or post 
treatment, could mitigate the genotoxic effect of 
NHC produced by MOV and other NAs, provid-
ing a much sought-after protective antioxidant 
effect that could restore function to excision of 
DNA repair enzymes.11 In turn, this may initially 
deliver a more targeted antiviral approach that 
does not generate toxic by-products in the host 
cell. As other derivatives of chlorophyll α, such as 
pheophorbide α, are already recognised for their 
antiviral effect against SARS-CoV-2,27,28 the var-
ied protection afforded by these compounds sug-
gests that chlorophyllins are likely to safely 
enhance the therapeutic efficacy of NAs. Unlike 
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antioxidants, which do not possess antiviral prop-
erties, the broad-spectrum antiviral effects of 
chlorophyllins could act as an adjuvant, whereby 
delivery in combination with MOV may provide 
an enhanced antiviral effect via two entirely dis-
tinct mechanisms.16,29 Moreover, combined treat-
ment may also enhance natural defence systems, 
abrogating oxidative damage and inflammatory 
effects that are caused not only by NHC but also 
SARS-CoV-2.30

In light of what we have discussed, it is our 
informed opinion that oral co-administration of 
chlorophyllins such as SCC and SZC should be 
considered as a way to improve the overall safety 
and tolerability profile of the SARS-CoV-2 antivi-
ral MOV. The presence of chlorophyllins may 
abrogate toxic side effects such as host cell 
mutagenesis produced by NHC, the active ingre-
dient of MOV. Combined therapy in patients 
may provide the additional benefit of reducing 
harmful ROS produced by NHC and as a 
response to viral infection. The outcome would 
be to restore immune homeostasis and to trigger 
DNA repair by enhancing the efficacy of MOV 
and potentially providing a combined antiviral 
effect delivered by both chlorophyllins and MOV.
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