
Advances in Radiation Oncology (2017) 2, 503-514
www.advancesradonc.org
Scientific Article
Incorporating big data into treatment plan
evaluation: Development of statistical DVH
metrics and visualization dashboards
Charles S. Mayo PhD*, John Yao PhD, Avraham Eisbruch MD,
JamesM. Balter PhD, DaleW. Litzenberg PhD,MarthaM.Matuszak PhD,
Marc L. Kessler PhD, Grant Weyburn BS, Carlos J. Anderson PhD,
Dawn Owen MD, William C. Jackson MD, Randall Ten Haken PhD

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
Received 29 November 2016; received in revised form 1 March 2017; accepted 14 April 2017
Abstract

Purpose: To develop statistical dose-volume histogram (DVH)ebased metrics and a visualization
method to quantify the comparison of treatment plans with historical experience and among
different institutions.
Methods and materials: The descriptive statistical summary (ie, median, first and third quartiles,
and 95% confidence intervals) of volume-normalized DVH curve sets of past experiences was
visualized through the creation of statistical DVH plots. Detailed distribution parameters were
calculated and stored in JavaScript Object Notation files to facilitate management, including
transfer and potential multi-institutional comparisons. In the treatment plan evaluation, structure
DVH curves were scored against computed statistical DVHs and weighted experience scores
(WESs). Individual, clinically used, DVH-based metrics were integrated into a generalized
evaluation metric (GEM) as a priority-weighted sum of normalized incomplete gamma functions.
Historical treatment plans for 351 patients with head and neck cancer, 104 with prostate cancer
who were treated with conventional fractionation, and 94 with liver cancer who were treated with
stereotactic body radiation therapy were analyzed to demonstrate the usage of statistical DVH,
WES, and GEM in a plan evaluation. A shareable dashboard plugin was created to display
statistical DVHs and integrate GEM and WES scores into a clinical plan evaluation within the
treatment planning system. Benchmarking with normal tissue complication probability scores was
carried out to compare the behavior of GEM and WES scores.
Results: DVH curves from historical treatment plans were characterized and presented, with
difficult-to-spare structures (ie, frequently compromised organs at risk) identified. Quantitative
evaluations by GEM and/or WES compared favorably with the normal tissue complication
probability Lyman-Kutcher-Burman model, transforming a set of discrete threshold-priority limits
into a continuous model reflecting physician objectives and historical experience.
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Conclusions: Statistical DVH offers an easy-to-read, detailed, and comprehensive way to visualize
the quantitative comparison with historical experiences and among institutions. WES and GEM
metrics offer a flexible means of incorporating discrete threshold-prioritizations and historic
context into a set of standardized scoring metrics. Together, they provide a practical approach for
incorporating big data into clinical practice for treatment plan evaluations.
ª 2017 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Traditional methods of evaluating patient treatment
plans do not include a quantitative evaluation of dose-
volume histogram (DVH) curves or metrics with respect
to historical plans. How a given plan compares with
previous experience is typically a qualitative evaluation
(eg, “That DVH seems high compared to what I am used
to”). Similarly, quantifying practice experiences in
meeting DVH constraints for groups of patients to char-
acterize differences over time, between clinics, or among
technologies is difficult to summarize with only a few
measures. The development of analytics in the form of
metrics, visualization methods, and software applications
that use historically grouped data to quantify overall
practice experience and to score individual treatment
plans could improve these comparisons.

These analytics could be used to help treatment plan-
ners benchmark individual plans against the range of
clinically acceptable plans that are used at their own or
other clinics. This would aid efforts to harmonize treat-
ment plan quality within a clinic or facilitate the extension
of experience from one clinic to others without requiring
the common use of a specific advanced technology.
Furthermore, these tools could be used to automate the
cross validation of new optimization approaches against
historical experiences or be incorporated into clinical trial
submissions to quickly prescreen plans.

Methods that use geometric interrelationships that are
determined from training subsets for treatment plan
evaluation have been described previously as knowledge-
based planning.1-5 The analytics and tools described here
take a fundamentally different approach by using statis-
tical characterization of DVH curves and metric value
histories, derived from the full set of treated plans, to
quantify consistency with objectives and practice norms.
This addition increases the scope of knowledge used in
plan evaluation.

The emergence of big data systems combined with the
use of standardized nomenclatures to systematically
aggregate DVH curves and metrics for all patient plans
provides an opportunity to develop these analytics.
Recently, we created the University of Michigan Radia-
tion Oncology Analytics Resource (M-ROAR) to auto-
mate the assembly of a wide range of key data elements
for all patients who are treated in the department. In this
work, we describe the use of this resource to create and
apply these analytics.
Methods and materials

The M-ROAR database (Microsoft SQL Server 2012)
details treatments as well as a range of demographic,
laboratory, oncologic, and other data elements.6 Extrac-
tion, transforming, and loading of DVH curves for all
treated plans and as-treated plan sums from our current
treatment planning system (Eclipse V13.6, Varian Medi-
cal Systems) into M-ROAR was carried out using custom
programs (Microsoft C#.Net), the Eclipse Scripting
Application Programming Interface, and SQL procedure
code.

The DVH information stored was described using the
DVH nomenclature used by Mayo et al.7. For the DVH
curves, in addition to the traditional format of volume
values stored at equally spaced dose intervals, we created
a volume-focused format in M-ROAR. Absolute dose
values (in Gy) for a set of 31 variably spaced (0.5%, 1%,
and 5% increments) fractional volumes (100%, 99.5%,
99%-96% by 1% step size; 95%-5% by 5% step size; 4%-
1% by 1% step size; 0.5%; and 0%) were stored as a set of
(Dx%[Gy], x%) dose-volume pairs. Additionally, struc-
ture volumes and a standard set of DVH metrics including
Max[Gy], Min[Gy], Mean[Gy], Median[Gy], D0.5cc
[Gy], and DC0.5cc[Gy] were stored in the same records.
The use of a volume-focused DVH format facilitated the
construction of a statistical representation of DVH curves
and ensures the ability to represent DVH curves inde-
pendently of Max[Gy] with a small, fixed set of points.

Statistical methods to characterize and display data
were developed using R 3.2.3 (https://www.r-project.org).
Algorithms were developed to transform the prioritized,
multicriterial threshold evaluations into a set of evaluation
metrics that reflect both compliance with thresholds and
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historical experience. Metrics were developed to allow
scoring on a per-structure or per-plan (all structure con-
straints together) basis.

Prototype dashboards, analytics, and display methods
were transformed to clinically implementable applications
as coded in C#.Net using a Windows Presentation
Foundation (WPF Microsoft) with Eclipse Scripting
Application Programming Interface to integrate with the
treatment planning system. Charting graphics were
implemented using the open source libraries of Oxyplot.
Statistical methods were implemented using the open
source libraries of Accord.Net. Statistical calculations
with Accord.Net were benchmarked against correspond-
ing methods in R.

DVH datasets were selected from the M-ROAR data-
base. Because the plans that were stored corresponded to
what was actually treated, they intrinsically define the
range and time evolution of clinically acceptable plans.
Data sets were selected to included intensity modulated
radiation therapy/volumetric modulated arc therapy plans
for three disease sites: head and neck, prostate, and liver
stereotactic body radiation therapy (SBRT).
Statistical dose-volume histogram

We developed a statistical DVH to quantify the com-
parison of individual DVH curves with historical experi-
ences. Quantiles were calculated at 1% intervals for the
Dx%[Gy] values of the DVH curves and stored in Java-
Script Object Notationeformatted files to enable pre-
calculation of historical values and sharing to support
multi-institutional comparisons. For the display of indi-
vidual treatment plans compared with historical experi-
ences, a statistical DVH (Fig 1; plot in the middle of the
dashboard) was implemented by overlaying the DVH
curve for a user-selected structure (green curve) onto a set
of shaded areas that corresponds to the 50%, 70%, and
90% confidence intervals (CIs) of the historical distribu-
tion and a dashed line that corresponds to the median.
Weighted experience score

The weighted experience score (WES) was created to
provide a single numerical value to assess the comparison
of the present DVH curve within the context of historical
experience. WES was calculated by evaluating the
weighted cumulative probability (pi) of historical Dx%
[Gy] values being less than or equal to that of the present
treatment plan. The magnitude of the components of the
first eigenvector from principal component analysis of the
Dx%[Gy] set was used to define weighting factor co-
efficients (wpcai) to emphasize the Dx%[Gy] values that
have the largest impact on minimizing the covariance
in data set values. The volume intervals spacing the
Dx%[Gy] points defined the weighting values for bin
width (wbi).

WESZ

P
iwbi �wpcai � piP

iwbi �wpcai
ð1Þ

Generalized evaluation metric

Typically, DVH objectives are expressed as discrete
elements with prioritizations (Table 1). A generalized
evaluation metric (GEM) was defined to provide a
continuous scoring value for a set of discrete threshold-
priority constraints.

Constraints were arranged so that increasing values are
associated with being less desirable (eg, 1-TCP would be
used instead of TCP). The functional form of the GEM
used a sigmoidal curve with outputs ranging from 0 to 1
to score deviations from constraint values over the
allowed range of plan values (�0). GEM scores of [0,
0.5), 0.5, and (0.5, 1] corresponded to plan values less
than, equal to, or exceeding the constraint values. The
GEM was calculated as a normalized weighed sum of
deviation scores. In keeping with clinical practice, low
numerical values for prioritization (eg, 1) conveyed
greater weight than higher values (eg, 3).

The normalized incomplete gamma function (P) was
used to define the sigmoidal curve. P is the cumulative
distribution function for the gamma probability distribu-
tion function (p.d.f.), operating over the same range of
input values as DVH metrics (�0). This choice supports
future extension to Bayesian modeling because the
gamma p.d.f. is a conjugate prior for a wide range of p.d.f.
forms (gamma, poisson, exponential) that are used in
modeling parameters. Details of the gamma p.d.f. and
related functions are presented in Appendix A.
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If Upper 90% CI � Constraint Value, the shape
parameter k and scale parameter q were solved numeri-
cally for each structure constraint so that
Pðki; Constraint Value

qi

�
Z0:5 and Pðki; Upper 90% CIi

qi

�
Z0:95.

If historical values were well below constraint values
(Upper 90% CIi < Constraint Valuei), k and q were set
to 100 times Constraint Value and 0.01, respectively, to
approximate a steep step function.

With this formulation, interpretation of GEM scores is
straightforward. A value of 0.5 indicates constraint value
thresholds are met. Higher values, approaching the limit
of 1, indicate failure to meet the constraint, with the
rate of increase tied to the overall historical clinical
experience of ability to meet the constraint.



Figure 1 Statistical dose-volume histogram (DVH) dashboard quantifies comparison of statistical metrics for the current plan (green)
versus historical experience. Statistical DVH (center) compares the DVH curve to historical experience for the median (dashed line),
50% confidence interval (CI; dark pink), 70% CI (intermediate pink), and 90% CI light pink. Box-and-whisker plots compare plan level
(left panel) and structure level (right panel) metrics.
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The priorities that were used in calculating GEM were
assigned according to the concerns of the prescribing
physician (Table 1). They provide relative, qualitative
guidance on which constraints to emphasize. In this
calculation, we implemented a quantifiable definition of
priority (Calculated_Priority) that can be benchmarked
against historical experience. This enables deriving
integer prioritizations on the basis of the historical record
of clinical priorities. These may be useful in guiding the
selection of assigned values.
Calculated PriorityZRoundð1� ln2

�
Countðplan values � constraint valuesÞ

Countðplan valuesÞ
��

ð3Þ
In practice, individual treatment plans may rarely
exceed the constraint values defined by literature-derived
risk factors. In those cases, GEM scores such as NTCP
tend to be near 0. An alternative is to use the empirical
median of the historical population as the constraint value.
We define this as the population-based GEM, or GEMpop.
Using GEMpop, historical distributions determine the
steepness of the penalty for exceeding constraint values
and allow measured distributions to quantify as low as
reasonably achievable (ALARA) dose limits with respect
to historical experience.
Generalized evaluation metricecorrelated
weighted experience score

Not all points along the DVH curve are equally rele-
vant. Toxicities may be more strongly driven by
Max[Gy], Mean[Gy] or Dx%[Gy] values, dependent on
the organ at risk structure. To reflect this, an additional
weighting factor (wkti) was calculated using the Kendall’s
tau (kti) correlation of Dx%[Gy] values with structure
GEM scores. The GEM-correlated weighted experience
score (WES_GEM) is calculated using the formula

WES GEMZ

P
iwbi �wpcai �wkti � piP

iwbi �wpcai �wkti
ð4Þ



Table 1 Head and neck constraints

Selected Structure Priority Constraint

Brain 3 Mean[Gy] <60 Gy
Brainstem 1 D0.10cc[Gy] <54 Gy
Brainstem_PRV03 1 D0.10cc[Gy] <54 Gy
OpticChiasm 1 D0.10cc[Gy] <54 Gy
OpticChiasm_PRV3 3 D0.10cc[Gy] <54 Gy
Cochlea_L 1 D0.10cc[Gy] <40 Gy
Cochlea_R 1 D0.10cc[Gy] <40 Gy
Musc_Constric_I 1 Mean[Gy] <20 Gy
Musc_Constric_S 3 Mean[Gy] <50 Gy
SpinalCord 1 D0.10cc[Gy] <45 Gy
SpinalCord_PRV05 1 D0.10cc[Gy] <50 Gy
Esophagus 1 Mean[Gy] <20 Gy
Eye_L 1 D0.10cc[Gy] <40 Gy
Eye_R 1 D0.10cc[Gy] <40 Gy
Glnd_Lacrimal_L 1 Mean[Gy] <30 Gy
Glnd_Lacrimal_R 1 Mean[Gy] <30 Gy
Larynx 1 Mean[Gy] <20 Gy
Lens_L 1 D0.10cc[Gy] <10 Gy
Lens_R 1 D0.10cc[Gy] <10 Gy
Lips 1 V35Gy[%] <5%
Bone_Mandible 3 D0.10cc[Gy] <70 Gy
OpticNrv_L 1 D0.10cc[Gy] <54 Gy
OpticNrv_PRV03_L 3 D0.10cc[Gy] <54 Gy
OpticNrv_R 1 D0.10cc[Gy] <54 Gy
OpticNrv_PRV03_R 3 D0.10cc[Gy] <54 Gy
Oral_Cavity 3 Mean[Gy] <30 Gy
Parotid_L 3 Mean[Gy] <24 Gy
Parotid_R 3 Mean[Gy] <24 Gy
Glnd_Submand_L 3 Mean[Gy] <30 Gy
Glnd_Submand_R 3 Mean[Gy] <30 Gy
Lobe_Temporal_L 3 D0.10cc[Gy] <60 Gy
Lobe_Temporal_R 3 D0.10cc[Gy] <60 Gy

Planning objectives are typically specified by physicians as a set of
threshold values and integer values that express prioritization.
Agreement is evaluated one by one without benefit of a single nu-
merical scoring system that can rank individual plans in the context
of historical experience.
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Weighting factors (wkt) were set equal to 0 for kt
<0 so that they only penalize those DVH points that are
associated with undesirable outcomes. Kendall tau cor-
relations were also carried out with GEMpop or NTCP to
create WES_GEMpop or WES_NTCP scores.
Application to clinical plan history

Use of the newly described analytics to construct a
common display method characterizing historical experi-
ence with DVH constraint metrics was demonstrated.
Three cohorts were examined: 1) 351 head and neck
cancer patients, dose range from 45 to 76 Gy in 23 to 38
fractions; 2) 104 prostate patients, dose range from 55 to
84 Gy in 22 to 43 fractions; and 3) 94 SBRT liver pa-
tients, dose range 40 to 60 Gy in 3 or 5 fractions. Dis-
tributions of achieved DVH metrics were compared with
threshold values, and clinical prioritization scores were
compared with statistically calculated values. The diffi-
culty in meeting each threshold-priority constraint value
on the basis of historical experience was quantified with a
difficulty ranking score (DRS):

DRSZ 2�ðPriority�1Þ,GEM Upper 50% CI ð5Þ

In addition, the use of the common display method to
facilitate comparison of treatment plan details with
reference to historical experience was demonstrated.

Results

Statistical dose-volume histogram dashboard

Figure 1 shows a view from a dashboard application that
was created to enable the use of these concepts from within
the treatment planning system. Statistical DVH curves and
box-and-whisker plots are used to display the current plan in
the context of distribution of historical values. The overall
plan evaluation metrics are displayed in the left panel, and
per-structure metrics are displayed in the right panel. In the
left panel, the plan GEM (calculated over all structures)
ranks overall ability to meet constraints. The comparison of
MU/Gy is a relative indicator of multileaf collimator leaf
pattern complexity. The distributions of MU/Gy vary sub-
stantially by technique (3-dimensional, intensity modulated
radiation therapy, and volumetric modulated arc therapy).
Below that, GEM values for individual structures are dis-
played in order of decreasing GEM with priority listed
below the structure to highlight planning challenges. The
statistical DVH is displayed in the center panel along with
GEM, WES, and NTCP values. In the right panel, distri-
butions of GEM values for the constraints applied to indi-
vidual structures (left parotid in this example), NTCP,
volume, and individual DVH constraints are displayed.
Below that, values for individualDVHconstraintmetrics are
displayed, overlaid on a box-and-whisker plot, indicating
the historical distribution. A dashed blue line indicates the
individual DVH constraint metric value.

For the example plan evaluated in Figure 1, the GEM
score was 0.25 with all the constraints in Table 1. The GEM
score for the left parotid alone was 0.83. This indicates that
the plan overall compared favorably with constraints and
historical experience but that the DVH data for this structure
(ie, left parotid) were significantly higher than the constraint
(GEM Z 0.83) and historical experience (WES Z 0.83).
The first priority 1 structure withGEM>0.5was the inferior
constrictor muscle (Musc_Constrict_I).

Precomputed analytics

The application uses statistics and weighting factors
derived from historical values that are precalculated and
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stored in JavaScript Object Notation (JSON) files. Users
select the precalculated historical set to use in the com-
parison and structure DVH to be evaluated. Precomputed
statistics rather than runtime query and analysis from M-
ROAR was selected for 4 reasons: 1) minimization of
processing time to improve user experience, 2) the ability
to define standard clinic comparison groups (eg, patients
from 1 year vs 5 years ago), 3) enabling of comparisons
with values derived from other clinics without the need
for database access, 4) support for the development of
machine-learning approaches to combine data from mul-
tiple clinics.

Application of analytics to characterize groups
and per-patient plans

Use of the metrics provided a basis for numerical
rankings to characterize clinical practice experience and
individual treatment plans within that historic context.
Metrics were valuable for a range of evaluation tasks.
Several of these are highlighted in the following.

Characterizing involved versus uninvolved parotid
dose for head and neck patients

For Head and Neck patients, the distributions of his-
torical values of Max (Gy) for Parotid_L and Parotid_R
were found to be bimodal. The midpoint was used to
classify parotids as uninvolved (Max[Gy] �40Gy) or
involved (Max[Gy] >40Gy). Figure 2 illustrates the use
of statistical DVH and metrics to compare DVH curves
for patients with low and high WES scores for uninvolved
versus involved parotid with constraint doses specified for
Mean (Gy). Although the odds of toxicity were low
(NTCP �0.02) and compliance with constraint values
was good (GEM �0.2), for the uninvolved parotids, the
plan with a high WES score (0.818) stood out as having a
larger Mean[Gy] dose than was historically normal
(GEMpop Z 0.873). WES_GEM and WES_NTCP varied
only slightly (<5%) from WES scores, which indicated
that WES scores are viable predictors of ability to meet
specific constraint values.

Summary metrics for practice history

The common range of GEM enabled the expansion of
this plan summary metric to detail historic experience
with each threshold-priority constraint in a simple metrics
display, which was used to detail comparisons of indi-
vidual treatment plans with respect to historic experience.
The approach was generalizable across disease sites.
Summaries are illustrated in Figures 3A-C for head and
neck, prostate, and 5-fraction SBRT liver sets, respec-
tively. The historic ability to meet the set of constraint
values used in the treatment plan evaluation was good for
all patient groups. The median and 50% CI GEM values
were 0.2 (0.13-0.25), 0.09 (0.05-0.12), 0.13 (0.01-0.19),
and 0.09 (0.04-0.15) for head and neck, prostate, and liver
SBRT with 3 and 5 fractions, respectively. Box-and-
whisker plots that summarize the historic distributions
of GEM values for individual structure DVH constraints
are plotted alongside the summary statistics for DVH
metric values and prioritizations to gauge the suitability of
constraints. For example, the constraint values for parotid
DVH metrics derived from studies of outcomes in the
literature could be augmented with experience-based
constraints to define clinically achievable limits for
involved versus uninvolved parotids.

Evaluating priorities for dose-volume histogram
metrics

Structures that were contoured were selected by the
physician on the basis of involvement. Superior
constrictor muscles (n Z 338), brain stem (n Z 338), and
brain stem planning risk volume (n Z 339) were the most
frequent, and optic nerve structures (n Z 25-27) were the
least frequent, which indicates a relative likelihood of
involvement. Of the 19 priority 1 structures, only the
calculated priority on the inferior constrictor muscle
constraint (Mean [Gy] <20) rounded down to a lower
integer value of 2, which indicates that this constraint is
met only approximately 50% of the time. Possible actions
to improve agreement with experience might include
modification of the assigned priority to 2 or changing of
the constraint value to match the 75% quantile of the
achieved metric values (20.7 Gy). Of the 13 priority
3 constraints, the calculated values rounded up to integer
1 (n Z 7) or 2 (n Z 6). GEM scores for these constraints
were near to 0 and 0.5, respectively. If further challenging
of plan evaluations were desired, higher priorities could
be assigned.

The numerical values of DRS were used to create a
grayscale representation of historic difficulty in meeting
particular constraints (black Z difficult; white Z not
difficult; gray shading proportional to difficulty). The top
3 difficulty ranking scores were Mean[Gy] <20 for
inferior constrictor muscle (0.52), esophagus (0.39), and
larynx (0.49). Parotid and submandibular gland DRS was
lower (0.19-0.23) due to the assigned priority. Histori-
cally, constraints were slightly more difficult to meet for
right versus left parotids (0.193 vs 0.188) and subman-
dibular glands (0.225 vs 0.223).

Incorporating quantified ALARA into planning
constraints

Clinical judgements for selecting between treatment
plans and treatment techniques are not based solely on
the binary evaluation of ability to meet specified



0 20 40 60 80

0
20

40
60

80
10

0

Vo
lu

m
e 

[%
]

NTCP = 0.005
GEM = 0
GEM_pop = 0.121

WES = 0.241 
WES_GEM  = 0.243

0 20 40 60 80

0
20

40
60

80
10

0

Dose [Gy]

Vo
lu

m
e 

[%
]

NTCP = 0.052
GEM = 0.327
GEM_pop = 0.205

WES = 0.125
WES_GEM  = 0.12

0 20 40 60 80

0
20

40
60

80
10

0

NTCP = 0.02
GEM = 0
GEM_pop = 0.873

WES = 0.818
WES_GEM  = 0.818

0 20 40 60 80

0
20

40
60

80
10

0

Dose [Gy]

NTCP = 0.202
GEM = 0.744
GEM_pop = 0.684

WES = 0.64
WES_GEM  = 0.64

U
ni

nv
ol

ve
d 

Pa
ro

tid
In

vo
lv

ed
 P

ar
ot

id

Low WES Example High WES Example

Figure 2 The use of the statistical dose-volume histogram (DVH) and metrics to compare DVH curves for patients with low and high
weighted experience scores for uninvolved versus involved parotid.
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constraints but also on the ability to keep those values as
low as possible. The metrics display can be used to
reflect that detail by adding low-priority constraints with
thresholds that are set to historic medians (ie, adding
ALARA constraints as GEMpop). Figure 3B illustrates
this for the cohort of prostate patients and compares
2 individual patient plans in this historic experience
context. A priority of 4 was assigned for the ALARA
constraints quantified using GEMPOP. Because the pri-
ority was low, the effect on the plan GEM was small
(median, 0.14 vs 0.09).

For priority 1 to 3 structures only, Rectum:D0.1cc
[%] <100 had a high DRS (0.64) with historic
values �101.7 for 95% of patients. It had a calculated
priority of 1.9 versus the assigned value of 1. All
other constraints were readily met (GEM <0.1). For
ALARA constraints (priority 4), the distribution of
GEM values showed variation in the upper 50% CI
(0.7-0.9), reflecting skewing of the upper-end distribu-
tions of the DVH metrics (toward/away from the
median).
Comparing treatment plans in historical context

The projection of 2 individual plans onto the box-and-
whisker plots of the metrics display provided a visual guide
to quantifying the primary issues for each plan. Figure 3A
illustrates this for 2 head and neck patient plans with GEM
scores near the median (green cross) and 95% quantile (red
diamond), respectively. In addition to the 32 constraints
used in practice, 4 additional constraints for involved and
uninvolved parotids and submandibular glands are dis-
played for reference. The plan with an overall GEMnear the
median of historic values (green cross) met all but 3
constraint values: left and right parotid-Mean (Gy) <24,
priority 3; and right submandibular gland-Mean (Gy) <30,
priority 3. The left-sided structures were near historical
norms (black line) and constraint values (GEMz 0.5) The
planwithGEMin the upper range (red diamond) exceeded 4
priority 1 constraints for eye structures (right eye, right
lacrimal gland, and left and right lens) by valuesmuch larger
than historic norms (GEM >0.95), indicating target
involvement of these structures on the right side. This was
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Figure 3 (A) Decomposition and comparison of 2 plans from the head and neck cohort. Two plans of different difficulty levels,
overall plan generalized evaluation metrics (GEM) at the median (green plus) and 95% quantile (red diamond), are detailed by GEM
scores of each threshold-priority constraint (missing data indicate structure not contoured in that plan). Box-and-whisker plots have their
whiskers located at the 5% and 95% quantiles of the GEM scores. Their corresponding metric values are tabled in the right columns of
metric quantiles. (B) Decomposition and comparison of 2 plans from the prostate cohort, with as low as reasonably achievable
(ALARA) constraints involved. ALARA thresholds (constraint values) are set to be the medians of their corresponding metric values,
with an assigned priority of 4 and highlighted in blue. For the Rectum:V75Gy[%] constraint, which has a median of 0 Gy, a small
number of 0.1 is used as the threshold. (C) Decomposition and comparison of 2 plans from 5-fraction liver stereotactic body radia-
tion therapy cohort, with ALARA constraints involved. ALARA thresholds (constraint values) are set to be the medians of their
corresponding metric values, with an assigned priority of 4 and highlighted in blue.
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highly unusual compared with historic norms with
DRS <0.005.

Illustrating the use of the figure for prostate patients in
Figure 3B, 15 of 16 priority 1 to 3 constraints were met for
the first plan with median plan GEM (green). That plan was
at the outer range of normal values for Rectum: V75Gy[%]
and V70 Gy (%) with GEM scores near the upper 75%
quantile of ALARA (blue highlight) values. The second
plan (red) irradiated a large volume including nodes and did
not meet priority 1 constraints for Rectum-V50Gy[%] or
priority 3 constraints for V65Gy[%]. Values for Rectum-
V70Gy[%] and V75Gy[%] were near median values for
the cohort. Because Rectum:V75Gy[%] has a median of
0, a small number of 0.1 is used as the ALARA constraint
value. Priority 3 constraints for both femurs were
exceeded with atypically high GEM scores.
Comparison with normal tissue complication
probability

Clinicians select threshold-prioritization values that
reflect an implicit intent to minimize NTCPs. GEM and
GEMpop provided a means of transforming a set of
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discrete threshold-priority limits into a continuous model
that reflected physician objectives and historical experi-
ence. As a result, GEM and GEMpop scores were more
sensitive to clinically demonstrated, actionable decisions
on DVH constraints than NTCP. For example, Figure 4
illustrates a comparison of GEM, GEMpop, and NTCP
(a/b Z 2.5, TD50 Z 48 Gy, n Z 0.35, m Z 0.1) cal-
culations on heart dose for a patient with a liver lesion that
was treated with SBRT in 5 fractions.

On examining distributions of values, GEM, GEMpop,
and WES scores correlated strongly with calculated
NTCP while also being more sensitive to clinical de-
cisions that shaped acceptable characteristics of dose
distributions. Figure 5 illustrates this comparison for
involved and uninvolved parotids of head and neck pa-
tients. The increased sensitivity combined with the
correlation to clinical objectives make GEM a more direct
reflection of preferences in guiding risk reductions than
NTCP.
Discussion

The analytics (metrics, visualization methods, and
software applications) developed provided a practical
demonstration of approaches that could be used to
incorporate big data into clinical settings. They provide a
means to summarize provider-selected objectives into a
single score that incorporates historical ability to meet
those objectives. Leveraging quantitative statistical mea-
sures of experience provides better information than
qualitative recollection. Using scripts and precalculated
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summaries of statistics enables making this information
available as part of the treatment planning process.

Recently, Mayo et al demonstrated an electronic pre-
scription and database system that was used for all pa-
tients, systematic calculation, and aggregation of achieved
DVH objective values and to provide statistical
Figure 4 Comparison of statistical metrics for heart doses in a liver
fractions. Generalized evaluation metric (GEM) and GEMpop calcul
(Gy). These increase faster than normal tissue complication probabil
evaluations of practice patterns.7 Robertson et al
demonstrated a system that was used for head and neck
patients to analyze the distributions of DVH metrics for
head and neck patients and display sets of DVH curves
color-coded according to toxicity.8 These efforts demon-
strate the value of the adoption of standards and
stereotactic body radiation therapy (SBRT) patient treated with 5
ations use 2 priority 1 constraint values D15cc (Gy) and D0.5cc
ity, consistent with more conservative clinical practice.



Figure 5 Comparison of normal tissue complication probability, weighted experience score, generalized evaluation metric (GEM),
and GEMpop scores versus mean dose for involved and uninvolved parotids.
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construction of systems to enable aggregating of data that
could be mined to reflect practice experience.

The present work demonstrates approaches to stan-
dardizing how such data are presented that could improve
the ability to carry out treatment plan comparisons. For
example, from the nests of DVH curves presented by
Robertson et al,8 we can observe qualitatively that the
distribution of DVH curves for parotids are similar in both
shape and dose range, and those for larynx, inferior
pharyngeal constrictor, and superior pharyngeal
constrictor are shifted to higher values. If either the sta-
tistical DVHs or GEM scores calculated with specified
threshold-priority constraints had been used, it would
have been possible to carry out a more quantitative and
accurate comparison.

Plan evaluation requires a comparison of a potentially
large set of DVH metric values to constraints and de-
cisions, when needed, for mitigating steps when
constraint values are exceeded. The graphic display of the
statistical DVH dashboard facilitates rapidly distinguish-
ing structures that are exceeding constraints with scoring
including prioritization. By using GEM to harmonize
metric evaluations on a common scale and projecting
individual plan values onto the distribution of historic
values, judgements on whether the deviation is large or
small can be based on actual history and quickly factored
into decisions. This can help to make plan evaluation
better targeted and potentially more efficient.

Recent developments in geometrical (ie, knowledge-
based) modeling using training sets and proprietary
software have been successfully used in predicting dose
distributions and plan quality, mining dose-outcome re-
lationships, and assisting in decision-making.1-5 However,
clinical history is different from geometry. Questions about
what characteristics of dose distributions have been found
in practice to be clinically acceptable are different from the
questions ofwhat characteristics are possible on the basis of
the relative geometry of structures in the optimization.
Without information on the historical context, the ability to
judge the clinical relevance of differences between plans or
value added by new technologies is limited.We believe that
together geometric and history-based approaches could
provide a more comprehensive and responsive approach to
treatment plan evaluation and optimization. In addition, the
statistically based approach described does not depend on
the common implementation of specialized software ap-
plications across treatment planning systems to be gener-
alized to multiple clinics.

Incorporating factors into optimization that relate to
radiobiological response is desirable.9,10 Because the
formulation of GEM is based only on discrete threshold-
prioritization values, it is readily applied as an empirical
scoring mechanism without the need for an underlying
first-principles model. This may present advantages for
forming evaluation models as clinical experience with
new factors and constraints evolves. Because clinical
practice avoids elevated NTCP values, WES, GEM, and
GEMpop may have advantages in optimization where low
NTCP values present very shallow concave penalty
functions.11,12 The functional form of GEM used an
incomplete gamma function; however, use of other
functional forms (eg, log normal c.d.f., logistic) that
produced a unit value sigmoidal curve over the range of
allowed input values would also be appropriate.

Additionally, these metrics may have value in future
efforts to model outcomes. By enabling development of
an analog scoring function on the basis of a discrete set of
threshold-priority rules and historic ability to meet these
thresholds, the development of phenomenological models
as outcomes evidence emerges may be facilitated. In
addition, because the approach is independent of data
type, models may be developed that incorporate a range
of threshold hold-sensitive factors (eg, dose, age,
chemotherapy). The unit range and sigmoidal form of the
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GEM aids its use as a parameter in Bayesian-based ma-
chine learning.

Quantified displays such as those presented in this
study may be useful in clinical trial settings to facilitate
prescreening of submitted cases that are benchmarked
against prior submissions as the cohort grows. In that
case, distributions of metric values, GEM scores, and
calculated priorities would be automatically calculated
and the display updated as the number of submissions
increases. If the pattern of what is normal changes, then
the display method would enable ready identification of
plans that are unusual.

In summary, we demonstrated the utility of DVH-
based metrics and a visualization method developed in
house. Use of the metrics to summarize historical expe-
rience for 3 patient groups, head and neck, prostate pa-
tients, and liver SBRT patients, was demonstrated. This
tool allows for simple and intuitive quantification of the
comparison of individual treatment plans against histori-
cal experiences. As such, this may allow for superior
treatment planning, which has the potential to result in
improved patient care.
Supplementary data

Supplementary material for this article (http://dx.doi.
org/10.1016/j.adro.2017.04.005) can be found at www.
advancesradonc.org.
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