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Introduction: Numerous studies have shown the ability of low-energy acousticwaves suchas focusedultra-
sound or shockwave to transiently open blood-brain barrier (BBB) and facilitate drug delivery to the brain.
Preclinical and clinical evidences have well demonstrated the efficacy and safety in treating various brain
disorders. However, themolecular mechanisms of acoustic waves on the BBB are still not fully understood.
Objectives: The present study aimed at exploring the possible molecular mechanisms of acoustic wave
stimulation on brains.
Methods: Briefly describe the experimental design: The left hemisphere of the rat‘s brain was treated with
pulsedultrasound froma commercial focused shockwave or a planar ultrasounddevice, and the right hemi-
sphere served as a control. One hour after themechanical wave stimulation or overnight, the rats were sac-
rificed and thebrainswereharvested for protein or histological analysis. Agonists and antagonists related to
the signal transduction pathways of tight junction proteins were used to investigate the possible intracel-
lular mechanisms.
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Results: Intracellular signal transduction analysis shows calcium influx through transient receptor poten-
tial vanilloid 4 (TRPV4) channels, and the activation of PKC-d pathway to mediate dissociation of ZO-1 and
occludin after acoustic wave stimulation. The activation of TRPV4 or PKC-d signaling further increased the
expression level of TRPV4, suggesting a feedback loop to regulate BBB permeability. Moreover, the tight
junction proteins dissociation can be reversed by administration of PKC-d inhibitor and TRPV4 antagonist.
Conclusion: The present study shows the crucial role of TRPV4 in acoustic wave-mediated BBB permeabil-
ity, specifically its effect on compromising tight junction proteins, ZO-1 andoccludin.Ourfindings provide a
newmolecular perspective to explain acousticwave-mediated BBB opening.Moreover, activation of TRPV4
by agonistsmay reduce the threshold intensity level of acoustic waves for BBB opening, whichmay prevent
undesirable mechanical damages while maintaining efficient BBB opening.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction Center at National Taiwan University College of Medicine and were
Previous studies have indicated that acoustic waves, such as
ultrasound [1–5] or shockwave [6], can effectively induce BBB
opening via transcranial application. The facilitated trans-BBB
delivery of molecules are believed to go through paracellular and
transcellular pathways after focused ultrasound (FUS) application
in the presence of an ultrasound contrast agent (UCA) [7,8]. Cavita-
tion from UCA in response to ultrasound sonication has been
shown to induce cell membrane deformation and permeability
changes of the endothelium [9,10]. The permeability change usu-
ally parallels the disintegration of tight junction proteins, ZO-1
and occludin [1,7]. The Akt signaling pathway is activated in neu-
ronal cells surrounding the disrupted BBB [1].

Calcium-mediated pathways, such as PKC pathway, have been
reported to regulate epithelial tight junction integrity [11–14].
For example, ischemia induces calcium influx into brain endothe-
lial cells [13], which activates members of the PKC family and then
induces various cellular mechanisms such as apoptosis and the loss
of tight junction interactions, thus perturbing BBB integrity
[13–15]. In contrast, prevention of BBB disruption can be achieved
by calcium chelators [16]. However, the mechosensors responsible
for ultrasound stimulation and the subsequent molecular path-
ways, leading to BBB disruption, are still not fully understood.

Transient receptor potential vanilloid 4 (TRPV4) is a calcium-
permeable cation channel that has been shown to be widely
expressed in the kidneys, lungs, hearts, vessels and nerve ganglia.
In the brain region, TRPV4 is expressed in neurons [17], astrocytes
[17,18], choroid plexus [19] and vascular endothelial cells [20,21].
The channel is characterized by multimodal activation properties
such as osmolarity, temperature and acidity [22–25]. Recent evi-
dence demonstrates that the channel can also be activated by
mechanical stress, and may have a crucial role in the modulation
of BBB integrity [13,21,26]. Blockage of TRPV4 activity was found
to potentially ameliorate brain injury in a variety of central ner-
vous system disorders such as ischemic stroke [25,27,28], intrac-
erebral hemorrhage (ICH) [20] and traumatic brain injury (TBI)
[29], possibly through modulating BBB permeability and thus
decreased edema.

Despite evidence showing the possible connection between
TRPV4 and BBB integrity, the direct effect of acoustic wave stimu-
lation on TRPV4 activation and its role on subsequent BBB opening
remains unclear. We hypothesize that mechanical stimulation such
as ultrasound or shockwave induces calcium influx through TRPV4
channels, subsequently activating the calcium-related intracellular
signal pathways, leading to disruption of BBB integrity.

Materials & methods

Animals

All animal experimental procedures were conducted in accor-
dance with the care and use guidelines of the Laboratory Animal
approved by the Institutional Animal Care and Use Committee
(IACUC, approval No. 20170091) of National Taiwan University
College of Medicine. Male Sprague–Dawley rats (body weight
300–350 g) purchased from BioLASCO Taiwan Co., Ltd. were used
in this study. Total of 65 rats were used for immunoprecipitation
assay (50 rats) and immunofluorescence (15 rats).

Animal grouping and treatment protocol:

For shockwave treatment, fifty rats were equally categorized
into group 1 (vehicle injected via I.V.), group 2 (rottlerin injected
via I.V.), group 3 (HC067047 injected via I.V.) and group 4
(GSK1016790A injected via I.V.). For ultrasound treatment, fifteen
rats were equally categorized into group 5 (vehicle injected via
I.V.), group 6 (rottlerin injected via I.V.), and group 7 (HC067047
injected via I.V.)

Shockwave treatment

The shockwave device (PiezoWave, Richard Wolf GmbH, Knit-
tlingen, Germany) setup is described in our previous report [6].
For in-vivo study, the condition of the shockwave-induced BBB
opening was based on our previous reports with an energy dosage
of 0.21 mJ/mm2 (intensity level 5), pulse repetition frequency (PRF)
of 5 Hz, and 200 iterations without the presence of ultrasound con-
trast agents. These conditions provide a greater percentage of BBB
opening without visible bleeding [6]. The left hemisphere of the
brain was treated with shockwave as previously reported [6], and
the right hemisphere served as a control. One hour after the shock-
wave treatment or overnight, the rats were sacrificed and the
brains were harvested for protein or histological analysis.

For in-vitro study (Ca2+ influx assay and In-Cell ELISA assay), the
test-wells were filled with medium and immediately sealed with-
out any bubble by microplate sealing tape (NUNC) and then the
shockwave probe was placed above the plate. The gap between
the sealing tape and the probe was filled with ultrasound gel.
Ten shockwave iterations were applied (intensity level 4, equiva-
lent to 0.18 mJ/mm2, PRF= 5 Hz, N = 4). In some experiments, cells
were pretreated with TRPV4 antagonist or agonist for 30 min using
the following concentrations: 20 nM, 40 nM HC067047, and
0.15 lM, 1.5 lM and 3 lM GSK1016790A.

Ultrasound treatment

The ultrasound device US-700 was purchased from ITO Physio-
therapy & Rehabilitation CO., LTD (Japan). The planar transducer
was placed on the left side of the brain and ultrasound gel was
applied at the interfaces between the bottom of the transducer
and the rat scalp. The parameters of ultrasound are 1 MHz,
3 W/cm2 and 10% duty cycle, with 5 min sonication duration.
One hour after the ultrasound treatment, the rats were sacrificed
and the brains were harvested for protein or histological analysis.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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For in-vitro study (In-Cell ELISA assay), the test well settings were
the same as the shockwave, then placed ultrasound probe above
the plate, and the gap between the probe and the sealing tape is
filled with ultrasound gel. The ultrasound parameters are 1 MHz,
2.1 W/cm2 and 5% duty cycle, with 3 min sonication duration. In
some experiments, cells were pretreated with TRPV4 antagonist
or agonist for 30 min using the following concentrations: 20 nM,
40 nM HC067047, and 0.15 lM, 1.5 lM and 3 lM GSK1016790A.

Drug administration

The TRPV4 antagonist HC067047, agonist GSK1016790A and rot-
tlerin were purchased from Abcam (UK). The TRPV4 agonist
GSK1016790A (3 lg/kg body weight), TRPV4 antagonist
HC067047 (0.5 mg/kg body weight), PKC-d inhibitor rottlerin
Fig. 1. Tight junction integrity is disrupted by shockwave treatment. (A) Evans blue ex
and ZO-1. The interaction of ZO-1 and occludin is significantly reduced by shockwave trea
significantly changed in response to shockwave treatment. (C) The bar graph summarize
shockwave treatment. n = 6 rats per group. Data are presented as the mean standard erro
p < 0.05 compared with the control group. (D) Interrupted patterns of tight junction pr
images. (Scale bars: 10 lm).
(0.3 mg / kg body weight), CaCl2 (80 mg/kg body weight), EDTA
(40mg/kg bodyweight), EGTA (130mg/kg bodyweight)were intra-
venously injected via the tail vein. The doses of the
above-listed chemicals were selected based on previous reports
[30–35]. TheGSK1016790A,HC-067047, and rottlerinwere first dis-
solved in DMSO, and then in normal saline to a final volume of 1 ml
with a DMSO concentration of 1%. The control groups were treated
correspondingly with saline containing the same DMSO dose.

Immunoblot analysis

Brain tissues were homogenized in an ice-cold immunoprecipi-
tation buffer (IP buffer) (containing 50 mM Tris-HCl pH 7.5,
150 mM NaCl, 2 mM EDTA, 10% glycerol, 1% Nonidet p-40, phos-
phatase inhibitor cocktail 2 (Sigma) and protease inhibitor cocktail
travasation in the coronal sections of brain. (B) Co-immunoprecipitation of occludin
tment. Brain tissue lysates shows that total ZO-1 and occludin protein levels are not
s the Co-IP results, and the association between occludin and ZO-1 is decreased by
rs of the means. Significant differences (Student’s t test) are depicted with asterisks.
oteins ZO-1 and occludin in brain after shockwave treatment is shown on confocal



Fig. 2. Calcium chelator- EGTA blocks shockwave-induced tight junction
dissociation. (A) Co-immunoprecipitation of occludin and ZO-1. After shockwave
treatment, the interaction of ZO-1 and occludin is significantly rescued by EGTA but
EDTA and CaCl2 are not. (B) Bar graphs summarizing the ratio of occludin associated
with ZO-1 in various pretreatment experiments after shockwave treatment. Data
are presented as themean standard errors of themeans. Significant differences (Student’s
t test) are depicted with asterisks. p < 0.05 compared with the control group.
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(Merck)). The homogenate was centrifuged at 15,000g for 30 min at
4 �C and the supernatantwas determined using a coomassie protein
assay reagent (Thermo). Equal amounts of extracted proteins were
respectively loaded on 4–12% NuPAGE Bis-Tris Gels (Thermo) and
subjected to immunoblotting. The following primary antibodies
were used: rabbit anti-ZO1 (1:500, Thermo); mouse anti-occludin
(1:2000, Thermo); rabbit PKC-d (1:500, cell signaling); mouse anti-
GAPDH (1:5000, Proteintech). Appropriate secondary antibodies
(GEHealthcare)were incubatedwith themembranes for 1 h at room
temperature. For Co-Immunoprecipitation assay, immunoprecipi-
tated proteins were detected using VeriBlot for IP Detection
Reagents (Abcam) without being contaminated by IgG heavy and
light chains from the precipitated-antibodies. The signalswere visu-
alized using AmershamTM ECL Select Western Blotting Detection
Reagent (GE Healthcare) according to the manufacturer’s instruc-
tions and recorded via UVP BioSpectrum Image system (UVP). Data
were analyzed using Vision Works LS software (UVP).

Co-Immunoprecipitation (Co-IP) assay

Proteins were extracted from brain tissue as described above.
The extractions containing 0.5 mg total protein in 500 ll IP buffer
were first preabsorbed with protein G Mag Sepharose Xtra (GE
Health care) for 1 h and then incubated with 5 lg rabbit anti-
ZO-1 antibody (Thermo) overnight at 4 �C with constant shaking
on a rotator. The samples were then incubated with protein G
Mag Sepharose Xtra (GE Healthcare) for 4 h at 4 �C, and were col-
lected using MagRack 6 (GE Healthcare). The samples were washed
three times with IP buffer, eluted by elution buffer (100 mM
glycine-HCl, pH 2.8) and neutralized by 1 M Tris-HCl, pH 9.0 buffer.
Then the samples added sample reducing agent (Thermo) and
mixed with 4X SDS sample buffer, boiled for 5 min and then ana-
lyzed with immune-blotting as explained previously.

Immunofluorescence staining

Two or eighteen hours after the shockwave application, the rats
were sacrificed and the brains were harvested and fixed with 10%
formalin at room temperature overnight. Samples were then
embedded in paraffin and serial 7-lm transverse sections around
the shockwave treatment site weremounted on slides. The sections
were deparaffinized, rehydrated, antigen retrieved (120℃, 10 min)
and washed in TBS, followed by washing with TBS containing 0.025%
Triton X-100 for 10 min. The sections were blocked with 10% new-
born calf serum (NCS) and 1% BSA in TBS for 2 h. The sections were
incubated with primary antibody overnight at 4℃. After washing
with TBS, the samples were incubated with the secondary antibody
for 2h at RT,washedwith TBS andmountedwith EverBriteTMHardset
Mounting Medium containing DAPI to label the nuclei (Biotium).
Slides were viewed, and images were captured with LSM780 confo-
cal microscope (Zeiss, Jena, Germany). The primary antibodies used
for immunostaining and their dilutionswere as follows: rabbit anti-
ZO1 (1:50, Thermo), mouse anti-occludin (1:50, Thermo), rabbit
TRPV4 (1:50, Thermo). The secondary antibodies used were Alexa
Fluor 488-conjugated goat anti-mouse IgG (1:100, Thermo) and
Alexa Fluor 555-conjugated goat anti-rabbit IgG (1:100, Thermo).

In vitro Ca2+ influx assay

Murine brain-derived endothelial bEnd.3 cells were cultured
with Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and 1X Antibiotic-Antimycotic
(Invitrogen). The bEnd.3 cellswere seeded in clear flat-bottomblack
96-well culture plate at a density of 2.4x104 cells/well
(80–90% confluenct). After 18 h of incubation, cells were washed
twice with HBSS and incubated with Fura2-AM dye solution (5 lM
Fura2-AM (Invitrogen), 0.1%BSA, 0.05% Pluronic F-127(Sigma) in
HBSS buffer) for 1 h at RT in the dark. The test-wells were washed
twice with HBSS buffer, after which the entire well was filled with
medium (without phenol red) and immediately sealed without
any bubbles by microplate sealing tape (NUNC). Subsequently, the
plateswere inserted into amicroplate reader (InfiniteM200, Tecan),
and the fluorescence (excitation: 340 nm or 380 nm, emission:
510 nm)wasmeasured before and after the addition of various con-
centrationsof test compounds or shockwave treatment. Thedata are
showed as the ratio of Fura2 fluorescence due to excitation at
340 nm to that due to excitation at 380 nm.
In-cell ELISA assay

The expression of TRPV4 was measured using the In-cell ELISA
Kit (Thermo), as described in the manufacturer’s protocol. The
bEnd.3 cells were seeded in a 96-well culture plate at a density
of 2.4 � 104 cells/well. After 18 h of incubation, cells were washed
with PBS, then the wells were filled with medium and sealed with-
out bubbles by microplate sealing tape. Shockwave treatment was
conducted as previously described. At 18 h post-shockwave treat-
ment, the cells were washed twice with PBS and fixed with 4%
formaldehyde for 15 min at room temperature. The cells were
incubated with permeabilization buffer (0.1% triton X-100 in
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Tris-buffered saline (TBS)) for 15 min at room temperature and
then the plate was washed twice with TBS. Peroxidase suppressor
(Thermo) was then added to each well and incubated for 20 min.
The washing steps were repeated and the plate was incubated with
blocking buffer at room temperature for 30 min. After blocking,
plates were incubated with TRPV4 antibody (Thermo) overnight
at 4 �C followed by HRP conjugated secondary antibody for 1 h
at room temperature. The plates were washed and incubated with
TMB substrate. After sufficient blue color development, stop solu-
tion was added to each well and absorbance was measured at
450 nm. Results across wells were then normalized to cell number
based on whole-cell staining with Janus Green (Thermo).

Statistics

All numerical data are expressed as the mean ± standard devi-
ation. Tests of significance were performed by Student’s t test or
ANOVA followed by LSD post hoc test. P-values < 0.05 are consid-
ered statistically significant and are denoted with an asterisk.

Results

BBB tight junction integrity is perturbed by shockwave

The BBB opening induced by shockwave was demonstrated by
Evans blue extravasation. Visual inspection of the 3 mm thick sec-
tions revealed a penetration of blue dye throughout left hemi-
spheres (shockwave-treated), whereas contralateral hemispheres
Fig. 3. Shockwave treatment induces tyrosine phosphorylation of tight junction pr
immunoprecipitates (IP:a-pTyr) form brain extracts of rat treated with shockwave are i
ZO-1, occludin and PKC-d proteins are significantly increased after shockwave treatme
proteins are significantly decreased by pretreatment of EGTA. Western Blot analysis on b
changed in response to EGTA and shockwave treatment.
showed no blue stain (Fig. 1A). Reduction of protein–protein inter-
action between tight junction proteins means a loss of junctional
integrity and increased paracellular permeability in BBB. Previous
studies showed that application of FUS resulted in a decrease in
the interaction of ZO-1 and occludin [1]. To evaluate whether
shockwave could also compromise the interaction of tight junction
proteins, the interaction of ZO-1 and occludin was analyzed by co-
immunoprecipitation assay (Co-IP). Co-IP analysis with brain tis-
sue homogenates showed that the interaction of the tight junction
proteins ZO-1 and occludin in the shockwave treated region was
significantly reduced (Fig. 1B and 1C), indicating a loss of junc-
tional integrity and possibly an increase in paracellular permeabil-
ity in the BBB. However, the total amounts of ZO-1 and occludin
proteins were unaffected by shockwave treatment (Fig. 1B).

We also analyzed the distribution of ZO-1 and occludin proteins
on brain sections by immunofluorescence stain (IF). The results
showed that shockwave treatment group demonstrated a discon-
tinuous, irregular distribution of ZO-1 and occludin and loss of
co-localization. In contrast, the control group demonstrated a con-
tinuous and linear labeling of ZO-1 and occludin along the brain
vessel (Fig. 1D). The result indicates that shockwave treatment dis-
rupted the interaction between ZO-1 and occludin, which in turn
increases in paracellular permeability in the BBB.

Shockwave-induced BBB opening is blocked by EGTA

Previous studies have found calcium signaling to be involved in
BBB disruption. Calcium influx can trigger a number of calcium-
oteins and PKC-d proteins and are blocked by EGTA. (A) Anti-phosphotyrosine
mmunoblotted for ZO-1, occludin and PKC-d proteins. Tyrosine phosphorylation of
nt. (B) Shockwave-induced tyrosine phosphorylation of tight junction and PKC-d
rain tissue lysates shows that ZO-1 and occludin protein levels are not significantly
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sensitive signaling cascades that alter the integrity of tight junctions
[13,36]. Furthermore, Calcium homeostasis has been shown to
mediate tight junction permeability [37,38]. To evaluate whether
shockwave induced BBB opening also occurs through the calcium-
mediated signaling pathway, we perturbed calcium homeostasis
by tail vein injection of CaCl2 or chelators (EDTA or EGTA) and
observed the interaction of ZO-1 and occludin as previously shown.
Unlike EDTA (Ethylenediaminetetraacetic acid), a non-selective
cation chelator, EGTA (Ethylene glycol tetraacetic acid) has a high
affinity for calcium ions. Shockwave-induced reduction in the inter-
action between ZO-1 and occludin was observed in groups pre-
treated with EDTA and CaCl2, similar to that of the control group,
but the effect of shockwave was significantly reversed by EGTA
treatment (Fig. 2A and B). The results indicate that calcium is cru-
cially important for shockwave-induced tight junction disruption.

ZO-1 and occludin are hyper-tyrosine phosphorylated and PKC-d
signaling is activated by shockwave treatment.

To determine whether shockwave exerts its effect via the PKC-d
signaling pathway, we measured the tyrosine phosphorylation of
Fig. 4. PKC-d signaling mediates shockwave-induced BBB opening. (A) Co-immunopr
ZO1-occludin interaction after shockwave treatment. (B) Bar graphs summarizing the
shockwave treatment. n = 5 rats per group. Data are presented as the mean standard err
(C) Anti-phosphotyrosine immunoprecipitates (IP:a-pTyr) experiments indicate that tyro
in rottlerin pretreatment group after shockwave treatment. (D) ZO-1, occludin and PKC-
shockwave application. (E) Immunostaining for ZO-1 and occludin proteins in brain tiss
ZO-1 and occludin in the brain tissue by immunoprecipitation with
anti-phosphotyrosine antibodies followed by immunoblotting
with anti-ZO1 and anti-occludin antibodies. The tyrosine phospho-
rylation of ZO-1 and occludin in the brain tissue of the shockwave-
treated group was significantly elevated with increased tyrosine
phosphorylation of PKC-d when compared with the group without
shockwave treatment (Fig. 3A). The elevated tyrosine phosphoryla-
tion of ZO-1, occludin, and PKC-dwas blocked by EGTA administra-
tion (Fig. 3B), implying the involvement of calcium dependent
PKC-d signaling process.

Previous studies demonstrated that PKC-d mediated BBB dis-
ruption and tight junction integrity was preserved by the attenua-
tion of PKC-d activity (such as by dV1-1 or Bryostatin-1) [12,39,40].
Inhibition of PKC-d by rottlerin also enhanced barrier function in
Caco-2 cells [41]. Furthermore, previous studies have shown that
tyrosine phosphorylation of PKC-d is a mechanism for regulating
the catalytic activity of PKC-d [42,43]. Therefore, we investigated
the role of tyrosine phosphorylation of PKC-d in shockwave-
induced tight junction disruption. Our data show that tyrosine
phosphorylation of PKC-d was significantly enhanced by shockwave
treatment, but was reduced by EGTA administration (Fig. 3A and B).
ecipitation of occludin and ZO-1. Inhibition of PKC-d activity by rottlerin preserves
ratio of occludin associated with ZO-1 in rottlerin pretreatment experiments after
ors of the means. Statistical results show no significant differences (Student’s t test)
sine phosphorylation of ZO-1, occludin and PKC-d proteins are significantly reduced
d proteins are not significantly changed in rottlerin pretreatment experiments after
ue in rottlerin pretreatment experiments. (Scale bars: 10 lm).
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This result suggests that PKC-d signaling was activated by shock-
wave treatment.
Inhibition of PKC-d activity by rottlerin blocked shockwave-induced
BBB disruption.

To further confirm whether the PKC-d signaling mediates
shockwave-triggered BBB disruption, we administrated a PKC-d
inhibitor, rottlerin, via tail vein injection before shockwave treat-
ment. The administration of rottlerin preserved the interaction of
ZO-1 and occludin and reduced tyrosine phosphorylation of ZO-1
and occludin after shockwave treatment (Fig. 4A, B and C). The tyr-
osine phosphorylation of PKC-d was also significantly reduced
(Fig. 4C). In addition, the distribution of ZO-1 and occludin proteins
after shockwave treatment was not significantly changed in the
group treated with rottlerin compared with those without
(Fig. 4E, data not shown). Taken together, the results confirm that
Fig. 5. TRPV4 activation regulates shockwave-induced BBB opening. (A) Co-immunop
ZO1-occludin interaction after shockwave treatment. (B) Bar graphs summarizing the ra
shockwave treatment. n = 5 rats per group. Data are presented as the mean standard err
(C) Anti-phosphotyrosine immunoprecipitates (IP: a-pTyr) experiments indicate that tyro
in HC067047 pretreatment group after shockwave treatment. (D) ZO-1, occludin and PK
after shockwave application. (E) Immunostaining for ZO-1 and occludin proteins in brai
the blockage of PKC-d signaling by rottlerin arrests shockwave-
induced BBB disruption.
TRPV4 inhibition prevents shockwave-induced BBB disruption.

TRPV4 is a mechanosensor of the endothelial cells which can be
activated by shear stress [26,44,45]. It mediates calcium influx and
increases endothelial permeability [20,44,46]. To determine
whether the TRPV4 mediated shockwave-triggerred BBB disrup-
tion, we administrated a TRPV4 antagonist, HC067047, via tail vein
injection before shockwave treatment. The interaction of ZO-1 and
occludin after shockwave treatment was retained and tyrosine
phosphorylation of ZO-1 and occludin was mainly reduced by
administration of HC067047 (Fig. 5A, B and C). The distribution
of ZO-1 and occludin proteins after shockwave treatment was
not significantly changed in groups treated with HC067047 com-
pared with those without shockwave treatment (Fig. 5E, data not
shown). In addition, the tyrosine phosphorylation of PKC-d after
recipitation of occludin and ZO-1. Blockage of TRPV4 activity by HC067047 retains
tio of occludin associated with ZO-1 in HC067047 pretreatment experiments after
ors of the means. Statistical results show no significant differences (Student’s t test)
sine phosphorylation of ZO-1, occludin and PKC-d proteins are significantly reduced
C-d proteins are not significantly changed in HC067047 pretreatment experiments
n tissue in HC067047 pretreatment experiments. (Scale bars: 10 lm).
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shockwave treatment was significantly reduced (Fig. 5C). These
results suggest that blockade of TRPV4 reduces PKC-d activation
by affecting calcium influx.

TRPV4-dependent Ca2+ influx is predominately induced by shockwave
treatment.

To determine whether shockwave induces TRPV4-dependent
calcium influx in the endothelium, we first measured calcium
influx in response to the known TRPV4 activator GSK1016790A
in bEnd.3 cells, a brain endothelium-like cell line that expresses
TRPV4 to regulate calcium influx [47]. The bEND.3 cells were
pre-loaded with calcium indicator fura2. Stimulation of bEnd.3
cells with 3 lMGSK1016790A was shown to induce significant cal-
cium influx (Fig. 6A). Shockwave treatment also induces calcium
influx, and is blocked by pretreatment with TRPV4 antagonist in
a concentration-dependent manner (20 nM and 40 nM
HC067047) (Fig. 6B), strongly suggesting that shockwave-induced
calcium signaling was mediated by TRPV4. Taken together, the role
of the shockwave is to stimulate Ca2+ influx into the cell through
activating TRPV4, thereby activating the PKCd signaling pathway
and eventually causing the disruption of tight junctions.
Fig. 6. TRPV4 mediates shockwave-induced calcium influx. Representative graphs sh
TRPV4 agonist (GSK1016790A), antagonist (HC067047) or shockwave treatment. (A) Calc
influx is induced by shockwave treatment and this phenomenon is blocked by treatmen
TRPV4 is significantly overexpressed by shockwave via the TRPV4/
PKC-d pathway.

A number of studies have indicated that TRPV4 is significantly
overexpressed after brain injury, such as intracerebral hemorrhage
[20], traumatic brain injury [29,48] and middle cerebral artery
occlusion [27], leading to BBB disruption. Interestingly, 18 h after
shockwave treatment, the expression of TRPV4 increased signifi-
cantly along brain vessels (Fig. 7A). In vitro study using In-Cell
ELISA assay also shows the increased expression of TRPV4 by
shockwave treatment. This enhancement could be reversed by the
administration of inhibitors such as rottlerin (Fig. 7B) or HC067047
(Fig. 7C). These results again show that shockwave treatment could
activate intracellular PKC-d and TRPV4-mediated signaling.

Combining TRPV4 agonist and shockwave reduces the intensity
threshold of shockwave to open the BBB.

The possibility of brain injury induced by shockwave treatment
is always a concern. Our previous study showed that shockwave
could induce minor inflammation and apoptosis in rat brains [6].
By reducing the intensity level of shockwave required to open
owing the changes in [Ca2++]i levels in individual bEnd.3 cells in response to the
ium influx is induced by bEnd.3 cells treated with 3 lM GSK1016790A. (B) Calcium
t with TRPV4 antagonist.



Fig. 7. The expression of TRPV4 is remarkably increased by TRPV4/ PKC-d pathway after shockwave treatment. (A) Eighteen hours after shockwave application, the rats
were sacrificed and the brains were harvested for immunostain analysis. TRPV4 is overexpressed by shockwave treatment. (Scale bars: 10 lm). (B, C) The expression of TRPV4
is analyzed through In-Cell ELISA assay in vitro. TRPV4 protein is overexpressed by shockwave treatment. Pretreatment of rottlerin or HC067047 inhibit shockwave-induced
TRPV4 overexpression. (Student t-test, *P < 0.05, n = 4).
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the BBB, the possibility of brain injury can be reduced. Our results
indicate that the activation of TRPV4 by shockwave promote the
disruption of tight junction, implied TRPV4 is a candidate for
shockwave-mediated BBB opening to ameliorate the intensity level
of shockwave. Thus, we used a selective agonist (GSK1016790A) to
determine whether low-intensity shockwave can also induce BBB
opening by activating TRPV4. Fig. 8A shown that GSK1016790A
also promoted BBB opening at lower SW treatment level (level
1 = 0.1 mJ/mm2, 50 times), but was not in the control group. It is
worth noting that all mice induced the opening of BBB by using
lower SW level in combination with GSK1016790A, but only lower
SW treatment could not (Fig. 8B). Statistical analysis using the
Mann-Whitney U test showed that when used in combination with
GSK1016790A, the BBB opening was significantly improved at
lower SW treatment levels (p = 0.008). We also found that the dis-
continuity, irregular distribution, and loss of co-localization of ZO-
1 and occludin patterns are still present in the group treated with
shockwaves at a lower treatment level, below the threshold inten-
sity of BBB opening using shockwave [6] (Fig. 8C). Therefore, the
TRPV4 agonist can reduce the shockwave intensity threshold
required for BBB opening.
Ultrasound also induces the dissociation of ZO-1-occludin and
mediated TRPV4 overexpression by TRPV4/PKC-d pathway.

Finally, planar ultrasound is tested in similar way as shockwave
with respect to BBB opening effect and the TRPV4/PKC-d pathway.
The interaction of ZO-1 and occludin was decreased by ultrasound
treatment (Fig. 9 A), and inhibition of TRPV4 or PKC-d activity res-
cued ultrasound-induced ZO-1-occludin dissociation (Fig. 9 B). The
total amounts of ZO-1 and occludin proteins were unchanged by
ultrasound treatment (data not shown). In-Cell ELISA assay
in vitro revealed increased TRPV4 by ultrasound treatment, which
is significantly reversed by treatment with TRPV4 antagonist
(Fig. 9C).
Discussion

This study illustrates the role of TRPV4 in acoustic wave-
mediated BBB opening and its possible mechanisms (Fig. 10).
Acoustic waves stimulate TRPV4 and promote calcium influx to
activate PKC-d, which increases tyrosine phosphorylation of ZO-1



Fig. 8. TRPV4 activation by GSK1016790A promote low-intensity level of shockwave to achieve BBB opening. (A) Evans blue extravasation in the coronal sections of
brain. (B) The successful BBB opening rate under low-intensity level of shockwave. (C) Representative images of immunofluorescence staining for ZO-1 and occludin in
GSK1016790A administration groups with or without shockwave treatment. (Scale bars: 10 lm). The reduced colocalization of ZO-1 and occludin is still found in groups
treated with low-intensity shockwave.
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and occludin, resulting in dissociation of these tight junction pro-
teins. Our study is the first to illustrate that both shockwave and
ultrasound-induced BBB opening is modulated via TRPV4/PKC-d
mediated signaling pathway. We further show the overexpression
of TRPV4 in vascular endothelial cells after acoustic waves stimu-
lation, which was regulated by itself and PKC-d activation, in a pos-
sible positive feedback loop. Notably, TRPV4 agonists decrease the
intensity threshold of shockwave required for BBB opening, imply-
ing possible future clinical applications.

It is worth noting that UCA or microbubbles were not intro-
duced in our BBB-opening study using shockwave or ultrasound.
In-vivo application of ultrasound mediated BBB opening usually
requires UCA, where ultrasound-induced UCA oscillations promote
cell membrane deformation and increase permeability of the
endothelium [2,9,10,49]. The addition of UCA increases the effi-
ciency of BBB opening, but also increases the possibility of irre-
versible damage [6,50]. The combination of ultrasound and UCA
has been shown to induce apoptosis through a caspase-mediated
pathway [51,52]. UCA could produce organ hemorrhage by
inducing capillary rupture through the cavitation effect, even at
the intensity level of diagnostic ultrasound [53,54]. In clinical prac-
tice, the advantages of applying shockwave or ultrasound without
the addition of UCA are: (1) avoiding possible systemic side effects
such as allergy, (2) lowing total cost, and (3) reducing vascular
injury by cavitation. Shockwave has been shown to open the BBB
without UCA [6]. However, due to its strong and long negative
pressure, the cavitation effect produced by shockwaves may also
result in tissue damage. Here, we propose a novel concept: activa-
tion of TRPV4 reduces the required intensity threshold of shock-
waves for BBB opening, and thus may substantially reduce the
possibility of tissue damage by shockwave.

There have been some interesting research in the computa-
tional study of shockwave induced BBB opening recently [55,56].
Adhikari at al reported that when the passage of the shockwaves
occurred but no bubble was present, it has almost no effect on
the 2D structure of the occludin protein and will not damage the
tight junction. However, when the same shockwave intensity is
combined with nanobubbles, the bubble collapse will change the



Fig. 9. Ultrasound also induce BBB opening through TRPV4/ PKC-d pathway. Co-immunoprecipitation of occludin and ZO-1 (A and C). (A) The interaction of ZO-1 and
occludin is significantly decrease by ultrasound treatment. (B) Bar graphs summarizing the ratio of occludin associated with ZO-1. n = 6 rats per group. Significant differences
(Student’s t test) are depicted with asterisks. p < 0.05 compared with the control group. (C) Ultrasound-induced disassociated ZO-1 and occludin is rescued by administration
of rottlerin and HC067047. (D) The expression of TRPV4 is induced via ultrasound treatment, and blocked by HC067047 administration. Significant differences (ANOVA
followed by LSD post hoc test) are depicted with asterisks. p < 0.05 compared with the control group, n = 4.
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2D structure of occludin protein and damaged the pairs of occlu-
dins [56]. Although microbubbles were not used in our study to
increase the efficiency of shockwaves, in reality, there are gases
dissolved in blood. During the period of shockwave treatment
(200 times in total), the gas in the blood may participate to destroy
the tight junction structure. Since the concentration and quality of
the gas in the blood are not homogenized and stabilized, the shock-
wave cannot effectively open the BBB [6]. On the other hand, when
combined with microbubbles, only 1 pulse of shockwave is enough
to effectively open BBB or even cause brain injury by strong cavita-
tion effect [57].

Our results show that the activation of TRPV4 by acoustic waves
or agonist (GSK1016790A) does not affect the level of tight junc-
tion proteins in western blot (Fig. 1A, 3B, 4D and 5D) and
immunostaining assays (Fig. 1C, 4E, 5E and 8). However, a previous
study indicated that 4a-PDD activates TRPV4 to induce calcium
influx and finally degrades or down-regulates tight junction pro-
teins [58]. The possible explanation is that the short-term stimulus
of acoustic waves is weak enough that it only affects tight junction
interaction, without affecting the degradation or down-regulation.
According to our previous reports, the shockwave parameters we
employed in the current study did not significantly induce inflam-
mation or apoptosis [6]. Severe brain injury which promotes cal-
cium influx via TRPV4 activation leads to irreversible brain
edema and tight junction protein degradation [20]. On the other
hand, TRPV4 inhibition ameliorated BBB leakage after intracerebral
hemorrhage [20], ischemia–reperfusion injury [59], and an in vitro
ischemia model [25].

Following ultrasound and shockwave treatment, the expression
of TRPV4 is significantly increased in a possible positive feedback
loop in vascular endothelial cells (Figs. 7 and 9C). Both the blockage
of TRPV4 and PKC-d activity attenuates acoustic wave-mediated
TRPV4 overexpression (Fig. 7B, 7C and 9C). Our finding suggests
that TRPV4 overexpression after acoustic wave treatment was reg-
ulated by itself and PKC-d activation. Thus, this positive feedback
loop will amplify signaling through the TRPV4/ PKC-d signal trans-
duction cascade. A previous study also shows that GSK1016790A, a
TRPV4 agonist, activates TRPV4 to enhance self-expression [60].



Fig. 10. Scheme depicting a possible mechanism of mechanical wave mediated BBB opening. After mechanical wave treatment, TRPV4 is activated and triggers calcium
influx into a vascular endothelial cell in the brain. Calcium induces PKC-d activation, and then directly or indirectly phosphorylates ZO-1 and occludin proteins. The
interaction between ZO-1 and occludin is disassociated by its phosphorylation, which then promotes paracellular permeability and BBB opening. Mechanical wave-mediated
BBB opening is inhibited by administration of EGTA, rottlerin or HC067047. On the other hand, the expression of TRPV4 is enhanced by itself or PKC-d activation.
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Why the overexpression of TRPV4 is induced by acoustic waves
warrants further investigation.

Molecular transport through the BBB may be realized either
paracellularly or transcellularly (endocytosis/exocytosis). Previous
reports have indicated that TRPV4 regulates receptor-mediated
vesicular transport. The inactivation of TRPV4 decreased alpha2
macroglobin (A2M) transport [19]. In choroid plexus epithelial
cells, TRPV4 activation promotes the recruitment of NA+/k+ ATPase
to apical surface in an a-Klotho-dependent manner and induces
the secretion of a-Klotho into cerebrospinal fluid [61]. Exosome-
associated proteins expressions are up-regulated by 4a-PDD in a
TRPV4-specific manner, suggesting TRPV4 mediated exocytosis
[62]. In addition, the activation of TRPV4 in vivo promotes an
increase in bile flow as well as ATP release and bicarbonate secre-
tion [63]. Altogether, as a sensor, TRPV4 mediates intracellular
molecular transport and extracellular secretion. This phenomenon
suggests that, in this study, TRPV4 overexpression in BBB vascular
endothelium in response to acoustic stimulation may also facilitate
molecule transport through endocytosis and exocytosis, another
possible mechanism for BBB opening. Further studies are needed.
Our previous experiments indicated that after 24hr of shockwave
treatment, tail vein injection Evans blue (EB) could not stain the
brain, implying the BBB had closed [6]. However, this method does
not explain the effect of TRPV4 on receptor-mediated vesicle trans-
port. Although EB dye also binds to albumin as a tracer for analyz-
ing receptor-mediated intracellular transport pathway [64],
previous studies have indicated that albumin cannot transport via
TRPV4-mediated receptor-mediated intracellular transport pathway
[19]. Therefore, different method is needed for acoustic wave-
mediated TRPV4 overexpression to analyze receptor-mediated vesi-
cle transport infiltration in the future.

Neuron apoptosis is always a concern for brain stimulation by
FUS. Early studies have shown that PKC-d is activated by oxidative
stress and induces caspase activity to cleave PKC-d and form a con-
stitutively active catalytic fragment (dCF). Then, the dCF is trans-
ported into the nucleus to induce apoptosis in various cell types
[43,65,66]. In addition, ultrasound generates reactive oxygen spe-
cies (ROS) and induces apoptosis via a caspase-mediated cell death
pathway [67,68]. The expression of PKC-d is increased by
ultrasound-induced calcium influx to regulate endocytosis [69].
Altogether, it is reasonable to assume that ultrasound generates
ROS to activate caspase activity via PKC-d signaling, and then cas-
pases cleave PKC-d to induce irreversible apoptosis and tissue dis-
ruption. Our experiments show that inhibition of PKC-d by rottlerin
prevents ultrasound-induced disassociation of ZO-1 and occludin
(Fig. 9B), suggesting that PKC-d is activated to regulate BBB open-
ing, as previously reported [12,40]. It is notable that activation of
PKC-d signaling can induce brain damage [12,40], although FUS
has previously been reported to promote BBB opening without
apoptosis or brain damage under appropriate conditions [70,71].
However, all reports of ultrasound-induced apoptosis in brain were
analyzed by TUNEL assay, which was designed to detect apoptotic
cells that undergo DNA fragmentation at late stages of apoptosis,
but cannot detect early apoptosis and pro-apoptosis stage. More
safety assessments are thus needed to explore the effects of FUS
on apoptosis. On the other hand, shockwave did not significantly
generate ROS in our preliminary experiments (data not shown)
when compared with FUS, probably due to its short pulses and
scarce iterations. This observation is beneficial for acoustically
induced BBB opening in clinical applications. A previous study also
shows that shockwave treatment did not induce the expression of
oxidized proteins, NOX-1 and NOX-2 (oxidative stress indicators)
in the brain [67].

One of the limitation of this study is that we only use inhibitors
or agonist to analyze the related signal pathways. It will be more
convincing if TRPV4 knockout mice were used. Moreover, TRPV4
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channel activity is measured in bEnd.3 cell line, and not in native
brain endothelium or in vivo. It would be more convincing if we
use two photon laser scanning microscopy for in vivo analysis
[72] or primary cerebral endothelial cells for in vitro study.
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