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A B S T R A C T   

Dyslipidemia often accompanies type 2 diabetes mellitus (T2DM). Elevated blood glucose in 
patients commonly leads to high levels of lipids. Lipid molecules can play a crucial role in early 
detection, treatment, and prognosis of T2DM with dyslipidemia. Previous lipid studies on T2DM 
mainly focused on Western diabetic populations with elevated blood glucose. In this research, we 
investigate both high blood sugar and high lipid levels to better understand changes in plasma 
lipid metabolism in newly diagnosed Chinese T2DM patients with dyslipidemia (NDDD). We used 
a plasma lipid analysis method based on ultra-high performance liquid chromatography coupled 
with mass spectrometry technology (UHPLC-MS) and statistical analysis to characterize lipid 
profiles and identify potential biomarkers in NDDD patients compared to healthy control (HC) 
subjects. Additionally, we examined the differences in lipid profiles between hyperlipidemia (HL) 
patients and HC subjects. We found significant changes in 15 and 23 lipid molecules, including 
lysophosphatidylcholine (LysoPC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
sphingomyelin (SM), and ceramide (Cer), in the NDDD and HL groups compared to the HC group. 
These altered lipid molecules are associated with five metabolic pathways, with sphingolipid 
metabolism and glycerophospholipid metabolism being the most relevant to glucose and lipid 
metabolism changes. These lipid biomarkers are strongly correlated with traditional markers of 
glucose and lipid metabolism. Notably, Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/16:1), SM 
(d18:1/24:1), and SM(d18:2/24:1) were identified as essential potential biomarkers closely 
linked to clinical parameters through synthetic analysis of receiver operating characteristic 
curves, random forest analysis, and Pearson matrix correlation. These lipid biomarkers can 
enhance the risk prediction for the development of T2DM in individuals with dyslipidemia but no 
clinical signs of high blood sugar. Furthermore, they offer insights into the pathological mecha-
nisms of T2DM with dyslipidemia.  
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1. Introduction 

Diabetes comprises a group of conditions affecting glucose metabolism, characterized by either a deficiency in insulin secretion or 
insulin resistance (IR), often accompanied by disturbances in lipid and protein metabolism. By the year 2045, an estimated 783.2 
million people worldwide will be living with diabetes, with China alone accounting for 174 million cases, the majority of which will be 
type 2 diabetes mellitus (T2DM) [1]. In China, the prevalence of T2DM among adults stands at 11.6%, and an additional 50.1% have 
pre-diabetic conditions [2]. T2DM is marked by its protracted course, a multitude of complications, and complex clinical manifes-
tations [3]. 

Presently, the diagnosis of T2DM primarily relies on clinical symptoms and blood glucose levels. Nonetheless, roughly 59% of early- 
stage diabetic patients might experience misdiagnosis or evade detection through fasting plasma glucose (FPG) assessments [4]. This 
holds considerable clinical importance as it frequently leads to missed opportunities for intervention during the initial onset of 
symptoms. Furthermore, conventional thinking held that T2DM was primarily a disorder of glucose metabolism, with subsequent lipid 
metabolism irregularities. However, contemporary research indicates that these two disorders often develop concurrently. 
Pre-diabetes is frequently accompanied by varying degrees of excess weight or obesity, along with dyslipidemia, and over 50% of 
T2DM patients exhibit evident dyslipidemia [5–7]. Lipids possess biological functions and participate in energy transfer, cellular 
signaling, growth, development, division, differentiation, and apoptosis. A comprehensive exploration of lipidomics investigates the 
intricate interplay between lipid metabolism disorders and T2DM, with the identification of lipid biomarkers offering valuable insights 

Abbreviations 

T2DM type 2 diabetes mellitus 
IR insulin resistance 
NDDD newly diagnosed T2DM with dyslipidemia 
HL hyperlipidemia 
HC healthy controls 
HbA1c hemoglobin A1c 
FPG fasting plasma glucose 
2hPBG 2 h postprandial blood glucose 
CHOL total cholesterol 
LDL-C low-density lipoprotein cholesterol 
TG triglycerides 
HDL-C high-density lipoprotein cholesterol 
apoB apolipoprotein B 
ALT alanine aminotransferase 
AST aspartate aminotransferase 
CREA creatinine 
UHPLC/Q-TOF-MS ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry 
QC quality control 
PCA principal component analysis 
OPLS-DA orthogonal projection discriminate analysis 
RPT response permutation testings 
VIP variable importance in projection 
FC fold change 
ROC receiver operator characteristic 
AUC area under the curve 
LysoPC lysophosphatidylcholine 
PC phosphatidylcholine 
PE phosphatidylethanolamine 
SM sphingomyelin 
Cer ceramide 
RF random forest 
MDA mean decrease accuracy 
FFAs free fatty acids 
GPs glycerophospholipids 
PLA2 phospholipase A2 
ERS endoplasmic reticulum stress 
SREBP-1c sterol regulatory element binding protein 1c 
ChREBP carbohydrate response element binding protein 
LXRα liver X receptor  
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into the pathogenesis, early detection, and treatment of T2DM in individuals with dyslipidemia. 
In contrast to traditional lipid profiling, lipidomics, utilizing ultra-high performance liquid chromatography-tandem mass spec-

trometry (UHPLC-MS), enables the simultaneous qualitative characterization of various lipid species, offering a comprehensive insight 
into lipid metabolism. Recent literature has extensively documented variations in lipid profiles between individuals with T2DM and 
their healthy counterparts [8–11]. These studies have underscored the significant correlation between lipid metabolism and glucose 
regulation. However, the bulk of research on the pathogenesis and identification of lipid biomarkers for T2DM, based on plasma 
metabolite analysis, has primarily focused on Western populations. There is a notable scarcity of research on predictive lipid me-
tabolites for newly diagnosed T2DM within diverse ethnic groups, particularly in Asian populations. Moreover, there is a limited 
understanding of the relationship between lipid metabolites and T2DM within different regions of China characterized by varying 
dietary patterns. Furthermore, most studies have targeted T2DM patients with only elevated blood glucose levels, with limited 
attention given to those with concurrent dyslipidemia. As previously highlighted, dyslipidemia is a prevalent comorbidity of T2DM, 
and it is essential to consider both conditions holistically. 

In this study, we conducted a comprehensive examination of blood lipid alterations in individuals with T2DM-related dyslipidemia 
and hyperlipidemia, comparing them with healthy subjects. Our objective was to employ a lipidomic approach to pinpoint potential 
lipid biomarkers and metabolic pathways. This research aims to enhance our understanding of the risk assessment and pathological 
mechanisms associated with T2DM complicated by dyslipidemia, ultimately facilitating the development of effective preventive and 
therapeutic strategies tailored to Chinese patients with T2DM-related dyslipidemia. 

2. Materials and methods 

2.1. Reagents and Chemicals 

MS-grade acetonitrile, methanol, and isopropanol were procured from Merck (Shanghai, China). HPLC-grade formic acid was 
provided by ANPEL Laboratory Technologies (Shanghai) Inc. Analytical reagent chloroform and ammonium formate were sourced 
from Damao Chemical Reagent Factory (Tianjin, China). Leucine-enkephalin was supplied by Sigma-Aldrich (Steinheim, Germany). 
Double-distilled water was obtained from Watson’s Food & Beverage (Guangzhou, China). Reference standards, including LysoPC 
(18:0/0:0) and LysoPC (18:1/0:0), were purchased from Avanti Polar Lipids Inc. 

2.2. Study subjects 

Participants were recruited from the Second Affiliated Hospital of Guangzhou Medical University, Guangdong Province, between 
August 2019 and October 2019. The study encompassed patients with newly diagnosed type 2 diabetes mellitus and dyslipidemia 
(NDDD), those with hyperlipidemia (HL), and healthy controls (HC). Prior hypoglycemic or lipid-lowering treatments had not been 
administered to any NDDD or HL participants. Selection of HC subjects was carried out from the physical health outpatient clinic, and 
they did not meet the criteria for treatment of hypoglycemia or hypolipidemia. 

Diagnoses of glucose and lipid metabolism disorders were primarily based on criteria established by the World Health Organization 
(WHO), the International Diabetes Federation (IDF), the China Cholesterol Education Program (CCEP), and the Chinese Diabetes 
Society (CDS) [12]. Criteria encompassed HbA1c levels ≥6.5%, FPG levels ≥7.0 mmol/L, or 2-h postprandial (after breakfast) blood 
glucose (2hPBG) levels ≥11.1 mmol/L. Moreover, lipid metabolism disorder indicators included CHOL levels ≥5.2 mmol/L, LDL-C 
levels ≥3.4 mmol/L, or TG levels ≥1.7 mmol/L. Confirmation necessitated that these parameters be tested on at least two occasions. 

Exclusionary criteria include: Patients currently undergoing hypoglycemic and lipid-lowering treatment. Patients with diabetes 
complications, such as diabetic nephropathy, diabetic retinopathy, and diabetic peripheral neuropathy. Patients diagnosed with type 1 
diabetes and gestational diabetes. Patients using medications that may induce elevated blood sugar or blood lipid levels. Patients with 
coexisting diseases or a history of surgeries. Patients aged below 18 or above 70 years. Patients experiencing liver and kidney 
dysfunction. 

All experiments received approval from the Medical Ethics Committee of the Second Affiliated Hospital of Guangzhou Medical 
University (Approval No: 2020-hs-07). The implementation adhered to the fundamental principles outlined in the Declaration of 
Helsinki. 

2.3. Data collection 

Demographic information, including age and gender, and biochemical parameters such as FPG, CHOL, TG, LDL-C, high-density 
lipoprotein cholesterol (HDL-C), HbA1c, apoB, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine 
(CREA), were obtained and recorded. 

2.4. Sample preparation 

The extraction and separation of lipids from plasma were carried out using a combination of the Folch and Bligh & Dyer methods. A 
mixture of chloroform and methanol (1.5 mL, 2:1, v/v) was added to a 150 μL plasma sample. The mixture was vortex-mixed and 
allowed to settle for approximately 3 min. Subsequently, 500 μL of distilled water was introduced. The mixtures were vortex-mixed for 
1 min and left to rest at room temperature for 5 min. Following this, the solutions were centrifuged at 12,000 rpm for 10 min at 4 ◦C. 
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The lower organic phase was carefully extracted and dried using nitrogen. The resulting residue was reconstituted with 500 μL of 
acetonitrile/isopropanol (1:1, v/v) containing 10 mM ammonium formate and centrifuged at 12,000 rpm for 10 min. A 300-μL aliquot 
of the supernatant was employed for ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass 
spectrometry (UHPLC/Q-TOF-MS) analysis. 

2.5. Chromatographic and mass spectrometric conditions 

For the analysis, the Waters ACQUITY UHPLC™ instrument, manufactured by Waters in Milford, USA, was employed. The system 
was comprised of a quaternary pump, vacuum degasser, and an autosampler. Chromatographic peaks were separated on a UPLCTM 

BEH C18 column (50 mm × 2.1 mm, 1.7 μm, Waters, USA), with the column temperature being maintained at 50 ◦C. A gradient elution 
system was utilized, consisting of (A) 10 mM ammonium formate with 0.1% formic acid in water and (B) 10 mM ammonium formate 
with 0.1% formic acid in acetonitrile/isopropanol (1:1, v/v). The following conditions were employed: 0–4 min, during which the 
composition of B ranged from 61% to 81.4%, 4–5 min with B at 81.4%–82%, 5–8 min with B at 82%, 8–9 min with B at 82%–83%, 
9–12 min with B at 83%–83%, 12–15 min with B at 83%–95%, 15–16 min with B at 95%–99%, 16–17 min with B at 99%–100%, and 
17–22 min with B at 100%. The flow rate was set at 0.30 mL/min, and an injection volume of 5 μL was utilized. 

In this experiment, the Waters mass spectrometer was utilized. It was equipped with an electrospray ion source and operated in 
positive ion mode, capturing full scan mass data within the m/z range of 100–1500 Da. The ion source temperature was established at 
100 ◦C, with a cone gas flow of 50 L/h. The desolvation temperature was maintained at 300 ◦C, with a gas flow of 500 L/h. The 
capillary voltage was set at 3.0 kV, and the sample cone voltage was adjusted to 30 V. To ensure accuracy and repeatability, all MS data 
were corrected through an external reference (Lock Spray) employing leucine-enkephalin (Sigma Chemical), which presented a lock- 
mass ion at 556.2771 Da ([M+H]+). MS/MS spectra of quasi-molecular ions were generated by applying different collision energies 
(CE) ranging from 20 to 30 eV to obtain variable characteristic ion fragments. 

For the determination of elemental compositions and precise molecular weights from the mass spectra data, the MassLynx 4.1 data 
analysis software was utilized. The software was configured with a parent mass error tolerance of 5 ppm to ensure that the results were 
highly accurate. To guarantee the accuracy and reliability of the analytical methods and instruments, eight quality control (QC) 
samples were prepared by randomly extracting 20 μL from individual plasma samples. Throughout the entire analysis process, a QC 
sample and a blank sample were inserted after every six samples that were analyzed. Additionally, fourteen main ion peaks from the 
total ion chromatograms were selected for method validation. 

2.6. Statistical analysis 

The UHPLC-MS raw data, initially processed using MarkerLynx software, were converted into “mzML” format data with the 
assistance of ProteoWizard’s MSConvertGUI software. Subsequently, we performed data preprocessing, which included peak 
extraction, peak matching, peak alignment, noise filtering, and retention time correction, utilizing the XCMS online cloud platform 
(https://xcmsonline.scripps.edu/). Following this preprocessing, the data underwent normalization via MetaboAnalyst 6.0 (http:// 
www.MetaboAnalyst.ca/) and were subsequently imported into SIMCA software (Version 14.1, Umetrics AB, Umea, Sweden) for 
multivariate statistical analysis. Pareto scaling and mean-centering were employed for the normalization of all original data. Both 
principal component analysis (PCA) and orthogonal projection discriminate analysis (OPLS-DA) were utilized to distinguish between 
the NDDD and HL groups compared to the HC group. The validity and accuracy of the OPLS-DA model were confirmed through two 
hundred response permutation testings (RPT), with the intercepts of Q2Y for the corresponding model being <0.05, indicating no 
overfitting. 

The predictive power of the model was evaluated by examining the closeness of the R2Y and Q2 values to 1. Moreover, the dif-
ference between R2Y and Q2 values had to be < 0.3, and the Q2 value had to exceed 50%. To identify differential metabolites, an S-plot 
based on OPLS-DA was constructed, utilizing variable importance in projection (VIP) values to characterize the weighted coefficient of 
discrepant variables. Ions with VIP values exceeding 1 were considered highly significant. Statistical significance in differences be-
tween the HC group and disease groups was assessed through nonparametric tests and Student’s t-test for two independent samples, 
conducted using SPSS 19.0 (IBM, Armonk, NY, USA). The threshold for statistical significance was set at p < 0.05. 

MetaboAnalyst 6.0 was employed for multivariate statistical analysis. The generation of the volcano plot occurred within 
MetaboAnalyst 6.0 following logarithmic transformation and normalization of preprocessed ion peak intensities. The projection of the 
volcano plot primarily relied on the p-value and the fold-change value derived from the Student’s t-test, comparing the disease groups 
to the HC group of corrected sample datasets. This plot visually represented the significant differences between each pair of sample 
data groups. Typically, variables with fold change (FC) values exceeding 1.2 or falling below 0.8 and a p-value of <0.05 on the volcano 
plot were identified as differential biomarkers [13]. The greater the differences, the further these points at the top location were from 
the center of the plot. 

Subsequently, the characteristic ions meeting the criteria of VIP value > 1, p-value <0.05, and FC value > 1.2 or <0.8 were 
identified as potential biomarkers and further subjected to tandem mass spectrometry. The lipid metabolites were cross-referenced 
with the predicted/reported fragments from the human metabolome database (HMDB, http://www.hmdb.ca/), LIPID MAPS Lip-
idomics Gateway (http://www.lipidmaps.org/), and KEGG (https://www.kegg.jp/). To delve deeper into potential lipid biomarkers 
and the underlying pathological mechanisms of T2DM with dyslipidemia, the identified differential metabolites and the involved lipid 
metabolic pathways underwent evaluation through receiver operator characteristic (ROC) analysis, random forest analysis, and 
Pearson matrix correlation. The diagnostic potential of the identified biomarkers was assessed using the ROC curve, with emphasis on 
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the area under the curve (AUC) value, where AUC >0.7 indicated excellent diagnostic accuracy. Heat maps and related metabolite 
pathway analyses of the biomarkers were generated using MetaboAnalyst 6.0 and KEGG. Furthermore, both the random forest analysis 
and Pearson correlation analysis were conducted using MetaboAnalyst 6.0. 

3. Results 

3.1. Characteristics of the study subjects 

In this study, a total of 36 NDDD subjects, 37 HL subjects, and 32 HC subjects participated. Table 1 summarizes the sociodemo-
graphic and clinical characteristics of the study subjects. In comparison to the HC group, the NDDD and HL groups exhibited higher 
levels of CHOL, TG, LDL-C, apo B, and ALT, while HDL-C levels were lower. Additionally, the NDDD group showed increased age, FPG, 
2hPBG, and HbA1c, whereas these differences were not observed in the HL group. Gender, AST, and CREA were similar among the 
three groups. The duration of T2DM ranged from 1 to 12 months. Furthermore, the age of the NDDD participants did not demonstrate 
any significant correlation with HbA1c (r = − 0.065, p = 0.701), FPG (r = − 0.288, p = 0.083), 2hFBG (r = − 0.145, p = 0.443), CHOL 
(r = − 0.067, p = 0.701), TG (r = 0.214, p = 0.218), LDL-C (r = 0.256, P = 0.138), and apoB (r = − 0.017, p = 0.942). This lack of 
correlation also held true for the HL group (r = 0.196, p = 0.246 for HbA1c; r = − 0.040, p = 0.812 for FPG; r = − 0.067, p = 0.725 for 
2hFBG; r = 0.145, p = 0.393 for CHOL; r = 0.280, p = 0.093 for TG; r = 0.078, p = 0.647 for LDL-C; r = − 0.324, p = 0.151 for apoB) 
and the HC group (r = − 0.215, p = 0.273 for HbA1c; r = − 0.030, p = 0.864 for FPG; r = 0.027, p = 0.875 for 2hFBG; r = 0.202, p =
0.356 for CHOL; r = − 0.187, p = 0.394 for TG; r = 0.034, p = 0.878 for LDL-C; r = − 0.106, p = 0.543 for apoB). The correlation 
analysis indicated that the significant differences in blood glucose and blood lipid levels between the NDDD and HC groups were not 
influenced by the relatively older age of the NDDD subjects. 

3.2. Selecting and identifying differential lipid metabolites 

The plasma samples from individual groups are depicted in the base peak positive ion UHPLC-MS chromatograms shown in Fig. S1. 
All quality control (QC) samples fell within two standard deviations (SDs) in the score plot, and 92.86% of the fourteen selected 
metabolite variables exhibited a relative standard deviation (RSD) of less than 30% (Fig. S2). These results demonstrate the stability 
and repeatability of the analytical method. 

Fig. 1A–D presents the PCA plot and OPLS-DA score plot, revealing a significant separation between HC and NDDD subjects, as well 
as HC and HL subjects in positive ion mode. The cumulative R2X, R2Y, and Q2 values of the OPLS-DA model were 0.304, 0.904, and 
0.653 for the comparison between HC and NDDD subjects (Group 1), and 0.358, 0.907, and 0.865 for the comparison between HC and 
HL subjects (Group 2). These values indicate a good fit of the established models. The RPT test (Fig. 1E and F) was employed to confirm 
that the models did not over-fit, with Q2 values of − 0.334 and − 0.409 in Group 1 and Group 2, affirming excellent predictability. As a 
result, 1256 variables were responsible for the cluster segregation among the three groups. 

Fig. 1G and H displays the volcano plots. The x-axis represents the log2 fold change in the relative abundance of each metabolite in 
the NDDD and HL groups compared to the HC group, while the y-axis represents the statistical significance (negative log10 of the p- 
value of each metabolite). The points are divided into two different categories based on the combination of fold change and the p-value 
of each variable. The red points indicate a FC > 1.2 or <0.8 and a p-value <0.05, signifying a substantial fold change and high sta-
tistical significance. The differential lipid metabolites in the NDDD and HL groups exhibited significant alterations compared to the HC 
group. Ultimately, the differential variables were chosen based on their VIP values > 1, p-value <0.05, and FC values > 1.2 or <0.8. 

Table 1 
Characteristics of the study subjects across groups.  

Parameters HC (n = 32) NDDD (n = 36) HL (n = 37) P value 

NDDD vs HC HL vs HC 

Age (years) 40.6 ± 8.25 50.6 ± 10.6 42.24 ± 8.7 <0.0001 0.4566 
Sex, n (M/F) 15/17 20/16 19/18 − 0.5354 0.2677 
FPG (mmol/L) 4.52 ± 0.38 9.50 ± 0.74 4.66 ± 0.39 <0.0001 0.0997 
2hPBG (mmol/L) 5.86 ± 0.84 15.52 ± 0.99 5.98 ± 0.64 <0.0001 0.4298 
HbA1c (%) 5.43 ± 0.28 9.66 ± 0.89 5.34 ± 0.30 <0.0001 0.1699 
CHOL (mmol/L) 4.30 ± 0.54 5.64 ± 0.86 5.80 ± 0.47 <0.0001 <0.0001 
TG (mmol/L) 0.86 ± 0.37 2.38 ± 0.70 1.81 ± 0.60 <0.0001 <0.0001 
LDL-C (mmol/L) 2.54 ± 0.47 3.33 ± 0.74 3.90 ± 0.41 0.0001 <0.0001 
HDL-C (mmol/L) 1.46 ± 0.21 1.04 ± 0.23 1.31 ± 0.25 <0.0001 0.0102 
apoB (g/L) 0.79 ± 0.14 1.13 ± 0.25 1.24 ± 0.12 <0.0001 <0.0001 
ALT (U/L) 15.37 ± 8.96 27.84 ± 8.91 19.51 ± 7.95 <0.0001 0.0167 
AST (U/L) 18.06 ± 4.18 20.29 ± 5.69 19.70 ± 4.97 0.1049 0.1198 
CREA (μmol/L) 73.85 ± 15.95 73.59 ± 16.79 73.19 ± 12.74 0.8877 0.9816 

Data are shown as mean ± standard deviations. 
NDDD: newly diagnosed T2DM with dyslipidemia; HL: hyperlipidemia; HC: health control; FPG: fasting plasma glucose; CHOL: total cholesterol; TG: 
triglycerides; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; HbA1c: hemoglobin A1c; apoB; apolipoprotein 
B; 2hPBG: 2-h postprandial blood glucose; ALT: alanine transaminase; AST: aspartate transaminase; CREA: creatinine. 
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The identified variables were further subjected to identification using MS and MS/MS data. The MassLynx software 4.1 was 
employed to deduce the elemental composition and accurate molecular weights of the differential lipid metabolites, with a margin of 
error for the m/z value of less than 5 ppm. In our previous study, UHPLC/Q-TOF-MS was used for a preliminary qualitative analysis of 
phospholipids in human plasma, resulting in the identification of 82 plasma lipids [14]. Detailed information on the identification 
processes of the differential lipid metabolites can be found in Supplementary Material 1. Our findings suggest that 15 lipid metabolites 
in Group 1 and 23 lipid metabolites in Group 2 could potentially serve as biomarkers for distinguishing between HC and NDDD, and HC 
and HL subjects, respectively. 

In this study, the 15 lipid metabolites in Group 1 were categorized into five groups, including three lysophosphatidylcholines 
(LysoPCs), five phosphatidylcholines (PCs), one phosphatidylethanolamine (PE), five sphingomyelins (SMs), and one ceramide (Cer). 
Similarly, the 23 lipid biomarkers in Group 2 could be classified into three categories, consisting of four LysoPCs, sixteen PCs, and three 
SMs. Additional information on these lipid metabolites is provided in Tables 2 and 3. 

3.3. Changes in screened lipid metabolites 

To provide an overview of the detailed levels of the 15 and 23 lipid metabolites in Group 1 and Group 2, a heat map was generated 
in Fig. 2A and B using Euclidean distances and Ward’s algorithm for hierarchical clustering analysis. The heat map visually represents 

Fig. 1. PCA score plots (A, B) and OPLS-DA (C, D) score plots of lipidomics of plasma samples obtained from the HC vs NDDD group and HC vs HL 
group in positive ion mode. Permutation test plots of the OPLS-DA (E, F) in the (E) HC and NDDD groups (F) HC and HL groups. 1. HC group; 2. 
NDDD group; 3. HL group. Volcano plots were generated to select differential lipid metabolites between the HC and NDDD (G) and HL (H) groups. 
The x-axis represents log2 (fold change), and the y-axis represents -log10 (p-value). The red points indicate potential biomarkers with fold changes 
>1.2 or <0.8. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Table 2 
Detailed information of the lipid metabolites identified between the HC and NDDD groups.  

No. tR/min Adduction Mass (m/z) Mass accuracy (ppm) Formula VIP FC Trenda Identification HMDB ID 

Measured Calculated 

1 1.60 [M+H]+ 520.3398 520.3403 − 1.0 C26H50NO7P 1.3806 1.2543 ↓ LysoPC(18:2/0:0) HMDB0010386 
2 2.10 [M+H]+ 522.3581 522.3560 4.0 C26H52NO7P 1.2420 1.3465 ↓ LysoPC(18:1/0:0) HMDB0010385 
3 2.79 [M+H]+ 524.3715 524.3716 − 0.2 C26H54NO7P 1.2105 1.4141 ↓ LysoPC(18:0/0:0) HMDB0010384 
4 6.18 [M+H]+ 782.5731 782.5700 4.0 C44H80NO8P 1.0075 1.3271 ↓ PC(18:2/18:2) HMDB0008138 
5 7.48 [M+H]+ 760.5839 760.5856 − 2.2 C42H82NO8P 1.1129 1.2461 ↓ PC(16:0/18:1) HMDB0007971 
6 7.86 [M+H]+ 742.5768 742.5751 2.3 C42H80NO7P 1.1372 1.4526 ↓ PC(P-16:0/18:2) HMDB0011211 
7 8.17 [M+H]+ 722.5154 722.5125 4.0 C41H72NO7P 1.2248 1.5732 ↓ PE(P-16:0/20:5) HMDB0011354 
8 8.23 [M+H]+ 742.5723 742.5751 − 3.8 C42H80NO7P 1.3720 1.5817 ↓ PC(O-16:1/18:2) HMDB0013413 
9 9.04 [M+H]+ 810.5995 810.6013 − 2.2 C46H84NO8P 1.1319 1.4315 ↓ PC(18:0/20:4) HMDB0008048 
10 10.76 [M+H]+ 759.6383 759.6380 0.4 C43H87N2O6P 1.0382 0.7870 ↑ SM(d18:1/20:0) HMDB0012102 
11 13.54 [M+H]+ 787.6708 787.6693 − 1.1 C45H91N2O6P 1.4224 0.7189 ↑ SM(d18:1/22:0) HMDB0012103 
12 13.97 [M+H]+ 787.6685 787.6693 − 1.0 C45H91N2O6P 1.4472 0.7580 ↑ SM(d18:0/22:1) HMDB0012092 
13 14.42 [M+H]+ 801.6829 801.6850 − 2.6 C46H93N2O6P 1.0259 0.7288 ↑ SM(d18:1/23:0) HMDB0012105 
14 15.21 [M+H]+ 815.6976 815.7006 − 3.7 C47H95N2O6P 1.1520 0.7099 ↑ SM(d18:1/24:0) HMDB0011697 
15 15.86 [M+H]+ 650.6447 650.6451 − 0.6 C42H83NO3 2.0560 0.4639 ↑ Cer(d18:1/24:0) HMDB0004956 

VIP: variable importance in projection; FC: Fold Change of HC vs NDDD; a Compared with HC group, the change trend of potential lipid metabolites in the NDDD group, (↓) represent downregulated and (↑) 
represent upregulated. HMDB: HMDB database (http://www.hmdb.ca/). 
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Table 3 
Detailed information of the lipid metabolites identified between the HC and HL groups.  

No. tR/min Adduction Mass (m/z) Mass accuracy (ppm) Formula VIP FC Trenda Identification HMDB ID 

Measured Calculated 

1 1.65 [M+Na]+ 542.3212 542.3223 − 2.0 C26H50NO7P 1.7170 1.5198 ↓ LysoPC(18:2/0:0) HMDB0010386 
2 2.19 [M+H]+ 544.3390 544.3403 − 2.4 C28H50NO7P 1.7182 1.4733 ↓ LysoPC(20:4/0:0) HMDB0010395 
3 2.41 [M+H]+ 482.3605 482.3611 − 1.2 C24H52NO6P 2.0176 1.2785 ↓ PC(O-16:0/0:0) / 
4 2.93 [M+H]+ 546.3569 546.3560 1.6 C28H52NO7P 2.5555 1.2916 ↓ LysoPC(20:3/0:0) HMDB0010393 
5 3.38 [M+H]+ 510.3543 510.3560 − 3.3 C25H52NO7P 1.0316 1.2785 ↓ LysoPC(17:0/0:0) HMDB0012108 
6 6.38 [M+H]+ 730.5364 730.5387 − 3.1 C40H76NO8P 1.2735 0.6758 ↑ PC(14:0/18:2) HMDB0007874 
7 6.46 [M+H]+ 806.5710 806.5700 1.2 C46H80NO8P 5.7662 1.2934 ↓ PC(18:2/20:4) HMDB0008147 
8 6.51 [M+H]+ 756.5540 756.5543 − 0.4 C42H78NO8P 3.9877 1.2542 ↓ PC(16:1/18:2) HMDB0008006 
9 6.69 [M+H]+ 804.5556 804.5543 1.6 C46H78NO8P 2.3245 1.3210 ↓ PC(16:1/22:6) HMDB0008023 
10 8.09 [M+H]+ 766.5756 766.5751 0.7 C44H80NO7P 4.8927 1.2464 ↓ PC(P-16:0/20:4) HMDB0011221 
11 8.41 [M+H]+ 806.5723 806.5700 2.9 C46H80NO8P 3.8319 1.3493 ↓ PC(16:0/22:6) HMDB0007991 
12 8.43 [M+H]+ 768.5894 768.5907 − 1.7 C44H82NO7P 5.9058 1.3040 ↓ PC(O-16:0/20:4) HMDB0013407 
13 8.45 [M+H]+ 742.5738 742.5745 − 1.0 C42H80NO7P 4.7351 1.3399 ↓ PC(O-16:1/18:2) HMDB0013413 
14 8.47 [M+H]+ 780.5535 780.5543 − 1.0 C44H78NO8P 2.5146 1.2810 ↓ PC(16:1/20:4) HMDB0008015 
15 8.50 [M+H]+ 794.6049 794.6064 − 1.9 C46H84NO7P 5.5490 1.3352 ↓ PC(P-18:0/20:4) HMDB0011253 
16 8.89 [M+H]+ 701.5605 701.5598 1.0 C39H77N2O6P 7.4711 0.4867 ↑ SM(d18:1/16:1) HMDB0240613 
17 9.30 [M+H]+ 810.6015 810.6013 0.2 C46H84NO8P 11.0659 2.2246 ↓ PC(18:0/20:4) HMDB0008048 
18 10.13 [M+H]+ 794.6058 794.6064 − 0.8 C46H84NO7P 2.8729 1.4734 ↓ PC(O-18:1/20:4) HMDB0013432 
19 10.19 [M+H]+ 744.5905 744.5902 0.4 C42H82NO7P 2.7882 1.4599 ↓ PC(O-16:0/18:2) HMDB0011151 
20 10.57 [M+H]+ 796.6199 796.6188 1.4 C46H86NO7P 3.8602 1.3769 ↓ PC(O-18:0/20:4) HMDB0013420 
21 10.61 [M+H]+ 770.6060 770.6058 0.2 C44H84NO7P 2.7123 1.6599 ↓ PC(O-18:1/18:2) HMDB0013425 
22 11.52 [M+H]+ 811.6694 811.6693 0.1 C47H91N2O6P 6.0027 0.5335 ↑ SM(d18:2/24:1) HMDB0240636 
23 13.97 [M+H]+ 813.6858 813.6850 1.0 C47H93N2O6P 8.7982 0.4978 ↑ SM(d18:1/24:1) HMDB0012107 

VIP: variable importance in projection; FC: Fold Change of HC vs HL; a Compared with HC group, the change trend of potential lipid metabolites in the HL group, (↓) represent downregulated and (↑) 
represent upregulated. HMDB: Human metabolome database (http://www.hmdb.ca/). 
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the levels of lipid metabolites, ranging from low (blue) to intermediate (white) and high (red) in the disease groups. It is evident that 
the 15 lipid metabolites in Group 1 can be grouped into two distinct classes based on their levels. In the NDDD group, five SMs and Cer 
(d18:1/24:0) exhibited up-regulation, while three LysoPCs, five PCs, and one PE displayed down-regulation. Similarly, the HL group 

Fig. 2. Heat maps displaying significantly differential lipid biomarker levels between the HC and NDDD (A) and HL (B) groups. Metabolic pathway 
analysis of (C) 15 lipid metabolites in the HC and NDDD groups and (D) 23 lipid metabolites in the HC and HL groups was performed using 
MetaboAnalyst 6.0. 

Table 4 
Pathway analysis data with MetaboAnalyst 6.0 between HC and NDDD and HL groups.  

Gruop Pathway Name Match 
Status 

Match Lipids Raw p -Log10 
(p) 

Holm p FDR Impact 

HC vs.  
NDDD 

Sphingolipid 
metabolism 

5/32 SM(d18:1/20:0), SM(d18:1/22:0), SM(d18:1/ 
23:0), SM(d18:1/24:0), Cer(d18:1/24:0) 

3.72E-05 4.4293 0.00018608 0.00018608 0.21576 

Glycerophospholipid 
metabolism 

6/36 LysoPC(18:2/0:0), LysoPC(18:1/0:0), LysoPC 
(18:0/0:0), PC(18:2/18:2), PC(16:0/18:1), PC 
(18:0/20:4) 

0.00014678 3.8333 0.00058714 0.00036696 0.11182 

Arachidonic acid 
metabolism 

1/44 PC(18:0/20:4) 0.0033669 2.4728 0.010101 0.0033669 0 

Linoleic acid 
metabolism 

1/5 PC(18:2/18:2) 0.0033669 2.4728 0.010101 0.0033669 0 

alpha-Linolenic acid 
metabolism 

1/13 PC(18:2/18:2) 0.0033669 2.4728 0.010101 0.0033669 0 

HC vs. HL Glycerophospholipid 
metabolism 

11/36 LysoPC(18:2/0:0), LysoPC(20:4/0:0), LysoPC 
(20:3/0:0), LysoPC(17:0/0:0), PC(14:0/18:2), 
PC(18:2/20:4), PC(16:1/18:2), PC(16:1/22:6), 
PC(16:0/22:6), PC(16:1/20:4), PC(18:0/20:4) 

0.0013947 2.8555 0.0055789 0.0016066 0.11182 

Sphingolipid 
metabolism 

1/32 SM(d18:1/24:1) 9.07E-14 13.042 4.53E-13 4.53E-13 0 

Arachidonic acid 
metabolism 

3/44 PC(18:2/20:4), PC(16:1/20:4), PC(18:0/20:4) 0.0016066 2.7941 0.0055789 0.0016066 0 

Linoleic acid 
metabolism 

2/5 PC(18:2/20:4), PC(16:1/18:2) 0.0016066 2.7941 0.0055789 0.0016066 0 

alpha-Linolenic acid 
metabolism 

1/13 PC(18:2/20:4) 0.0016066 2.7941 0.0055789 0.0016066 0  
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showed an increase in three SMs and PC(14:0/18:2), but a decrease in four LysoPCs and fifteen PCs. 

3.4. Metabolic pathway analysis 

To gain insight into the contribution of lipid metabolites to the development of T2DM with dyslipidemia, the examination of 
relevant metabolic pathways was conducted using MetaboAnalyst 6.0. As depicted in Fig. 2C and D, five metabolic pathways, namely 
sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, and alpha- 
Linolenic acid metabolism, were identified in both Group 1 and Group 2. The results of the pathway analysis are presented in 
Table 4. When filter criteria were applied, with an impact value greater than 0.1 and a p-value less than 0.05, it was observed that 
sphingolipid metabolism and glycerophospholipid metabolism were found to be the pathways most significantly impacted by the 
development of T2DM with dyslipidemia. Additionally, a critical role in the development of hyperlipidemia was played by 

Fig. 3. ROC curves based on (A) 15 lipid biomarkers for the diagnosis of T2DM with dyslipidemia and (B) 23 lipid biomarkers for the diagnosis of 
HL. Random forest analysis of (C) 15 lipid biomarkers in the HC and NDDD groups and (D) 23 lipid biomarkers in the HC and HL groups based on 
mean decrease accuracy (MDA) values. Heat maps illustrating Pearson correlation coefficients between potential lipid biomarkers and clinical 
parameters of NDDD (E) and HL (F) subjects. 
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glycerophospholipid metabolism. 

3.5. Diagnostic value and correlation analysis of lipid biomarkers 

To evaluate the effectiveness of lipid biomarkers in the plasma of Group 1 and Group 2, ROC curves were plotted and presented in 
Fig. 3A and B. Among the 15 lipid metabolites in Group 1, six yielded satisfactory diagnostic results, with an area under the ROC curve 
exceeding 0.7. Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/23:0), SM(d18:1/20:0), SM(d18:1/22:0), and SM(d18:0/22:1) were 
found to possess superior diagnostic efficiency compared to the remaining nine lipid metabolites in predicting T2DM with dyslipi-
demia. Among these, Cer(d18:1/24:0) and SM(d18:1/24:0) were identified as having the best diagnostic performance, with AUC 
values of 0.931 and 0.843, respectively. Furthermore, the diagnostic efficiency of SM(d18:1/16:1), SM(d18:1/24:1), SM(d18:2/24:1), 
and PC(14:0/18:2) exceeded that of the other 19 lipid metabolites for HL, with AUC values of 0.991, 0.975, 0.911, and 0.745, 
respectively. 

To visually distinguish the NDDD and HL groups from the HC group and showcase the variability in lipid biomarker profiles, a 
random forest (RF) analysis was conducted using MetaboAnalyst 6.0. The potential lipid biomarkers with mean decrease accuracy 
(MDA) values are displayed in Fig. 3C and D. The top lipid metabolites, selected from the 15 and 23 potential lipid metabolites of 
Group 1 and Group 2, respectively, had the highest MDA values of 0.1880, 0.0421, 0.1907, and 0.0848. These lipid metabolites were 
Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/16:1), and SM(d18:1/24:1). 

As depicted in Fig. 3E and F, Cer(d18:1/24:0) and SM(d18:1/24:0) exhibited significant positive correlations with FPG and HbA1c 
in Group 1, while SM(d18:1/16:1), SM(d18:1/24:1), and SM(d18:2/24:1) showed significant positive associations with LDL-C, CHOL, 
and TG in Group 2. These lipid biomarkers, which displayed positive correlations with traditional indicators of glucose and lipid 
metabolism, may help elucidate the process of T2DM associated with dyslipidemia. 

4. Discussion 

Lipidomics, employing UHPLC/Q-TOF-MS technology combined with multivariable analysis, was used for a comprehensive 
characterization of lipid profiles in NDDD and HL patients. Our study results reveal significant alterations in lipid metabolite profiles in 
both NDDD and HL groups when compared to the HC group. Notably, there was a substantial increase in the concentrations of Cer and 
SMs in the NDDD and HL groups, while LysoPCs, PCs, and PE exhibited decreased concentrations. 

4.1. Sphingolipids 

Sphingolipids are vital components of cell membranes, comprising SMs, glycosphingolipids, and Cers, and they play a crucial role 
in various bodily processes. Recent research indicates that obese patients have higher levels of Cers and SMs in their blood compared to 
those with normal weight, especially SMs with saturated acyl chains like C18:0, C20:0, C22:0, and C24:0 [15]. These specific SMs were 
found to be positively associated with homeostasis model assessment of insulin resistance (HOMA-IR), cholesterol (CHOL), and 
low-density lipoprotein cholesterol (LDL-C) [16]. Sokołowska et al. [17] demonstrated that autoimmune diabetes patients have 
elevated levels of SMs (C16:0, C16:1, C18:1, C18:3, and C20:4), and SMs (C18:0, C16:1, and C18:3) were notably increased in the 
T2DM group. Our findings support a strong link between elevated sphingolipid levels and the onset of type 2 diabetes with 
dyslipidemia. 

In this study, we observed significant increases in Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/23:0), SM(d18:1/20:0), SM(d18:1/ 
22:0), and SM(d18:0/22:1) levels in T2DM patients with dyslipidemia. Furthermore, patients with hyperlipidemia exhibited sub-
stantial increases in SM(d18:1/16:1), SM(d18:1/24:1), and SM(d18:2/24:1) levels. Notably, Cer(d18:1/24:0) and SM(d18:1/24:0) 
exhibited significant positive correlations with fasting blood glucose (FBG) and hemoglobin A1c (HbA1c), while SM(d18:1/16:1), SM 
(d18:1/24:1), and SM(d18:2/24:1) displayed positive correlations with LDL-C, CHOL, and triglycerides (TG). These lipid biomarkers 
hold promise for potential clinical use in diagnosing, monitoring progress, and evaluating therapeutic effectiveness in patients with 
T2DM and dyslipidemia or hyperlipidemia. 

In recent years, plasma SMs and Cers have been increasingly utilized as indicators to predict the progression of various chronic 
diseases. For instance, elevated levels of Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0), Cer(d18:1/22:0), Cer(d18:1/24:0), and 
Cer(d18:1/24:1) have been associated with chronic kidney disease, both with and without coronary artery disease [18]. Additionally, 
Cer(d16:1/24:0), Cer(d18:1/16:0), SM(d16:1/22:0), and HexCer(d18:1/18:0) have shown strong positive associations with Alz-
heimer’s disease [19]. Recent research has revealed significant disruptions in ceramide and sphingomyelin balance in prediabetic and 
T2DM patients [20]. The disturbance observed in the NDDD group may result from the accumulation of sphingolipids, leading to the 
development of endoplasmic reticulum stress (ERS), mitochondrial dysfunction, transcriptional inhibition of insulin genes, and ulti-
mately, apoptosis of pancreatic β cells [21,22]. 

4.2. Glycerophospholipids 

Glycerophospholipids (GPs) constitute the primary component of cell membranes, including PCs, LysoPCs, PEs, and others. Pre-
vious studies have reported a significant decrease in LysoPC concentrations in patients with impaired FPG, T2DM, and in animal 
models of obesity or IR. García-Fontana et al. [23] demonstrated that levels of PCs, LysoPCs, and LysoPEs in serum were notably 
reduced in T2DM patients, especially those with cardiovascular disease. More recently, a prospective cohort study revealed that black 
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South African women with normal glucose tolerance (NGT), who developed T2DM (NGT-T2DM group) over a 13-year period, had 
lower levels of LPC(C18:2) compared to those who maintained NGT (NGT-NGT group) [24]. The longitudinal METSIM study also 
found a negative association between LysoPC(18:2) levels and hyperglycemia and T2DM risk [25]. Another study demonstrated that 
changes in LysoPC levels over one year were inversely related to the risk of T2DM in a Mediterranean population at high cardiovascular 
risk [26]. Our findings align with the aforementioned research. 

In this study, we observed lower levels of LysoPC(18:2/0:0), LysoPC(18:1/0:0), LysoPC(18:0/0:0), LysoPC(20:4/0:0), LysoPC 
(20:3/0:0), and LysoPC(17:0/0:0) in patients with T2DM-associated dyslipidemia and hyperlipidemia. These showed a negative as-
sociation with blood glucose levels (HbA1c and FPG) and blood lipid indexes (LDL-C, CHOL, TG). Several studies have indicated that 
LysoPCs can lower blood glucose levels by increasing GLUT4 expression on adipocyte membranes and activating the orphan G-protein- 
coupled receptor GPR119 [27–29]. PCs can be hydrolyzed into LysoPCs and free fatty acids (FFAs) by phospholipase A2 (PLA2). 
Prolonged hyperglycemia can accelerate PC degradation by activating protein kinase C and enhancing PLA2 activity [30]. It appears 
that nearly all PCs experience a significant decrease in the NDDD and HL groups. PCs can reduce LDL-C and TC levels, enhance 
pancreatic function, restore pancreatic β cells, stimulate insulin secretion, and improve insulin sensitivity. PC deficits can affect β cell 
function and lead to insulin secretion disorders [31]. 

Lipid metabolism disorder is a crucial risk factor for elevated blood glucose levels. Core receptors for de novo lipogenesis, such as 
sterol regulatory element binding protein 1c (SREBP-1c), carbohydrate response element binding protein (ChREBP), and liver X re-
ceptor (LXRα), play important roles in the insulin signaling pathway. Insulin activates de novo lipogenesis through phosphatidyli-
nositol 3-kinase (PI3K)-mediated regulation of fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1) expression [32]. Insulin 
inhibits lipolysis and the release of FFAs in adipocytes, while insulin resistance in adipocytes enhances lipolysis, leading to elevated 
FFAs in the bloodstream. FFAs can inhibit insulin production and secretion by activating endoplasmic reticulum stress (ERS), reducing 
the expression of the anti-apoptotic factor B-cell CLL/lymphoma 2 (Bcl-2), and triggering β cell apoptosis [33]. 

Based on current research, we hypothesize that elevated levels of circulating FFAs can stimulate the de novo synthesis of ceramides 
and sphingosines under high-fat conditions, thereby promoting the biosynthesis of Cers and SMs. Our speculation is supported by a 
literature review [34,35], which indicates a positive correlation between the levels of ceramides and sphingosines in plasma and the 
total content of FFAs in plasma. Under high-glucose conditions, increased phospholipase A2 (PLA2) activity promotes the hydrolysis of 
LysoPCs and PCs, resulting in a significant reduction in their plasma levels and the production of abundant FFAs. These FFAs further 
stimulate the substantial generation of Cers, ultimately leading to the apoptosis of pancreatic β cells. The constructed metabolic 
pathways network of potential biomarkers is depicted in Fig. 4. 

Currently, the molecular mechanism underlying T2DM caused by disturbances in lipid biomarkers remains unclear, and phar-
macological studies based on lipid-related signaling pathways require further investigation. This study lays a fundamental foundation 
for research into the pathological mechanisms and potential therapeutic targets for the treatment of T2DM with dyslipidemia. 

However, this study has several limitations. It was conducted at a single center, and future research should consider implementing 
multi-center studies to enhance the reproducibility and reliability of the conclusions. Additionally, the sample size was relatively 
small, which may restrict the generalizability of the findings. Furthermore, there was no validation or quantitative analysis of the 

Fig. 4. The metabolic pathways network of potential biomarkers from KEGG. The red upward arrow and blue downward arrow indicate that 
potential biomarkers are upregulated or downregulated in the NDDD and HL groups, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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biomarkers conducted, and additional studies should address this issue. 

5. Conclusions 

In this study, 15 differential lipid biomarkers were identified in Chinese T2DM patients with dyslipidemia, and 23 were identified in 
those with hyperlipidemia. Sphingolipid metabolism and glycerophospholipid metabolism were found to be the major contributors to 
the development of T2DM with dyslipidemia. Valuable insights into risk prediction and the potential metabolic mechanisms in Chinese 
T2DM patients with dyslipidemia were provided by these findings. Further research will involve the exploration of the signaling 
pathways and therapeutic targets associated with these lipid biomarkers. 
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