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Cytochrome P450 (CYP) drug metabolizing enzymes are responsible for the

metabolism of over 70% of currently used medications with the CYP3A family

being themost important CYP enzymes in the liver. Large inter-person variability in

expression/activity of the CYP3As greatly affects drug exposure and treatment

outcomes, yet the cause of such variability remains elusive. Micro-RNAs (miRNAs)

are small noncoding RNAs that negatively regulate gene expression and are

involved in diverse cellular processes including metabolism of xenobiotics and

therapeutic outcomes. Target prediction and in vitro functional assays have linked

several miRNAs to the control of CYP3A4 expression. Yet, their co-expression with

CYP3As in the liver remain unclear. In this study, we used genome-wide miRNA

profiling in liver samples to identify miRNAs associated with the expression of the

CYP3As. We identified and validated both miR-107 and miR-1260 as strongly

associated with the expression of CYP3A4, CYP3A5, and CYP3A43. Moreover, we

found associations between miR-107 and nine transcription factors (TFs) that

regulate CYP3A expression, with estrogen receptor alpha (ESR1) having the

largest effect size. Including ESR1 and the other TFs in the regression model

either diminished or abolished the associations betweenmiR-107 and the CYP3As,

indicating that the role of miR-107 in CYP3A expressionmay be indirect and occur

through these key TFs. Indeed, testing the other nine CYPs previously shown to be

regulated by ESR1 identified similar miR-107 associations that were dependent on

the exclusion of ESR1 and other key TFs in the regression model. In addition, we

found significant differences inmiRNA expression profiles in liver samples between

race and sex. Together, our results identify miR-107 as a potential epigenetic

regulator that is strongly associated with the expression of many CYPs, likely via

impacting the CYP regulatory network controlled by ESR1 and other key TFs.

Therefore, both genetic and epigenetic factors that alter the expression ofmiR-107

may have a broad influence on drug metabolism.
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Introduction

The cytochrome P450s (CYPs) are comprised of a

superfamily of enzymes involved in the biotransformation of

xenobiotics and endogenous substances. Members of the CYP1,

CYP2, and CYP3 families are the main drug metabolizing

enzymes in the liver, responsible for ~70% of all clinically

used medications (Wienkers and Heath, 2005). Among them,

the CYP3A subfamily is particularly important in adults because

of their broad substrate specificity and prominent expression in

liver (Danielson, 2002), where many medications are

metabolized. The four CYP3A genes (CYP3A4, 3A5, 3A7, and

3A43) are encoded in a cluster located on chromosome 7q22.1.

CYP3A4 is mainly expressed in the adult liver and is responsible

for metabolizing 30%–40% of currently used drugs (Danielson,

2002). CYP3A5 shares many substrates with CYP3A4 and is also

expressed outside the liver, but due to the frequent loss of

function genetic variant CYP3A5*3, many individuals do not

express CYP3A5 (Kuehl et al., 2001). CYP3A7 is primarily

expressed in fetal livers with low expression levels observed in

adults, while CYP3A43 is expressed in liver and extra-hepatic

tissues like testis and prostate, but its substrates remain unclear.

Overall, CYP3A-mediated drug metabolism is highly variable

between individuals, greatly affecting drug exposure and

treatment outcomes.

Many factors are known to influence the expression and

function of the CYP3A enzymes. The genetic variant

CYP3A4*22 (frequency 4%–8% in Whites and <1% in

Blacks) reduces CYP3A4 expression 2–6-fold via affecting

alternative splicing and transcription (Wang et al., 2011;

Wang and Sadee, 2016; Collins and Wang, 2020) and is

considered the most clinically relevant genetic variant in

CYP3A4, associating with many phenotypes related to

CYP3A4 metabolism (Mulder et al., 2021). Besides cis-

acting genetic polymorphisms, the expression of the

CYP3As is also regulated by trans-acting transcription

factors (TFs), epigenetic modifications, and non-genetic

factors (Zanger and Schwab, 2013). At the transcriptional

level, the expression of many liver enriched TFs is correlated

with the expression of CYP3As and other CYPs (Yang et al.,

2010). The most significantly correlated TFs include: NR1I3

(constitutive androstane receptor or CAR), RXR (retinoid X

receptor), NR1I2 (pregnane X receptor or PXR), HNF4A

(hepatocyte nuclear factor 4 alpha), PPARA (peroxisome

proliferator activated receptor alpha), FOXA2 (forkhead

box A2), AHR (aryl hydrocarbon receptor) and ARNT (aryl

hydrocarbon receptor nuclear translocator), as well as our

recently identified master regulator ESR1 (estrogen receptor

alpha) (Wang et al., 2019; Collins and Wang, 2021a).

Moreover, ESR1 appears to be the top regulator for the

expression of the CYP3As and other CYP enzymes,

explaining up to 63% of the variability in expression of

CYP3A4 and the other CYPs (Collins and Wang, 2021a).

The activity of these TFs is known to be influenced by

endogenous ligands and xenobiotic inducers, and it is likely

that underlying genetic and/or epigenetic factors that alter

their expression will also contribute to variation in CYP3A

expression (Zanger and Schwab, 2013).

Micro-RNAs (miRNAs) are small noncoding RNAs of

21–25 nucleotides (nts) that negatively regulate gene

expression. This effect is typically mediated by their

binding to the 3′-untranslated regions (3′-UTRs) of target

mRNAs, thereby interfering with mRNA translation or

leading to degradation of the mRNA. There is also evidence

for transcriptional control of gene expression via miRNA-

targeting (Catalanotto et al., 2016). Through these

mechanisms, miRNAs play an essential role in gene

regulation and have been well-documented for a variety of

biological processes, including: differentiation, development,

proliferation, apoptosis, and necrosis (Londin et al., 2015;

Yang et al., 2017). miRNAs also regulate the expression of

genes related to pharmacodynamics and pharmacokinetics

(Rieger et al., 2013), thereby altering drug toxicity (Wang

et al., 2009; Szkolnicka et al., 2016) and therapeutic outcomes

(Mishra et al., 2007; Sharma et al., 2020). Moreover, the

expression of miRNAs is subject to change under drug

treatment (Gufford et al., 2018) or environmental chemical

exposure (Hou et al., 2011), which in turn regulates the

expression of the CYP enzymes (Li et al., 2019). The

interplay between dysregulation of miRNAs, changes in

CYP expression, and CYP-dependent bioactivation is

considered to be the underlying cause for environmental

toxicology and carcinogenesis (Kalscheuer et al., 2008; Li

et al., 2019). However, the regulatory roles of miRNAs in

regulating constitutive expression of the CYP enzymes remain

unclear.

A few studies have reported miRNA-mediated regulation

of the CYP enzymes, including CYP3A4, by either direct

3′UTR binding or through indirect targeting of key TFs

controlling CYP expression (Pan et al., 2009; Li et al.,

2019). These previous studies focused on several candidate

miRNAs that were predicted to bind CYP3A4 or its regulators

and used in vitro cell models to evaluate the function of the

miRNAs on their targets (Li et al., 2019). However, the

relationship between the expression levels of these miRNAs

and CYP3A4 has not been tested in the liver, with the

exception of a single study illustrating the relationship

between four miRNAs in a small (27 sample) liver cohort

from the Chinese Han population (Wei et al., 2014).

Therefore, the role of miRNA-mediated regulation of the

CYP3A genes in human livers warrants further

investigation. In this study, we applied an untargeted

genome-wide approach to profile miRNA expression in a

large cohort of human liver samples from both European

and African American donors to search for miRNAs that may

regulate the expression of the CYP3As.
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Materials and methods

Human liver samples

Human liver samples from African American (AA) (n =

104) and European American (EA) (n = 127) donors were

obtained from The Cooperative Human Tissue Network

(CHTN). Demographics of liver donors are in

Supplementary Table S1. The median ages are

AA—56 years (range 0–97) and EA—61 years (range 14–83)

and the percentage of males for each are AA—44% and

EA—46%. The University of Florida Institutional Review

Board approved the human tissue study.

RNA preparation and quantitative gene
expression analysis

Total RNA was extracted from the liver tissue samples

using the Direct-zol RNA miniprep plus kit (ZYMO Research,

United States) followed by cDNA synthesis as described

previously (Collins and Wang, 2021a). mRNA levels of

CYP3As, CYP2Cs, CYP1As, ESR1, NR1I3, NR1I2, RXR,

HNF4A, PPARA, FOXA2, AHR, and ARNT, and the

internal control β-actin were measured with real-time PCR

using TaqMan assays (Thermo Fisher Scientific) or SYBR

Green with gene-specific primers as described (Collins and

Wang, 2021a). The relative expression of each gene was

calculated using the following formula: expression level of

tested gene = antilog2 (mean Ct value of internal control—Ct

value of tested gene) *106. After Log10 transformation, the

expression data of all genes tested followed normal

distribution as described previously (Collins and Wang,

2021a). The expression profiles of 12 CYPs and 9 TFs, the

relationship between each CYP, the association between CYP

and TFs, and the racial differences in expression between AA

and EA have been described previously (Collins and Wang,

2021a).

miRNA profiling in the discovery phase

We used the TaqMan OpenArray Human MicroRNA

panels and QuantStudio 12K Flex (Applied Biosystem,

Thermo Fisher Scientific, CA, United States) for initial

genome wide miRNA profiling in 96 liver samples (48 AA

and 48 EA). The TaqMan OpenArray Human MicroRNA

Panel contains 754 miRNAs with validated TaqMan

miRNA assays derived from Sanger miRbase release v.14.

Total RNA (10 ng) was reverse-transcribed using

MegaplexTM pool RT-primers. Pre-amplification of cDNA

with MegaplexTM PreAmp primers was performed according

to the manufacturer’s protocol and recommendations

(Thermo Fisher Scientific, United States). The pre-amplified

products were diluted and mixed with TaqMan OpenArray

Real-time PCR master mix and added to 384-well OpenArray

Sample Loading plates. TaqMan OpenArray Human

MicroRNA panels were automatically loaded by the

AccuFill System and then placed in QuantStudio TM 12K

Flex Real-Time PCR system for cycling.

Open array data quality control and
statistical analysis

Cycle threshold (Ct) values with amplification scores

(Amp Scores) below 1.24 and Cq confidence (Cq Conf) <
0.8 were filtered out. miRNAs with missing Ct values or Ct >
35 in >50% samples and samples with low miRNA detection

were excluded. Data was normalized using global

normalization by subtracting the individual Ct from the

mean Ct of all miRNAs (Luo, 2012). Differential expression

of miRNAs between race and sex was detected using the 2–ΔΔCT

method (Livak and Schmittgen, 2001) and differences that

exceeded 2-fold (FC > 2 or FC < 0.5) and p value ≤ 0.05 were

considered statistically significant. Linear regression was used

to test the association between the miRNAs and CYP3A

expression, adjusting for race, sex, and age. All statistical

analyses were carried out in the statistical programming

environment R, using SAS v9.4 (Cary, NC) and Statistical

Package for the Social Sciences SPSS v.26 (IBM Corp.,

United States).

miRNA targeted TaqMan assays for
validation and data analysis

The TaqMan Advanced miRNA assays (Thermo Fisher

Scientific, United States) were used to determine the

expression of the two most significant miRNAs (miR-

107 and miR-1260) in 231 liver samples for validation.

Total RNA (10 ng) was reverse transcribed and quantitative

real-time PCR was performed according to the manufacturer’s

protocol and recommendations (Thermo Fisher Scientific,

United States). From the discovery data set, we found that

the combination of miR-132 and miR-484 was the most

appropriate internal control for data normalization, as they

had the most stable value of 0.003 according to Normfinder

software (Andersen et al., 2004). Thus, the expression levels of

miR-132 and mir-484 were also measured for normalization

purposes. A multiple linear regression model was used to test

the association between miRNAs and the expression of the

CYP3As. We used forward and backward stepwise regression

to select the best set of predictors in the multiple linear

regression models with a cut-off p-value ≤ 0.05. Covariates

considered for inclusion were: sex, race, age, and genotypes
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(CYP3A4*22 for CYP3A4 and CYP3A5*3 for CYP3A5,

respectively), and nine TFs known to regulate CYP3A gene

expression (Collins and Wang, 2021a). Modulated modularity

clustering (MMC) (Stone and Ayroles, 2009) was used to

explore the inter-miRNA relationships. MMC was designed

to detect latent structure of the variance-covariance matrix

using weighted graphs. The method searches for optimal

community structure and detects the magnitude of pairwise

relationships. The optimal number of clusters and the optimal

cluster size were selected by using Spearman correlation.

Genotyping assays (rs62471956 and
rs776746)

The single nucleotide polymorphism rs776746 (CYP3A5*3)

and rs62471956, which is in complete linkage disequilibrium

(LD) with rs35599367 (CYP3A4*22) (Collins and Wang, 2020),

were genotyped using the OpenArray genotyping platform

according to the manufacturer’s protocol (Life Technology,

CA, United States).

Quantification of CYP3A4 protein in liver
samples

CYP3A4 protein levels in 154 liver samples were measured

using the capillary western blotting Jess system as described

(Collins and Wang, 2021b). Briefly, total tissue lysates were

prepared (Collins and Wang, 2021b) and a mouse anti-

CYP3A4 antibody (R&D MAB 9079, 1:20 dilution) and NIR-

conjugated anti-mouse secondary antibody (Biotechne, San Jose,

CA, United States, 1:20 dilution) were used for detection. The

total protein loaded in each lane was measured using the total

protein channel in the Jess system. CYP3A4 protein (pmol) per

mg total protein was calculated from a standard curve generated

from a purified GST-fusion CYP3A4 protein (FisherScientific)

measured on the Jess system. After log10 transformation,

FIGURE 1
Volcano plots showing differential expression of miRNAs between race (A) and sex (B) in liver samples. The plots indicate expression of
significantly higher (blue dots) and lower (red dots) miRNAs in (A) AA vs. EA or (B) female vs. male. Negative log10 p-values are plotted on the y-axis,
and log2 normalized fold change in expression is on the x-axis. For a miRNA to be considered as both significantly and differentially expressed a 2-
fold difference and p ≤ 0.05 was required.
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CYP3A4 protein levels followed a normal distribution as

previously described (Collins and Wang, 2021b).

Results

Genome-wide expression profile of
miRNAs in human liver samples

A total of 252 miRNAs in 91 samples (AA = 46, EA = 45)

passed quality control. Three internal controls (U6rRNA,

RNU44, and RNU48) and two miRNAs predicted to be

tRNA fragments (HSA-MIR-1274B and HSA-MIR-720)

were excluded, resulting in 247 miRNAs being included for

further analysis. The expression levels between the

247 miRNAs varied drastically, with median Ct values

ranging from 14.3 to 30.1 (>32,000-fold difference)

(Supplementary Figure S1). Supplementary Table S2 lists

the top 20 highest and lowest expressed miRNAs. Of these,

miR-122, miR-24, and miR-19 showed the highest expression

levels in liver, consistent with previous results (Rieger et al.,

2013).

There was also significant variation in the expression of

the miRNAs between the 91 samples. The inter-quantile range

(IQR) for the Ct values ranged from 0.28 to 14.24

(Supplementary Figure S2). Nearly 60% (n = 149) of the

miRNAs showed an IQR < 2 (<4-fold difference), while

10% (n = 26) of the miRNAs showed an IQR of 5–14

(32–16,384-fold). The miRNAs miR-1260, miR-29c, and

miR-215 had the largest IQR of 11–14 (2048–16,384-fold).

To explore the relationship between the expression of the

247 miRNAs we used MMC (Stone and Ayroles, 2009). MMC

identified seven clusters (Supplementary Table S3) with the

number of miRNA members in each cluster ranging from

FIGURE 2
Association betweenmiRNAs andmRNA expression of fourCYP3A genes in human liver samples. (A)CYP3A4; (B)CYP3A5; (C)CYP3A43 and (D)
CYP3A7. miRNAs were measured using The TaqMan OpenArray Human MicroRNA panels. Linear regression was used to test the association
between the 247 measured miRNAs and mRNA expression of the four CYP3As. Only miRNAs with an association p ≤ 0.05 are shown.
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11 to 146. Cluster 1 had the strongest correlation between

miRNAs (n = 15, average correlation = 0.72), while clusters

2–6 showed moderate correlation (n = 86, average

correlation = 0.49–0.58). The majority of the miRNAs (n =

146) were clustered in Cluster 7 and were only weakly

correlated (average correlation = 0.17).

Expression of the miRNAs differed significantly between

samples originating from either AA or EA donors. Thirteen

miRNAs were lower in AA compared to EA (fold-change <
0.5, p < 0.05) and 79 were higher (fold change > 2, p < 0.05)

(Figure 1A). Similarly, the expression of the miRNAs differed

between males and females, with nine miRNAs being lower

(fold-change < 0.5, p < 0.05) and five being higher (fold-

change > 2, p < 0.05) in females (Figure 1B). In addition, two

miRNAs were positively correlated with age, while eight were

negatively correlated (Supplementary Table S4). Thus, age,

sex, and race were included as covariates for further

association analyses.

The association between the expression of
miRNAs and the CYP3As

In a previous study, we showed mRNA expression for 12 CYP

genes in the same liver cohort (Collins andWang, 2021a). Using that

dataset, we tested for association between the expression of the

247 miRNAs and four CYP3A genes using linear regression. As

shown in Figure 2A, 21miRNAswere associated with the expression

of CYP3A4 (p < 0.05), however, after Bonferroni correction, only

miR-107 and miR-1260 remained significant (p < 0.0002). Similar

results were found with CYP3A5 and CYP3A43 (Figures 2B,C), but

the associations between CYP3A5/miR-1260 and CYP3A43/miR-

107 became insignificant after Bonferroni correction. In contrast,

none of the miRNAs showed significant association with

CYP3A7 after correction (Figure 2D).

FIGURE 3
Association betweenmiRNAs and CYP3A4 protein expression
in human liver samples. miRNAsweremeasured using The TaqMan
OpenArray Human MicroRNA panels. Linear regression was used
to test the association between the 247 measured miRNAs
and CYP3A4 protein expression. Only miRNAs with an association
p ≤ 0.05 are shown.

TABLE 1 Association between the expression levels of miR-107/miR-1260 and the CYP3A genes in human liver samples (n = 231) using linear
regression analysis.

miR-107 miR-1260

Gene Estimate ± SE p-value Estimate ± SE p-value

CYP3A4 un-Adjusted −0.270 ± 0.047 3.54E-08*** −0.073 ± 0.046 0.115

CYP3A4a −0.266 ± 0.048 1.08E-07*** −0.106 ± 0.051 0.038*

CYP3A4b −0.064 ± 0.034 0.05863 −0.029 ± 0.032 0.353

CYP3A5 un-Adjusted −0.174 ± 0.043 8.53E-05*** −0.037 ± 0.041 0.368

CYP3A5a −0.173 ± 0.035 1.92E-06*** −0.081 ± 0.036 0.028*

CYP3A5b −0.029 ± 0.022 0.19361 −0.024 ± 0.021 0.261

CYP3A7 un-Adjusted −0.104 ± 0.063 0.102 0.102 ± 0.058 0.082

CYP3A7a −0.107 ± 0.064 0.0939 0.102 ± 0.059 0.083

CYP3A7b −0.023 ± 0.064 0.725 0.075 ± 0.058 0.198

CYP3A43 un-Adjusted −0.352 ± 0.056 2.23E-09*** −0.150 ± 0.055 0.007*

CYP3A43a −0.345 ± 0.054 9.51E-10*** −0.127 ± 0.053 0.018*

CYP3A43b −0.077 ± 0.034 0.023* −0.060 ± 0.029 0.043*

aAdjusting for covariates age, gender, race, and genotype, rs62471956 (for CYP3A4) or rs776746 (for CYP3A5).
bAdjusting for covariates age, gender, race, rs62471956 or rs776746 genotype, and transcription factors selected using forward and backward stepwise regression. The transcription factors

included in the final model—CYP3A4: ESR1, ARNT, NR1I3, PPARA, AHR; CYP3A5: RXRA, ESR1, R1I3, AHR, FOXA2; CYP3A7: RXRA, ESR1, NR1I2; CYP3A43: ESR1, NR1I3.

*p value <0.05; **p value < 0.001; ***p value < 0.0001.
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Since miRNAs can regulate gene expression via

transcriptional or post-transcriptional pathways we also

tested for association between the miRNAs and

CYP3A4 protein. Previously, we reported that in the

179 human liver samples the average protein concentration

is 101 pmol/mg, with a range of 6.9–257 pmol/mg, and that

CYP3A4 mRNA and protein levels are moderately correlated

(correlation coefficient = 0.778) (Collins and Wang, 2021b).

We associated the expression of the miRNAs to the previous

CYP3A4 protein dataset and found 18 miRNAs that were

significantly associated (p < 0.05) with CYP3A4 protein levels

(Figure 3), nine of which (miR-107, miR-1260, miR-766, miR-

622, miR-30d, miR-92a, miR-193b, miR-1180 and miR-497)

were also associated with CYP3A4 mRNA as shown in

Figure 2. Notably, miR-107 was also found to be the most

significant miRNA associated with CYP3A4 protein levels.

Conversely, miR-1260 was not found to be significantly

associated with CYP3A4 protein expression after

Bonferroni correction.

Validation of the association between
miR-107/miR-1260 and the CYP3As

The genome-wide approach identified miR-107 and miR-

1260 as the top two miRNAs associated with the expression of

CYP3A4, CYP3A5, and CYP3A43 in human liver samples. To

validate these results, we measured the expression of both miR-

107 and miR-1260 using targeted TaqMan assays in our entire

liver sample cohort (n = 231). After normalization by an internal

control (combination of miR-132 and miR-484, see Methods),

the expression levels of miR-107 and miR-1260 followed a

normal distribution (Supplementary Figure S3). We then

tested the association between these miRNAs and CYP3A

expression. As expression of several miRNAs was affected by

race, sex, and age, we included these covariates in our association

models. Also, two known variants that reduce expression of the

CYP3As, CYP3A4*22 (Wang et al., 2011) and CYP3A5*3 (Kuehl

et al., 2001) were included to account for their impact on CYP3A

expression. In agreement with our results from the discovery

phase, miR-107 and miR-1260 were negatively associated with

the expression levels of CYP3A4, CYP3A5, and CYP3A43, but

not CYP3A7 (Table 1).

As expression of the CYP3As is known to be controlled by

multiple TFs, we also tested for association between miR-107 and

miR-1260 and the expression of nine key CYP3A TFs (ESR1,

NR1I3, NR1I2, RXR, HNF4A, PPARA, FOXA2, AHR, and

ARNT) that correlate with expression of the CYP3As (Collins

and Wang, 2021a). Forward and backward stepwise regression

(cut-off p ≤ 0.05) was used to select which TFs should be included

in the multiple linear regression models, which varied for the

different CYP3A members (Table 1). Interestingly, when the

selected TFs were included in the models, the association

between either miR-107 or miR-1260 with the CYP3As either

became insignificant (CYP3A4 and CYP3A5) or much less

significant (CYP3A43) (Table 1).

Consistent with our results showing miR-107 association

with CYP3A4 mRNA, miR-107 is associated with

CYP3A4 protein levels after adjusting for age, sex, race,

and CYP3A4*22 genotype, and the strength of association

TABLE 2 Association between the expression levels of miR-107/miR-1260 and CYP3A4 protein levels in human liver samples (n = 154) using linear
regression analysis.

miR-107 miR-1260

Gene Estimate ±SE p-value Estimate ±SE p-value

CYP3A4 un-Adjusted −0.1113 ± 0.026 4.35E-05*** −0.0099 ± 0.027 0.713

CYP3A4a −0.1144 ± 0.027 3.77E-05*** −0.0181 ± 0.029 0.538

CYP3A4b −0.067 ± 0.023 0.0049* 0.0001 ± 0.023 0.996

aAdjusting for covariates age, gender, race, and rs62471956 genotype.
bAdjusting for covariates age, gender, race, rs62471956 genotype, and transcription factors (ESR1, NR1I3, and FOXA2) selected using forward and backward stepwise regression.

*p value <0.05; **p value < 0.001; ***p value < 0.0001.

TABLE 3 Association between the expression levels of miR-107/miR-
1260 and nine transcription factors tested in this study in human
liver samples (n = 231) using linear regression analysis adjusting for
covariates age, race, and sex.

miR-107 miR-1260

Gene Estimate ±SE p-value Estimate ±SE p-value

ESR1 −0.301 ± 0.053 3.29E-08*** −0.058 ± 0.052 0.265

NR1I3 −0.252 ± 0.042 1.12E-08*** −0.114 ± 0.041 0.00656*

NR1I2 −0.160 ± 0.031 5.29E-07*** −0.114 ± 0.029 1.14E-03**

ARNT −0.055 ± 0.027 0.0384* −0.030 ± 0.026 0.254

AHR −0.087 ± 0.025 4.98E-03** −0.039 ± 0.025 0.1178

FOXA2 −0.147 ± 0.030 1.63E-06*** −0.067 ± 0.029 0.0204*

RXRA −0.103 ± 0.031 1.01E-03*** 0.009 ± 0.029 0.7554

PPARA −0.152 ± 0.032 4.07E-06*** −0.042 ± 0.031 0.1773

HNF4A −0.104 ± 0.031 0.000962** −0.070 ± 0.029 0.0174*

*p value <0.05; **p value < 0.001; ***p value < 0.0001.
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is reduced after further adjusting for TFs (Table 2). Also, there

was no association between expression levels of miR-1260 and

CYP3A4 protein, in agreement with our genome-wide

association results.

These results indicate that the association between miR-

107/miR-1260 and the CYP3A genes may be indirectly

mediated through their action on TFs. Indeed, miR-107 is

negatively associated with all nine TFs tested in this study, and

miR-1260 is also negatively associated with the expression of

NR1I3, NR1I2, FOXA2, and HNF4A (Table 3). As many of

these TFs also regulate the other CYP enzymes (Wang et al.,

2019; Collins and Wang, 2021a), we also tested for association

between miR-107/miR-1260 and the other nine drug-

metabolizing CYPs. As expected, miR-107 is negatively

associated with all nine CYP enzymes in the CYP1 and

CYP2 families (Table 4) after adjusting by age, sex, and

race. Similar to what we observed for the CYP3As, when

TFs were included in the regression model, the association

between miR-107 and the CYPs became either less significant

or insignificant. miR-1260 was only associated with the

expression of the CYP3As, CYP1A1, and CYP1A2, but not

the other seven CYP enzymes tested (Supplementary Table

S5). After including TFs in the model, the associations

between miR-1260 and two CYP1A enzymes also became

less significant.

Discussion

Using an untargeted genome-wide miRNA expression profiling

approach we identified miR-107 and miR-1260 as two miRNAs

associating with the expression of CYP3A4, CYP3A5, and

CYP3A43 in 91 liver samples (Figure 2). The results were then

validated in a larger liver cohort of 231 samples (Tables 1, 2).

Furthermore, we found an association between miR-107 and nine

TFs known to regulate the expression of the CYP genes (Tables 3, 4).

These results indicate a potential broad regulatory role of miR-107 on

the expression of CYP enzymes via regulating the expression of key

CYP controlling TFs. Moreover, we found profound differences in

livermiRNA expression between race and sex. To our knowledge, this

is the first study to explore genome-wide liver miRNA expression in a

large number of samples originating fromboth European andAfrican

Americans and to also compare differences between the two racial

backgrounds, gender, and to analyze associations between miRNAs

and the CYP3A genes.

Potential regulatory roles of miR-107 and
miR-1260 on the expression of
CYP3A4 and the other drug metabolizing
cytochrome P450 enzymes

Previous miRNA binding site prediction analysis followed by

functional studies in cell models has linked 21 miRNAs to the

expression of CYP3A4 via direct binding to its 3′UTR (Pan et al.,

2009; Wei et al., 2014; Shi et al., 2015; Liu et al., 2016; Gill et al.,

2017; Yan et al., 2017; Yu D et al, 2018) (Supplementary Table

S6). However, it is unknown whether these miRNAs are

expressed in the liver and whether their expression levels are

correlated with CYP3A4. Probes to detect all 21 previously

identified miRNAs were present in the TaqMan OpenArray

Human MicroRNA panels used here. However, our study

found that 13/21 (62%) were not readily detectable in liver

samples and were therefore excluded from our further

TABLE 4 Association between expression levels of miR-107 and nine CYP genes in human liver samples (n = 231) using linear regression analysis with
or without adjusting for transcription factors as indicated. Age, sex, and race were included as covariates in all analysis.

Not including TFs Including TFs

Gene Coefficient SE p value Coefficient SE p value TFs included

CYP1A1 −0.2387 0.0568 3.76E-05*** −0.0999 0.0561 0.076 AHR, NR1I3, ESR1, NR1I2

CYP1A2 −0.2317 0.0449 5.35E-07*** −0.0728 0.0346 0.036* AHR, ESR1, NR1I3, PPARA, FOXA2

CYP2A6 −0.2357 0.0586 7.78E-05*** −0.0198 0.0454 0.662 ESR1, AHR, NR1I3, PPARA, RXRA

CYP2B6 −0.2383 0.0559 3.01E-05*** −0.0212 0.0426 0.618 ESR1, PPARA, and AHR

CYP2C8 −0.2545 0.0424 7.93E-09*** −0.0357 0.0237 0.137 ESR1, AHR, NR1I3, PPARA, ARNT

CYP2C9 −0.2045 0.0378 1.62E-07*** −0.0253 0.0256 0.324 ESR1, AHR, NR1I3, and PPARA

CYP2C19 −0.1917 0.0425 1.02E-05*** −0.0124 0.0291 0.671 ESR1, AHR, NR1I3, RXRA, PPARA

CYP2D6 −0.2383 0.0559 3.01E-05*** −0.0003 0.029 0.991 NR1I3, ESR1, AHR, and ARNT

CYP2E1 −0.2582 0.0407 1.21E-09*** −0.082 0.0299 0.006* AHR, ESR1, NR1I3, HNF4A

*p value < 0.05; ***p value < 0.0001.
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analyses. Among the eight miRNAs also measured in our

samples, only one (miR-27b) was significantly associated with

the expression of CYP3A4 mRNA (p = 0.035), while two others

were significantly associated with CYP3A4 protein levels (miR-

548-3p, p = 0.0086 and miR-629, p = 0.018) (Supplementary

Table S6). These results indicate that most of the previously

identified CYP3A4-relevant miRNAs play an uncertain role in

the liver or that our approach did not readily detect their effects.

Based on our results, miR-107 is the most significant miRNA

associated with expression of CYP3A4, as well as CYP3A5,

CYP3A43, and all nine CYP genes tested. These findings

suggest a potential broad regulatory role of miR-107 on the

expression of the CYP enzymes, and therefore, drug metabolism.

We also identified and validated miR-1260 as associated with

the expression of CYP3A4, CYP3A5, CYP3A43, CYP1A1, and

CYP1A2, but not the other seven CYP genes tested. Therefore,

compared to miR-107, which appears to play a broad role in CYP

regulation, the role of miR-1260 appears to be limited to the

CYP3A and CYP1A families. Also, compared to miR-107, the

expression level of miR-1260 in the liver is 97-fold lower, the

strength of its association with the CYPs is weaker, and there is

no association between miR-1260 and CYP3A4 protein levels.

Thus, the in vivo impact of miR-1260 on CYP expression and

drug metabolism may be less significant than miR-107.

The potential role of transcription factors
and estrogen receptor alpha in mediating
the association between miR-107 and the
cytochrome P450s

Previously published computational analyses using multiple

miRNA target prediction algorithms did not identify miR-107

binding sites in the 3′UTR of CYP3A4 (Ramamoorthy and Skaar,

2011; Swart and Dandara, 2014). Therefore, miR-107 regulation

of CYP3A4 is unlikely to be mediated by direct binding to its

3′UTR. Instead, based on our results, it appears that miR-107

may regulate CYP3A4 expression indirectly through modulating

the expression of key CYP-controlling TFs, as it is negatively

associated with all nine TFs tested. Furthermore, inclusion of

these TFs in our regression models caused the association

between miR-107 and both CYP3A4 mRNA and protein to

become insignificant (Tables 1, 2).

Of the key CYP-controlling TFs, the negative effect of

miR-107 appears to be strongest for ESR1 (Table 3).

Previously, we identified ligand-free ESR1

(i.e., ESR1 function in the absence of estrogen) as a master

regulator mediating the expression of CYP3A4 and many

other CYPs in hepatocytes and liver tissue (Wang et al.,

2019; Collins and Wang, 2021a; Collins et al., 2021).

Interestingly, miR-107 is predicted to directly bind to the

3′UTR of ESR1 and caused reduced ESR1 mRNA and protein

expression in a cell model (Bao et al., 2019). It seems possible

then, that the widespread negative association of miR-107

with the CYPs may be mediated by its direct, negative effect on

ESR1. In support of this model, miR-107 is not associated with

CYP3A7, which is a fetal enzyme that is not well associated

with ESR1 or the other TFs (Collins and Wang, 2021a).

Therefore, the effects of miR-107 appear to be limited to

CYP enzymes regulated by ESR1 and the other TFs tested

here. It is worth mentioning that ESR1 also regulates several of

the other CYP-controlling TFs (e.g., NR1I2, FOXA2, HNF4A,

and PPARA) (Wang et al., 2019) and may be the underlying

reason why these TFs are also associated with miR-107 levels.

However, there are likely non-ESR1 mediated miR-107 effects

as well. For instance, NR1I3 was strongly associated with miR-

107 expression, while ESR1 does not appear to regulate its

expression (Wang et al., 2019).

In contrast to its apparent indirect effect on CYP3A4,

miR-107 is reported to directly regulate CYP2C8, and

potentially all three CYP2Cs, as miR-107 binding motifs

are also in CYP2C9 and CYP2C19 (Zhang et al., 2012). Our

results showed that all three CYP2C transcripts are strongly

and negatively associated with miR-107 and that these

associations disappear when including the TFs in the

regression models (Table 4). These results indicate that

miR-107 may regulate the expression of the CYP2C

enzymes through both direct and indirect mechanisms

and at both the transcriptional and post-transcriptional

levels. As miRNAs have many potential targets, and

regulation of the CYPs involves numerous regulatory

proteins, the role of miR-107 in CYP regulation warrants

further investigation.

Like miR-107, the regulatory role of miR-1260 also appears

to be indirectly mediated by TFs, since including TFs in the

regression models also abolished or reduced the association

between miR-1260 and the CYPs. miR-1260 is associated with

the expression of NR1I2, NR1I3, FOXA2, and HNF4A, but not

ESR1. Consistently, miR-1260 is most strongly associated with

the expression of CYP1A1 and CYP1A2, two CYPs that are only

minimally associated with expression of ESR1 (Collins and

Wang, 2021a). Therefore, it appears that miR-1260 may have

a role in a different CYP regulatory network than miR-107.

Clinical implications and differences in
miRNA profiles between race, sex, and age

miRNA expression is subject to change under many

physiological conditions, disease states, and environmental

effects (Gulyaeva and Kushlinskiy, 2016), potentially altering

downstream pathways in response. miR-107 belongs to a

highly conserved miR-15/miR-107 gene family that shares a

common “AGCAGC” sequence near the end of the mature

miRNAs’ 5′UTR (Finnerty et al., 2010). miR-107 is

transcribed from the host gene PANK1, which is broadly
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expressed in many tissues and has been implicated in cancers

(Turco et al., 2020), chemosensitivity (Chen et al., 2021),

ischemic stroke (Yang et al., 2014), insulin resistance (Yang

et al., 2020), and neuronal differentiation (Croizier et al.,

2018). Dysregulation of miR-107 is associated with diverse

pathways, including: obesity and diabetes (Foley and O’Neill,

2012), Alzheimer’s disease (Chang et al., 2017), cancers (Turco

et al., 2020; Chen et al., 2021), and drug treatment and

environmental exposure (Chou et al., 2017; Chen et al., 2020).

In parallel, CYP substrate drug clearance and expression of the

CYP enzymes also change in many of these events, such as

obesity (Brill et al., 2012), diabetes (Darakjian et al., 2021), and

cancers (Fahy et al., 2012). Whether miR-107 is contributing to

altered expression of the CYPs under these adverse conditions is

an interesting future direction.

In comparison, relatively little has been reported concerning

miR-1260. Recent studies have shown that miR-1260 is

upregulated in numerous cancers, including hepatic carcinoma

(Yan et al., 2013) and implicated in chemosensitivity (Zhao et al.,

2018), and hypoxia-induced vascular smooth muscle cell

proliferation (Seong and Kang, 2020). Interestingly, both the

CYP3As (Yu et al, 2018b) and CYP1As (McKinnon et al., 1991)

are down-regulated in hepatic cancer cells, possibly mediated by

increased miR-1260 expression in these cells. Also, in HepaRG

cells (hepatic cell line) treatment with the well-characterized

CYP3A inducer rifampicin also caused significant reduction in

miR-1260 expression (Swart and Dandara, 2019). Rifampicin-

induced CYP3A expression is mediated by NR1I2 (PXR) (Chai

et al., 2013), which we found to be significantly and negatively

associated with miR-1260 expression (Table 4). Therefore, while

miR-1260 appears to function in a non-ESR1 regulatory network,

its perturbation in response to cancer progression or

drug treatment may play a significant role in regulation of

the CYPs.

Our results showed large differences in the expression levels

of miRNAs between liver samples from AA and EA donors

(Figure 1). A previous study also identified 33 miRNAs that are

differentially expressed in lymphoblastoid cell lines (LCLs)

between residents of Utah (CEU) and Nigerians (YRI), and

these differentially expressed miRNAs were significantly and

inversely associated with the expression of at least one

mRNA, indicating racial differences in miRNA expression

may link to phenotypic differences between populations

(Huang et al., 2011). Interestingly, of the 33 miRNAs showing

racial expression differences in LCLs, 17 are expressed in the

liver, 13 of which (76%) also showed racial expression differences

in our data, indicating there may be common mechanisms

underlying racial differences in miRNA expression across

different tissues. Our previous results show that many CYPs

and CYP-regulating TFs are differentially expressed between AA

and EA (Collins and Wang, 2021a). However, there was no

differential expression of miR-107 (p = 0.652) or miR-1260 (p =

0.192) between AA and EA in this study, indicating that miR-

107/miR-1260 are unlikely to contribute to differential

expression of the CYPs and TFs between AA and EA.

Sex-biased gene expression is pronounced in the liver (Zhang

et al., 2011) andmiRNAsmay be contributing to these biases. We

also found several miRNAs that differ in expression between the

sexes (n = 13), but miR-107 (p = 0.644) andmiR-1260 (p = 0.323)

were not among these. Therefore, it appears that these two

miRNAs do not contribute to previously reported sex-biased

expression of the CYPs (Wolbold et al., 2003; Lamba et al., 2010).

Differential expression of several miRNAs in the liver has

been associated with age (Rieger et al., 2013), and our results

identified eight miRNAs to be weakly associated with age

(Supplementary Table S4). Compared with the previous study

(Rieger et al., 2013), only one miRNA (miR-31) was also

identified. The reason for this discrepancy is unknown and

requires further investigation. However, some of liver samples

in previous study were derived from donors with liver diseases

(Rieger et al., 2013) and it is unclear whether disease state may

confound miRNA-age correlation.

In conclusion, we have identified both miR-107 and miR-

1260 as two top miRNAs associated with the expression of the

CYP enzymes. The effect of miR-107 appears to be through

alteration of key CYP-regulating TFs, possibly through an

ESR1-directed regulatory network. Thus, if validated,

expression of miR-107 may serve as an indicator for the

expression and activity of many relevant drug-metabolizing

enzymes in the liver. Therefore, any physiological,

pathophysiological, or environmental conditions that alter

miR-107 have the potential to broadly influence drug

metabolism and treatment outcomes.
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