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Abstract: Mycotoxins are secondary metabolites produced by various fungal species. They are
commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living
organisms and may have harmful effects on many internal organs and systems. The gastrointestinal
tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to
the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on
the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore,
the present study is the first review of current knowledge concerning the influence of mycotoxins
on the enteric nervous system, which plays an important role, not only in almost all regulatory
processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to
pathological and toxic factors in food.

Keywords: mycotoxins; enteric nervous system; gastrointestinal tract; mammals; animal pathology;
intestines; toxins; feed

Key Contribution: Mycotoxins contained in food affect the living organism, especially
the gastrointestinal tract and the enteric nervous system. This impact may be multidirectional
and depends not only on the chemical structure of the mycotoxin and mammal species studied, but
also on the type of the enteric plexuses and segment of the digestive tract.

1. Introduction

Mycotoxins are a group of several biochemicals synthesized as secondary metabolites by various
species of fungi [1]. They are commonly found in a wide range of agricultural products, such as cereals
(maize, wheat, rye), fresh and dried fruits, grape juice, spices, herbs and many others [2–4]. Moreover,
the presence of mycotoxins has also been observed in food products of animal origin and water [3–6].
Previous studies have shown that mycotoxins show multidirectional harmful effects on human and
animal health. It is known that mycotoxins may act on many internal organs and systems, including,
among others, nervous, reproductive and immunological systems, metabolic processes and endocrine
glands [7].

This widespread occurrence of mycotoxins and their adverse effects demonstrate that these
substances are a serious health and economic problem of the contemporary world and therefore,
mycotoxins are the most widely studied biological toxins [5,6]. However, many aspects of mycotoxin
activity on eukaryotic organisms are unknown. One lesser-known issue is the influence of these
substances on the enteric nervous system (ENS).
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Since mycotoxins are present in food and drinking water, the gastrointestinal (GI) tract is the part
of the body that first comes into contact with these toxic factors [8]. A relatively large number of
studies have described mycotoxin-induced morphological and functional changes in the GI tract,
whose character depends on the type of mycotoxin, mammal species studied, as well as the degree
and length of exposure to mycotoxins [9–19]. The most common effects of mycotoxins on the GI tract
include inflammatory and necrotic changes, disturbances in secretory activity and metabolism of
the enterocytes, damage to the intestinal barrier and dysfunction in intestinal absorption [10,11,16,20].
Unfortunately, the impact of mycotoxins on the ENS has been neglected in toxicological studies
for many years. There are a few recent studies published which describe this aspect of mycotoxin
activity. These reports have indicated that the ENS plays a crucial role in the regulation of the majority
of gastrointestinal functions, takes part in adaptive and protective processes and is one of the first
barriers against pathological and toxic factors in food [15–17,21,22] and may also be compromised by
the harmful effects of mycotoxins. Therefore, this work is an attempt to summarize the influence of
mycotoxins on the ENS. To better understand this influence, a short description of the organization of
the ENS is needed.

2. Anatomy of the Enteric Nervous System

The enteric nervous system is a specific part of the autonomic nervous system. It is situated in
the wall of the gastrointestinal tract from the esophagus to the rectum and is responsible for the majority
of gastrointestinal activities [23]. In terms of the number of nerve cells, the ENS is the second largest
(after the brain, and before the spinal cord) nervous structure in mammals, which may contain an
estimated 200–500 million neurons [24–26]. For this reason, as well as due to the complicated structure
and high autonomy, the ENS is often called the intestinal brain [24].

Millions of neurons comprising the ENS are grouped in the neuronal ganglia, which are
interconnected with a dense network of nerve fibers and form ganglionated plexuses. The localization
and number of these plexuses depend on the mammal species and the segment of the GI tract. In
rodents, the ENS in the esophagus and stomach is built of two types of intramural ganglia. The first
type, the myenteric ganglion, is located between longitudinal and circular muscle layers. Myenteric
ganglia are interconnected with a dense network of nerve fibers and form the myenteric plexus [27–30].
The second type of intramural ganglia, the submucous ganglion, is located in the submucous layer, near
the muscularis mucosae of the mucosal layer. Contrary to muscular ganglia, the nerves interconnected
with the submucous ganglia are rather sparse. Therefore, submucous ganglia in the esophagus and
stomach do not form plexus [31], although some authors have described submucous plexus in rodent
esophagus and stomach [32,33]. However, the situation is different in the small and large intestines in
rodents. Both types of enteric ganglia (myenteric and submucous) located in the same places as in
the esophagus and stomach are interconnected with a dense network of nerves. Therefore, two kinds
of plexuses (the myenteric plexus and submucous plexus) are described in the rodent intestine [34–37].

In large mammals, the organization of the ENS in the esophagus and stomach is similar to
rodents [38–40], although some authors have described three types of the enteric plexuses (such as in
the intestine—see below) in the porcine stomach [41]. The only exception are ruminants, in which
only one type of the enteric ganglia (myenteric ganglia) has been described in the forestomach. These
ganglia are located between longitudinal and circular muscular layers, interconnected with the dense
nerve fibers and form myenteric plexus [42,43].

In turn, there are three types of the enteric ganglia, which form intramural plexuses in the small
and large intestine of large mammal species (for example, in the pig) (Figure 1) [44–46]. The first
of them is the myenteric plexus located (similarly to rodents) between the longitudinal and circular
muscle layer [45,46]. Moreover, two types of submucous plexuses located in the submucous layer of
the intestinal wall have been observed: outer submucous plexus—located in close association with
the adjacent circular muscle layer (on its inner side) and the inner submucous plexus—positioned
closer to the intestinal lumen, near the muscularis mucosae [47–49]. These plexuses are also often
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named after their discoverers. The myenteric plexus often called Auerbach’s plexus, the outer
submucous plexus—Schabadash’s plexus, and the inner submucous plexus (in rodents—the submucous
plexus)—Meissner’s plexus [50,51].
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Figure 1. Organization of the enteric nervous system in the intestine of the domestic pig: MP—myenteric
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As regards the organization of the human ENS, the distribution of the nervous structures in
the esophagus and stomach is similar to rodents and large mammal species [23,31,52,53]. In the human
small and large intestines, the organization of the ENS is not quite clear. Previous publications
have described four types of enteric plexuses. In addition to the above-mentioned myenteric, outer
submucous and inner submucous plexuses, the presence of an intermediate submucous plexus
(IMSP)—a ganglionated plexus located in the submucous layer between the outer and inner submucous
plexus has been reported [54]. However, at present, three kinds of plexuses located similarly to
the porcine intestine are described in the human small and large intestine. In addition to the myenteric
plexus located between the longitudinal and circular muscle layers, they include the plexus submucosus
externus (PSE) near the circular muscle layers (on its inner side) and plexus submucosus internus
(PSI) located closer to the intestinal lumen [23,31,55–59]. Contrary to the porcine inner submucous
plexus, PSI in the human intestine is multi-layered, which means the particular ganglia within this
plexus are located at a different depth of the submucous layer [56]. Other publications have shown
that submucosal ganglia in the human colon are disseminated throughout the submucosal layer with
significant inter-individual differences [60].

In addition to the above-mentioned main types of enteric ganglia, previous studies conducted
in various mammal species have also reported the presence of small scattered neuronal ganglia
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in the mucosal layer (mucosal ganglia) and between the longitudinal muscular layer and serosa
(subserosal ganglia), as well as a ganglionated plexus within the muscularis mucosae [31,61].

Enteric neurons are characterized by a high degree of differentiation in terms of morphological,
functional and electrophysiological properties [25]. Moreover, the enteric neurons are also highly diverse
with regard to their ability to synthesize neuronal active substances. Apart from acetylcholine (the main
neuromediator in the ENS), a wide range of other neuronal factors have been described in enteric nervous
structures [25,62–65]. The most important neuronal factors include vasoactive intestinal polypeptide
(VIP), substance P (SP), galanin (GAL), nitric oxide and calcitonin gene-related peptide (CGRP). These
substances may act as neuromediators and/or neuromodulators and participate in many regulatory
processes including, among others, intestinal motility, secretion in the GI tract, immunological processes,
blood flow, sensory stimuli conduction, intestinal digestion and absorption [16,23,25,62–65]. It should
be noted that several active substances have been noted in the enteric neurons. Their exact roles
are often still not quite clear. It is also known that the roles of the particular neuronal factors in
the regulation of the stomach and intestine activity may depend on the segment of the GI tract and
animal species studied. Such a substance is GAL and its participation in the control of the intestinal
motility. Previous studies have shown that GAL induces the contraction of the ileal smooth muscles
in the rat, guinea-pig rabbit and pig [66], while in the canine ileum and stomach it shows relaxant
effects [67]. A similar situation is observed in the case of SP, which strongly stimulates the contraction of
intestinal muscles in the rat and dog, while in humans such activity is rather limited [68–70]. Moreover,
one substance very often appears to be involved in various GI tract activities. For example, CGRP
(which is known as a key factor in sensory and pain stimuli conduction within the GI tract [71,72]) may
also participate in the regulation of intestinal motility, mesenteric and intramural blood flow, gastric
secretion, absorption of the nutrients in the intestine and protective reactions [73–77]. A detailed
discussion of the exact functions played by all neuronal factors located in the enteric neurons is almost
impossible because new active substances and their roles in various species are still being discovered.
However, the main functions connected with the GI tract of selected neuronal substances occurring in
the ENS are presented in Table 1.

Table 1. Functions of selected active substances in the enteric nervous system.

Active Neuronal Substance in
the ENS (Alphabetical Order) Selected Functions References

Acetylcholine (Ach)

Stimulation of the intestinal motility [78–80]

Stimulation of electrolyte, water, enzymes
and hormones secretion [81–84]

Participation in protective mechanisms [82,85,86]

Ant-inflammatory and immunostymulatory
effects [87–89]

Blood flow regulation [90]

Cocaine and Amphetamine
Regulated Transcript (CART)

Inhibition of gastric acid secretion [91]

Regulation of the intestinal motility [92]

Calcitonin Gene-Related Peptide
(CGRP)

Participation in sensory and pain stimuli
conduction [71,72,93–95]

Regulation of the intestinal motility [94]

Blood flow regulation [96–99]

Protective roles [73,99–101]

The influence on intestinal absorption [74]
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Table 1. Cont.

Active Neuronal Substance in
the ENS (Alphabetical Order) Selected Functions References

Galanin (GAL)
Intestinal motility regulation [66–70,102]

Influence on secretory activity [103–105]

Participation in inflammatory processes [103,105,106]

Nitric Oxide (NO)

Inhibition of the intestinal motility [106–108]

Participation in inflammatory processes [109]

Regulation of intestinal secretion, water and
electrolyte transport [110–113]

Regulation of blood flow [114,115]

Participation in inflammatory processes [116,117]

Pituitary Adenylate
Cyclase-Activating Polypeptide

(PACAP)

Inhibition of the intestinal motility [118,119]

Stimulation of gastric secretory activity [120,121]

Regulation of ion transport and Luminal
fluid regulation in the large intestine [121–123]

Regulation of blood flow [124]

Substance P (SP)

Protective roles [100]

Sensory stimuli conduction [93,125]

Regulation of the intestinal motility [125–127]

Regulation of water and electrolytes
secretion [125,128,129]

Participation in inflammatory processes [125,130]

Vasoactive Intestinal Polypeptide
(VIP)

Neuroprotective functions [131]

Regulation of the intestinal motility [132,133]

Vasodialtory activity [132,134]

Participation in intestinal
immunomodulation [135–137]

Influences on intestinal secretion [138–140]

In addition to neurons, the ENS also includes numerous glial cells, which are called enteric glial
cells (EGC) [141–143]. Glial cells in the gastrointestinal tract are generally characterized by small size,
irregular or stellate shape and numerous processes which are in direct contact with neuronal cell
bodies and nerve fibers. Based on previous studies, it is known that ECG may be divided into four
major types, and classification of the EGC is similar to that used in the case of glial cells in the central
nervous system [144,145]. The first type is “protoplasmic” glial cells (type I glial cells), which are
located between neuronal cells in the enteric ganglia and their appearance resembles protoplasmic
astrocytes in the brain. The second type of glial cells (type II glial cells) are “fibrous” glial cells, whose
processes accompany the nerves connecting the enteric ganglia with each other. These cells are similar
to fibrous glial cells located in the central nervous system. Moreover, mucosal glial cells (type III
glial cells) located near nerve fibers in the mucosal layer and intramuscular glial cells (type IV glial
cells) accompanying the nerve fibers in the muscular layer have been described in the gastrointestinal
tract [144,145].

It was initially thought that glial cells are only structural support to neurons, but it is now
known that EGC play multidirectional functions in the regulation of various aspects of the ENS
and all gastrointestinal tract activities [146,147]. Primarily, they take part in processes connected
with the development, protection and nutrition of the enteric neuronal cells [148,149]. They regulate



Toxins 2020, 12, 461 6 of 28

growth, maturation and differentiation of the enteric neurons, and affect synthesis and release of
neuromediators and/or neuromodulators, thus constituting a key factor in maintaining intraneuronal
homeostasis [145,149–151].

Moreover, EGC (especially mucosal glia) are involved in activities of the intestinal barrier integrity
and functions [152]. It is known that EGC synthesize a wide range of several substances, such
as glial-derived neurotrophic factor, transforming growth factor-β1 and neurotrophins, and act on
the intestinal epithelial cells through paracrine mechanism [152,153]. Experimental studies have also
shown that in animals with genetic ablation of EGC, the intestinal epithelial layer loses its integrity
and disturbances in vascularization appear and lead to severe inflammatory processes [154].

Enteric glial cells also have important functions during intestinal pathological states. They
participate in immune cell modulation in a wide range of the intestinal diseases, including ulcerative
colitis, Crohn’s disease and colorectal cancer [142]. During inflammatory processes, proliferation
of EGC occurs [155]. Glial cells participate in the immune recognition of pathological stimuli and
may act as antigen-presenting immune cells [156]. Moreover, an increase in the production of some
cytokines, including, among others, interleukins (IL-1β and IL-6) [157–159], as well as nerve growth
factor (NGF) [160], glial fibrillary acidic protein (GFAP) [161] and nitric oxide (NO) [162] in glial cells
has been noted during inflammatory processes.

It is also known that enteric glial cells play important roles in the pathogenesis of neurodegenerative
diseases, including Parkinson’s, Alzheimer’s and Creutzfeldt-Jakob diseases. They are considered to
be a possible trigger point for neurodegenerative processes, which through the gut–brain axis may
efficiently affect neurodegenerative processes in the central nervous system [143–163].

An important feature of enteric neurons is the ability to change their morphological, physiological
and neurochemical properties under the impact of physiological and pathological factors [15,65,164].
Changes in the ENS have been described during growth and aging, diet changes, as well as various
intestinal pathological processes, systemic diseases and the impact of toxic substances [15,65,164,165].
Changes in enteric neurons are a sign of the adaptive and protective reactions and contribute to
homeostasis maintenance in the GI tract [164,165]. Moreover, such changes appearing under the impact
of disease or toxic substances may be the first signs of subclinical pathological processes or toxicity [166].
Some studies have indicated that mycotoxins may affect the morphology and neurochemical character
of the enteric neurons. The following is a short characterization of several mycotoxin-induced changes
in the enteric nervous system.

3. Mycotoxins Affecting the Enteric Neurons

3.1. Deoxynivalenol

Deoxynivalenol (DON—molecular weight 296.31 g/mol), belongs to the trichothecene family and
is a substance produced by Fusarium spp. [9]. It is commonly found in barley, oat, rye, corn and
rice [167,168]. The signs of toxicity depend on the dose, mammal species and duration of exposure.
The most frequent symptoms of toxicity with DON include loss of appetite, decreased body weight
gain, neuroendocrine disorders, vomiting and diarrhea [169].

In the GI tract, toxicity with DON results in a wide range of histopathological changes, such as
inflammatory infiltration, necrotic changes in the intestinal villi, edema of lamina propria, a decrease in
the number of goblet cells in the jejunum and the ileum, intensification of apoptosis and degeneration
of lymphoid cells in the GI tract [10,170]. These changes, together with DON-induced disturbances in
the synthesis of many active substances produced by the gastrointestinal mucosa lead to the injury of
the intestinal barrier and abnormal nutrient absorption [11].

Within the nervous system, DON-induced changes include abnormal synthesis of neuronal
neurotransmitters and/or neuromodulators and in disturbances in neuronal activity [171,172]. Moreover,
in neuronal cells, DON induces apoptosis, affects the cerebral lipid peroxidation and influences neuronal
calcium homeostasis, and these disturbances in the neuronal cells may lead to anorexic actions [172,173].
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During a study performed on male Wistar rats (Rattus novergicus) aged 21 days, the influence
of relatively low doses of DON on the ENS was described [14]. In that experiment, DON in various
doses (from 0.2 mg/kg of chow to 2 mg/kg of chow) was given for 42 days, and the ENS was studied
using immunohistochemistry and microscopic analysis. It was shown that this mycotoxin does not
affect the myenteric ganglia organization in the jejunum [14]. Between control animals and rats
receiving DON there were no differences in the density of glial cells located in the myenteric plexus, or
the population density of myenteric neurons. Moreover, DON did not change the density of particular
subpopulations of the myenteric neurons, i.e., cholinergic and nitrergic neurons [14]. However, all
concentrations of DON studied in the above-mentioned experiment caused a decrease in the area
of the general population of the myenteric neuronal cells, as well as cholinergic and nitrergic cell
neurons. Moreover, DON also decreased the area of gliocytes located in the myenteric plexus [14] and
decreased the myenteric ganglia area. It should be noted that during the cited study, besides changes
in the ENS, the animals did not show any other symptoms of toxicity, including a decrease in body
weight, diarrhea, loss of appetite or changes in the oxidative status [14]. This indicates that changes in
the ENS are the first symptoms of toxicity with low doses of DON.

3.2. T2 Toxin

T2 toxin (molecular weight 466.5 g/mol), similar to DON, belongs to the trichothecene family of
toxins. It is mainly synthesized by Fusarium sporotrichioides, F. langsethiae, F. acuminatum and F. poae and
is recognized as the most acutely toxic trichothecene [174]. The impact of T2 toxin on the GI system
manifests itself by (among others) histopathological changes in the intestinal mucosal layer (even with
low doses), disturbances in the intestinal barrier functionality, influence on the enzymatic activity of
enteric cells and inhibition of mucin production [175–178].

T2 toxin also shows neurotoxic activity and exposure to this substance results in a wide range of
neurological symptoms, such as ataxia, muscular weakness, anorexia, as well as pathological lesions
in the brain with disturbances in the functioning of this organ [179–181]. The main mechanisms
underpinning the neurotoxic properties of T2 toxin are connected with reactive oxygen species
and oxidative stress, as well as with mitochondrial dysfunction (consisting of the inhibition of
the mitochondrial membrane potential and intensification of apoptosis) [182].

The ENS was studied using immunofluorescence in an experiment in vivo performed on juvenile
(8-week-old) female domestic pigs of the White Large Polish Breed subjected to oral administration of T2
toxin at the level of 12 µg/kg body weight/day for 42 days [15]. Significant changes in the neurochemical
character of the enteric neurons and nerve fibers located in the GI tract wall were described in this
study. The character of changes depended on the type of the enteric plexus and the intestinal segment.
It was reported that the administration of T-2 toxin increases the number of enteric neurons containing
VIP in the porcine stomach and duodenum. These changes concern both myenteric and submucous
plexuses and they are more visible in the duodenum, especially in the myenteric and outer submucous
plexuses [15]. The same study showed that T-2 toxin also increases the number of nerve fibers
containing VIP located in the muscular and mucosal layers of the porcine stomach and duodenum [15].
As previously indicated (Table 1), VIP in one of the potent inhibitory factors in the ENS and causes
the hyperpolarization and relaxation of the gastrointestinal muscles and sphincters [132,133]. Moreover,
VIP (as a vasodilator) increases blood flow in the wall of the GI tract and mesentery [132,134]. This
substance may also affect the secretory activity of the GI tract, and the character of this activity depends
on the GI tract segment [138–140]. It is known that VIP inhibits the gastric acid secretion in the stomach,
but stimulates the secretion of the intestinal juice. VIP also has neuroprotective properties and increases
the survivability of the enteric neurons [131]. Moreover, it is involved in immunological processes
and shows anti-inflammatory properties. VIP also inhibits macrophages and inhibits the secretion of
pro-inflammatory factors [135–137]. It is assumed that the increase in the number of VIP-positive enteric
nervous structures under the impact of T2 toxin is connected with the protective and anti-inflammatory
properties of VIP.
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The influence of T2 toxin on the number of the enteric neurons containing cocaine and
amphetamine-regulated transcript (CART) has been also reported [183]. In this study, T2 toxin
was orally administrated to juvenile sows of the Large White Polish breed in a dose of 200 µg/kg of feed
(the suggested permissible level of this toxin in the feed for pigs) for 42 days and the immunoreactivity
in the ENS was evaluated using immunofluorescence. After the administration of T2 toxin, an increase
in the number of CART-positive enteric neurons in all types of enteric plexuses as well as the number
of nerve fibers containing CART in the mucosal and muscular layers in the stomach, duodenum and
descending colon were described. The most visible changes were noted in the submucous plexus in
the stomach and inner submucous plexus in the descending colon, where the number of CART-positive
nerves under the impact of T2 toxin more than doubled [183]. It should be underlined that the exact
functions of CART in the ENS are not clear [184]. A few studies concerning this issue have shown that
CART inhibits the secretion of hydrochloric acid in the stomach and influences colonic motility [91,92].
This activity is probably done via the gut–brain axis because the direct impact of CART on isolated
intestinal muscles does not cause changes in intestinal muscle contractility. The regulation of intestinal
activity through the gut–brain axis is more likely since CART is known as an important factor regulating
the feeding behavior in the central nervous system [185]. Moreover, numerous studies in which an
increase in CART levels in the ENS has been observed strongly suggest that this peptide also takes
part in protective and adaptive reactions in response to pathological, toxicological and physiological
factors [46,166,184].

Another study (also performed with the immunofluorescence technique) concerning the impact of
T2 toxin on the ENS was also performed on juvenile female pigs of the Large White Polish breed, which
were treated with given T2 toxin orally in the dose of 12 µg/kg body weight/day for 42 days [16]. In this
study, it was shown that T2 toxin affects the population of neurons containing calcitonin gene-related
peptide located in the enteric plexuses in the porcine descending colon [16]. The administration
of T2 toxin caused an increase in the number of CGRP-positive neurons in the myenteric, outer
submucous and inner submucous plexuses, as well as an increase in the density of intramucosal nerves
immunoreactive to these neuronal factors, without changes in the number of CGRP-positive nerve fibers
in the muscular layer [16]. Moreover, it was shown that T2 toxin changes the neurochemical character
of CGRP-positive neuronal cells, which were expressed by fluctuations in the degree of co-localization
of CGRP with other neuronal factors (including substance P, nitric oxide synthase, galanin, CART
peptide and vesicular acetylcholine transporter) in the same enteric nervous structures [16].

CGRP is a substance which primarily occurs in sensory neurons and is involved in sensory and
pain stimuli conduction [71,72,93–95]. Moreover, CGRP in the GI tract takes part in the regulation
of intestinal motility and increases blood flow in the mesenteric vessels [94,96–99]. It is also known
that CGRP inhibits gastric acid secretion in the stomach with simultaneous induction of somatostatin
release and regulates the absorption of nutrients from the intestine [186]. Previous studies have also
shown that CGRP takes part in inflammatory processes in the intestine [99–101]. The multidirectional
functions of CGRP in the ENS appear to be confirmed by a wide range of other neuronal substances
present in CGRP-positive enteric neurons (such as substance P, nitric oxide CART peptide and galanin)
which also play various roles in the GI tract (Table 1).

These reports of the influence of T2 toxin on the expression of a wide range of neuronal factors
responsible for various regulatory processes in the ENS [15,16,183], strongly suggest that even relatively
low doses of this mycotoxin may influence various intestinal activities, such as motility, secretion,
conduction of sensory stimuli and regulation of the blood flow in the intestinal wall [15,16,183].

3.3. Zearalenon

Zearalenon (ZEN—molecular weight 318.364 g/mol) is synthesized mainly by Fusarium
graminearum, culmorum, crookwellense and roseum and is found in barley, oat, wheat and bread [187].
The toxicity of ZEN is connected with its chemical structure, which allows it to act on the estrogen
receptors, which are present in many internal organs [8]. ZEN can cross the blood-brain barrier and
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may influence neurons in the central nervous system [188,189]. It has been shown that exposure to
ZEN leads to the abnormal synthesis of neuronal factors and enzymes in the brain neurons, induces
apoptosis of the neuronal cells, increases oxidative stress reactions, influences the development of
the nervous system, may cause behavioral aberrations and affects glial cell functions [189–192]. In turn,
in the GI system, ZEN (among others) disturbs intestinal homeostasis, changes intestinal microbiome,
causes inflammatory cell proliferation and inflammation in the intestinal mucosal layer [11,193–195].

Although the impact of ZEN on the GI tract is relatively well known, studies concerning
the influence of this mycotoxin on intestinal innervation are limited to two studies performed on
the pigs of the Large White Polish breed (approximately 8 weeks old), in which the nervous structure
was evaluated with the immunofluorescence technique [19,21].

These studies have shown that the administration of relatively low doses of ZEN—10 µg/kg body
weight/day [19] or 0.1 mg/kg of chow/day [21], administered for 42 days affect the neurochemical
coding of nerve fibers in the mucosal and muscular layers of the ileum. For the intramuscular nerves,
these changes involved an increase in the number of fibers immunoreactive to CART, substance P, nitric
oxide synthase, VIP and pituitary adenylate cyclase-activating peptide and a decrease in the number
of fibers containing galanin [19]. In the mucosal layer, ZEN not only caused an increase in the number
of nerve fibers containing SP and/or VIP, but also changed the morphology of these nerves [21]. In
animals treated with ZEN, nerves immunoreactive to SP and/or VIP become thicker and more visible
than in the control animals [21]. It should be underlined that all the above-mentioned neuronal factors
play important multidirectional roles in the regulation of the intestinal activity both in physiological
conditions as well as during pathological processes, the most important of which are listed in Table 1.

The impact of ZEN on the ENS in the porcine descending colon has also been reported. A study
concerning this issue was performed on juvenile (8-week-old) female pigs of the Large White Polish
breed, which were treated with a dose of ZEN at the level of 6 µg/kg b.w./day given orally for 42
days [16]. In this study, the ENS evaluation was conducted with the immunofluorescence technique.
The impact of ZEN was similar to the influence of T2 toxin. ZEN increased the number of neurons
containing CGRP (whose functions in the ENS are described in the subchapter concerning T2-toxin and
presented in Table 1) in all types of the enteric plexuses located in the descending colon [16]. Moreover,
ZEN-induced changes in the neurochemical character of CGRP-positive enteric neurons were also
reported [16]. These changes consisted of an increase in the degree of co-localization of CGRP with
other neuronal factors (including substance P, galanin, CART and nitric oxide synthase, which was
used as a marker of neuron synthesized nitric oxide) in neurons within all types of the enteric plexuses
and intramural nerve fibers [16]. The functions of the above-mentioned neuronal active substances are
presented in Table 1.

3.4. Patulin

Patulin (PAT-molecular weight 154.12 g/mol) is produced by various species belonging to
Penicillium, Aspergillus, Paecilomyces and Byssochlamys [196,197] and is present in fruits (especially
in apples) and vegetables [196,197]. Previous studies have shown that exposure to patulin causes
damage to the intestinal barrier and inflammatory processes in the GI tract and influences the gut
microbiota and the production of the mucus by enterocytes [198,199]. The neurotoxic activity of PAT
is also known. It causes damage to the DNA in brain neuronal cells, mitochondrial and lysosomal
dysfunction, a reduction of ATP levels and intensification of oxidative stress reactions [200,201].

The influence of patulin on the enteric neurons has been the subject of only one study. This study
was performed on the cell culture of the enteric neurons prepared from 2–3-month-old C57B6/J OlaHsd
mice and included various methods, such as growth and viability testing, a cytotoxicity test, evaluation
of calcium signaling, measurement of glucose content, neurite outgrowth measurement and a reactive
oxygen species (ROS) test [202]. The enteric neurons were treated with P coprobium extract, which
decreased their viability with a half-maximal effective concentration (EC50) of 1 ng/µL This study also
showed that patulin affects excitability and glucose consumption of the enteric neurons, which results



Toxins 2020, 12, 461 10 of 28

in a patulin-induced reduction of ATP levels and glucose concentration in the enteric neurons. It has
been also reported that patulin causes disorders in calcium signaling in the enteric neurons and affects
neuronal morphology, which results in a reduction of neurite outgrowth and total neurite mass [202].

3.5. Fumonisins

Fumonisins are synthesized by Fusarium proliferatum and Fusarium verticillioides and characterized
by a high degree of toxicity [203]. Numerous types of these mycotoxins have been described, but
the most toxicologically important are fumonisin B1 (molecular weight 721.838 g/mol), fumonisin B2
(molecular weight 705.83 g/mol) and fumonisin B3 (molecular weight 705.8 g/mol), due to their high
levels in cereal grains and crop products [12,204]. Among the numerous internal organs and systems
which may be affected by fumonisins, the nervous system is one of the most susceptible to the adverse
effects of these mycotoxins. It is known that fumonisins may enhance neurodegenerative reactions and
impair the developmental processes in neurons located in the central nervous system, and some studies
have reported connections between exposure to these mycotoxins and the risk of neurodegenerative
diseases, such as multiple sclerosis, Alzheimer’s disease and Parkinson’s disease [205,206]. Exposure
to fumonisins also results in changes in the GI tract, which manifest as disturbances in intestinal
absorption, changes in the enterocytes and abnormalities in the intestinal immunological processes
leading to increased susceptibility to infections [20].

However, knowledge of the influence of fumonisins on the ENS is extremely limited. One study
concerning this issue was performed using the immunohistochemistry method on male Wistar rats
(Rattus novergicus), which were 21 days old [12]. This study showed that a mixture of fumonisin
B1 and B2 added to food in doses of 1 and 3 mg/kg of body weight (i.e., in doses which may be
present in “natural” conditions in the food of humans and animals) given for 63 days does not affect
the organization of the myenteric plexus in the rat jejunum [12]. Such doses of fumonisins do not
result in changes in the general number of myenteric plexus and the number of myenteric neurons
causing nitric oxide synthase, which is a marker of structures synthesizing nitric oxide. However,
some changes in the myenteric neurons were observed under the impact of the mentioned doses of
fumonisins. These changes consisted of a reduction in the size (without changes in their morphology)
of neurons located in the myenteric plexus and included both neurons immunoreactive to pan-neuronal
marker HuCD and nitric oxide synthase. Suoza et al. (2014) [12] reported that fumonisins not only
affect the development and growth of neurons in the central nervous system but may also influence
these processes in the ENS.

The influence of fumonisins on the ENS in the rat duodenum and jejunum of adolescent
(5-weeks-old) male Wistar rats was also studied by Rudyk et al. (2020), using the immunohistochemistry
method and histomorphometric analysis [13]. A mixture of fumonisins B1 and B2 were administered
in a dose of 90 mg/kg of body weight for 21 days. That study demonstrated that fumonisins influence
the following parameters within myenteric and submucous plexuses: area, perimeter, mean Feret
diameter, mean diameter and sphericity [13]. It was also found that the impact of fumonisins on the ENS
depends on the segment of the GI tract and the type of the enteric plexus. Fumonisin-induced changes
in the duodenum were less visible, concerned only the submucous plexus and consisted of a reduction
of area and mean diameter of ganglia, while the other parameters in the submucous plexus and all
parameters studied in the myenteric plexus were not subjected to change. In the jejunum, changes
were noted in the myenteric and submucous plexuses and consisted of an increase in the sphericity
of ganglia and a reduction of other parameters in both types of plexuses. Moreover, the most visible
changes were noted in the myenteric plexus.

The mechanisms of the impact of fumonisins on the ENS are unknown, but they probably inhibit
ceramide synthase—an enzyme contributing to sphingolipid synthesis [207].
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4. Mycotoxin Consumption and Human Gastrointestinal Diseases

The multidirectional adverse effects of mycotoxins on the GI tract (Table 2) cause that exposure to
these substances may result in various disturbances of the GI activity in humans. However, the common
prevalence of mycotoxins in the human environment and food indicates that participation of these
chemicals in the development of intestinal diseases in humans may be an important public health
problem all over the world [208].

Table 2. Gastrointestinal signs and effects of mycotoxins on the gastrointestinal tract.

Mycotoxin Gastrointestinal
Signs of Toxicity References Influence on the Digestive

Tract References

Doxynivalenol
(DON)

Abdominal pain,
increased

salivation, diarrhea,
vomiting, anorexia,

decrease body
weight gain

[169,209–214]

IPEC-J2 cell line from
porcine jejunal epithelium:

cytotoxicity, decrease in
transepithelial electrical
resistance, disruption of

epithelial integrity

[176]

Porcine jejunal explant
samples: shortened and
coalescent villi, lysis of

enterocytes, edema,
upregulation of

proinflammatory cytokines
expression

[215,216]

Pigs of White Large Polish
Breed: increase in

the mucosal thickness and
the intestinal crypt depth,

atrophy of the villi, changes
in the number of goblet cells,

inflammatory infiltration,
intensification of apoptosis,
changes in ultrastructure of

intestinal cells

[10,11,175,
214,217,218]

Human Colonic Cell Lines
Caco-2, T84, HT-29: decrease
in cell proliferation, changes
in permeability, genotoxicity,
intensification of apoptosis,
increase in the expression of
proinflammatory cytokines,
influence on DNA synthesis

[215,219–221]

Poultry: decrease in the high
of villi [222,223]

T2 Toxin

Gastrointestinal
bleeding, diarrhea,

vomiting,
decreased feed

consumption and
weight gain

[224–226]

IPEC-J2 cell line from
porcine jejunal epithelium:
cytotoxic effects, disruption
of intestinal barrier integrity

[176]

human intestinal Caco-2 cells
disturbances in intestinal

barrier, enzymatic activity of
enteric cells, inhibition of

mucin production

[178]
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Table 2. Cont.

Mycotoxin Gastrointestinal
Signs of Toxicity References Influence on the Digestive

Tract References

Pigs of White Large Polish
Breed or crossbred pigs:

congestion and hemorrhage
of the gastrointestinal

mucosal layer, inflammatory
infiltration, in high

doses—necrotic changes

[175,227–229]

Sprague-Daw-ley rats:
inflammatory and necrotic

changes in, lymphocytic
necrosis in intestinal Peyer’s

patches, influence on
nutrients absorption,

influence on DNA synthesis

[230–232]

Zearalenone
(ZEN)

Gastrointestinal
symptoms are not

typical for ZEN
toxicity.

Decrease in feed
intake and body

weight, changes in
intestinal

microbiome

[195,233]

Pigs of various breeds:
increase in the mucosal
thickness, increase in

the number of goblet cells,
increase in lymphocyte
number in epithelium,

intensification of apoptosis,
influence on enzymatic
activity of mucosal cells,

changes in intestinal
microbiome

[10,11,175,
193–195,234,

235]

Intestinal porcine epithelial
cell line (IPEC-1): influence

on cell activity by changes in
gene expression

[236]

Poultry: changes in the high
of intestinal villi [237]

Patulin
(PAT)

Anorexia,
salivation,
distended

abdomen loss of
body weight,

bleeding from
the digestive tract

and diarrhea

[238–243]

Human intestinal Caco-2
cells: the influence on
permeability and ion

transport in the mucosa,
epithelial desquamation and

sub mucosal swelling,
genotoxicity effects,

modulation of tight junctions

[198,199,244]

Rodents: mucosal layer
injury, ulceration, fibrosis in

the sub mucosa, necrosis
[238–242]

Porcine jejunal explant
samples: villi atrophy and

necrosis, decrease in
the number of goblet cells,
increase in cell apoptosis

[245]
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Table 2. Cont.

Mycotoxin Gastrointestinal
Signs of Toxicity References Influence on the Digestive

Tract References

Fumonisins
(FUM)

reduction of feed
consumption and

body weight,
abdominal pain,

diarrhea

[246–249]

Human Colonic Cell Lines
Caco-2, HT-29: growth

inhibition and apoptosis
induction, impact on

mitochondrial metabolism,
necrosis

[221,250]

Rodents: inflammatory
infiltration increase in
the number of mitotic

figures in the intestinal
crypts, necrotic changes

[251,252]

Intestinal porcine epithelial
cell line (IPEC-1): inhibition

of cell proliferation,
intestinal barrier dysfunction

[253]

The impact of mycotoxins on the intestinal barrier functions, intestinal immunity, secretory
activity and gut microflora, as well as their genotoxic/mutagenic and carcinogenic effects are mainly
known from experimental studies (Table 2). Such studies do not always fully reflect the conditions of
natural exposure to mycotoxins. The first problem is the dose of mycotoxins, which is very difficult
to determine in the human diet [254,255]. The second, more important, problem is the fact that
food may contain several or even a dozen mycotoxins at the same time. These mycotoxins may
chemically interact with each other, which leads to changes in their toxic properties and bio-availability.
In this case, synergistic interactions between mycotoxins is particularly dangerous [255,256]. For
example, previous studies have shown that mixtures of ZEN and DON or DON, T2 and ZEN show
higher toxicity than these individual mycotoxins [175,257]. Moreover, it is known that human food
may also contain other active substances and contaminations, such as bacterial products, pesticides,
phytotoxins, chemical contaminations and preservatives, which not only affect mycotoxin activity but
may contribute to various disorders in the GI tract [258]. That is why it is so difficult to determine
the effective participation of mycotoxins in the development of human gastrointestinal diseases.

A comparison of histopathological changes occurring in the GI tract during human gastrointestinal
diseases and changes in the intestine caused by mycotoxins has shown that the negative development
in the GI tract in both cases are similar [255]. This may suggest a correlation between a degree of
exposure to mycotoxins and the risk of human gastrointestinal diseases, as well as the participation of
mycotoxins in the development of various diseases, including inflammatory bowel disease, Crohn’s
disease, coeliac disease and colorectal cancer [255]. However, only comprehensive epidemiological
studies on the relationships between mycotoxin levels in food, blood and urine and the occurrence of
particular diseases conducted on a large human population would explain the connection between
exposure to mycotoxins and the risk of human gastrointestinal diseases. Unfortunately, such studies
are fragmentary and relatively few. These studies have reported that aflatoxins (especially aflatoxin
B1) may pose a carcinogenic risk and exposure to these chemicals may increase the risk of gastric and
colorectal cancer [259,260]. Other studies suggest a correlation between the exposure to ZEN and
colorectal cancer [261], as well as relationships between exposure to aflatoxins and Crohn’s Disease,
coeliac disease and ulcerative colitis [262]. Despite this, differences in concentration of patulin and
citrinin in plasma and urine between healthy people and patients suffering from colorectal cancer
have not been observed, which may suggest that these mycotoxins are not key factors leading to this
disease [263].
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5. Conclusions

Based on previous studies, it is known that mycotoxins affect the enteric nervous system (Table 3).
This impact may be multidirectional and depends not only on the chemical structure of the mycotoxin
and mammal species studied, but also on the type of the enteric plexuses and segment of the digestive
tract. Mycotoxins may act on the size and morphological properties of intestinal nervous structures and
the neurochemical character of the enteric neurons. These changes are probably a result of adaptive and
protective reactions, which affect homeostasis maintenance. Moreover, mycotoxin-induced changes
in the ENS are often the first sign of exposure to low doses of mycotoxins. Understanding the exact
mechanisms connected with the influence of mycotoxins on the intestinal innervation may be very
important in determining mycotoxin dose limits, which are safe and neutral for the living organism.
Unfortunately, the current information about the influence of mycotoxins on the ENS is relatively
limited and elucidation of all aspects connected with this issue requires further research.

Table 3. Influence of mycotoxins on the enteric nervous system.

Mycotoxin Dose
Examined

Animal
Species or

Kind of
Tissues

Experimental Method
Used in the Study

Character of Changes
in the ENS References

Doxynivalenol

from 0.2 mg/kg
of chow to
2 mg/kg of

chow

Wistar rats
(Rattus

novergicus)

immunohistochemistry
and microscopic

analysis

Reduction of the area
of general population

of the myenteric
neurons, glial cells in
the myenteric plexus
and whole myenteric

ganglia.

[14]

T2 Toxin

12 µg/kg body
weight/day

domestic pig
of the White
Large Polish

Breed

Immunofluorescence
method and

microscopic analysis

Increase in the number
of VIP-positive enteric

neurons and
intramucosal and

intramuscular nerve
fibers containing VIP
in the stomach and

duodenum.

[15]

200 µg/kg of
feed

domestic pig
of the White
Large Polish

Breed

Immunofluorescence
method and

microscopic analysis

Increase in the number
of CART-positive

enteric neurons and
intramucosal and

intramuscular nerve
fibers containing CART

in the stomach,
duodenum and

descending colon.

[55]

12 µg/kg body
weight/day

domestic pig
of the White
Large Polish

Breed

Immunofluorescence
method and

microscopic analysis

Increase in the number
and changes in
neurochemical

character of
CGRP-positive enteric

neurons in
the descending colon.

[16]

Zearalenon 10 µg/kg body
weight/day

domestic pig
of the White
Large Polish

Breed

Immunofluorescence
method and

microscopic analysis

Increase in the number
of nerve fibers

immunoreactive to
CART, SP, NOS, VIP,
PACAP and decrease

in the number of
GAL-positive nerve

fibers in the muscular
layer of the ileum.

[19]
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Table 3. Cont.

Mycotoxin Dose
Examined

Animal
Species or

Kind of
Tissues

Experimental Method
Used in the Study

Character of Changes
in the ENS References

0.1 mg/kg of
chow/day

domestic pig
of the White
Large Polish

Breed

Immunofluorescence
method and

microscopic analysis

Increase in the number
of nerve fibers

immunoreactive to SP
and VIP with changes
in their morphology

[21]

12 µg/kg body
weight/day

domestic pig
of the White
Large Polish

Breed

Immunofluorescence
method and

microscopic analysis

Increase in the number
and changes in
neurochemical

character of neurons
immunoreactive to

CGRP in
the descending colon.

[16]

Patulin EC50 = 1 ng/µL

culture of
the enteric

neurons from
C57B6/J

OlaHsd mice

Growth and viability
testing, cytotoxicity
test, evaluation of
calcium signaling,
measurement of
glucose content,

neurite outgrowth
measurement and

reactive oxygen species
(ROS) test

Reduction of ATP
levels and glucose

concentration,
disorders in calcium

signaling in the enteric
neurons, changes in
their morphology.

[71]

Fumonisins

1 and 3 mg/kg
body weight

Wistar rats
(Rattus

novergicus)

immunohistochemistry
method

Reduction of the size of
neurons in the enteric

ganglia.
[12]

90 mg/kg body
weight

Wistar rats
(Rattus

novergicus)

immunohistochemistry
method and

histomorphometrical
analysis

Reduction of area and
mean diameter of

the submucous
plexuses in duodenum.
Reduction of area and

mean diameter of
myenteric and

submucous plexuses in
the jejunum, increase

of sphericity of
the enteric ganglia.

[13]

VIP—vasoactive intestinal polypeptide; CART—cocaine- and amphetamine-regulated transcript; CGRP—calcitonin
gene related peptide; SP—substance P; NOS—nitric oxide synthase; PACAP—pituitary adenylate cyclase activating
peptide; GAL—galanin.
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Donaldson, J.; Brezvyn, O.; Kotsyumbas, I. Histomorphometrical changes in intestine structure and
innervation following experimental fumonisins intoxication in male Wistar rats. Pol. J. Vet. Sci. 2020, 23,
77–88. [CrossRef] [PubMed]

14. Rissato, D.F.; de Santi Rampazzo, A.P.; Borges, S.C.; Sousa, F.C.; Busso, C.; Buttow, N.C.; Natali, M.R.M.
Chronic ingestion of deoxynivalenol-contaminated diet dose-dependently decreases the area of myenteric
neurons and gliocytes of rats. Neurogastroenterol. Motil. 2020, 32, e13770. [CrossRef] [PubMed]

15. Makowska, K.; Obremski, K.; Gonkowski, S. The impact of T-2 toxin on vasoactive intestinal polypeptide-like
immunoreactive (VIP-LI) nerve structures in the wall of the porcine stomach and duodenum. Toxins 2018, 10,
138. [CrossRef] [PubMed]

16. Makowska, K.; Obremski, K.; Zielonka, L.; Gonkowski, S. The influence of low doses of zearalenone and T-2
toxin on calcitonin gene related peptide-like immunoreactive (CGRP-LI) neurons in the ENS of the porcine
descending colon. Toxins 2017, 9, 98. [CrossRef] [PubMed]

17. Alassane-Kpembi, I.; Pinton, P.; Oswald, I.P. Effects of mycotoxins on the intestine. Toxins 2019, 11, 159.
[CrossRef] [PubMed]

18. Liew, W.P.; Mohd-Redzwan, S. Mycotoxin: Its impact on gut health and microbiota. Front. Cell Infect.
Microbiol. 2018, 8, 60. [CrossRef]

19. Gonkowski, S.; Obremski, K.; Calka, J. The influence of low doses of zearalenone on distribution of selected
active substances in nerve fibers within the circular muscle layer of porcine ileum. J. Mol. Neurosci. 2015, 56,
878–886. [CrossRef]

20. Bouhet, S.; Oswald, I. The intestine as a possible target for fumonisin toxicity. Mol. Nutr. Food Res. 2007, 51,
925–931. [CrossRef]

21. Obremski, K.; Gonkowski, S.; Wojtacha, P. Zearalenone-induced changes in the lymphoid tissue and mucosal
nerve fibers in the porcine ileum. Pol. J. Vet. Sci. 2015, 18, 357–365. [CrossRef] [PubMed]

22. Pinton, P.; Oswald, I.P. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: A review.
Toxins 2014, 6, 1615–1643. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.fct.2019.01.021
http://www.ncbi.nlm.nih.gov/pubmed/30682385
http://dx.doi.org/10.1016/j.scitotenv.2018.05.091
http://www.ncbi.nlm.nih.gov/pubmed/29801200
http://dx.doi.org/10.3390/toxins2040572
http://www.ncbi.nlm.nih.gov/pubmed/22069600
http://dx.doi.org/10.3390/ijerph14060632
http://www.ncbi.nlm.nih.gov/pubmed/28608841
http://dx.doi.org/10.3390/toxins11100561
http://dx.doi.org/10.3390/molecules22010018
http://dx.doi.org/10.3390/toxins11120727
http://dx.doi.org/10.3390/toxins7114684
http://dx.doi.org/10.3390/toxins10040148
http://dx.doi.org/10.1016/j.autneu.2014.08.001
http://dx.doi.org/10.24425/pjvs.2020.132751
http://www.ncbi.nlm.nih.gov/pubmed/32233304
http://dx.doi.org/10.1111/nmo.13770
http://www.ncbi.nlm.nih.gov/pubmed/31793155
http://dx.doi.org/10.3390/toxins10040138
http://www.ncbi.nlm.nih.gov/pubmed/29587461
http://dx.doi.org/10.3390/toxins9030098
http://www.ncbi.nlm.nih.gov/pubmed/28287437
http://dx.doi.org/10.3390/toxins11030159
http://www.ncbi.nlm.nih.gov/pubmed/30871167
http://dx.doi.org/10.3389/fcimb.2018.00060
http://dx.doi.org/10.1007/s12031-015-0537-2
http://dx.doi.org/10.1002/mnfr.200600266
http://dx.doi.org/10.1515/pjvs-2015-0046
http://www.ncbi.nlm.nih.gov/pubmed/26172186
http://dx.doi.org/10.3390/toxins6051615
http://www.ncbi.nlm.nih.gov/pubmed/24859243


Toxins 2020, 12, 461 17 of 28

23. Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal
innervation: Integrated local and central control. Adv. Exp. Med. Biol. 2014, 817, 39–71. [CrossRef] [PubMed]

24. Gershon, M.D. The enteric nervous system: A second brain. Hosp. Pract. 1999, 34, 31–52. [CrossRef]
25. Furness, J.B. Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb

ileum: A morphometric and neurochemical investigation. Cell Tissue Res. 2006, 323, 183–196.
26. Schneider, S.; Wright, C.M.; Heuckeroth, R.O. Unexpected roles for the second brain: Enteric nervous system

as master regulator of bowel function. Annu. Rev. Physiol. 2019, 81, 235–259. [CrossRef]
27. Morikawa, S.; Komuro, T. Distribution of myenteric NO neurons along the guinea-pig esophagus. J. Auton.

Nerv. Syst. 1998, 74, 91–99. [CrossRef]
28. Reiche, D.; Michel, K.; Pfannkuche, H.; Schemann, M. Projections and neurochemistry of interneurones in

the myenteric plexus of the guinea-pig gastric corpus. Neurosci. Lett. 2000, 295, 109–112. [CrossRef]
29. Zhang, G.Q.; Yang, S.; Li, X.S.; Zhou, D.S. Expression and possible role of IGF-IR in the mouse gastric

myenteric plexus and smooth muscles. Acta Histochem. 2014, 116, 788–794. [CrossRef]
30. Zimmermann, J.; Neuhuber, W.L.; Raab, M. Homer1 (VesL-1) in the rat esophagus: Focus on myenteric

plexus and neuromuscular junction. Histochem. Cell Biol. 2017, 148, 189–206. [CrossRef]
31. Furness, J.B. The Enteric Nervous System; Blackwell Publishing: Oxford, UK, 2006; pp. 1–274.
32. Kamikawa, Y.; Shimo, Y. Pharmacological characterization of the opioid receptor in the submucous plexus of

the guinea-pig oesophagus. Br. J. Pharmacol. 1983, 78, 693–699. [CrossRef] [PubMed]
33. Kunisawa, Y.; Komuro, T. Interstitial cells of Cajal associated with the submucosal plexus of the Guinea-pig

stomach. Neurosci. Lett. 2008, 434, 273–276. [CrossRef] [PubMed]
34. Heinicke, E.A.; Kiernan, J.A. An immunohistochemical study of the myenteric plexus of the colon in the rat

and mouse. J. Anat. 1990, 170, 51–62. [PubMed]
35. Sayegh, A.I.; Ritter, R.C. Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-,

calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal
plexuses of the rat small intestine. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003, 271, 209–216. [CrossRef]
[PubMed]

36. Monro, R.L.; Bornstein, J.C.; Bertrand, P.P. Synaptic transmission from the submucosal plexus to the myenteric
plexus in Guinea-pig ileum. Neurogastroenterol. Motil. 2008, 20, 1165–1173. [CrossRef]

37. Li, J.P.; Zhang, T.; Gao, C.J.; Kou, Z.Z.; Jiao, X.W.; Zhang, L.X.; Wu, Z.Y.; He, Z.Y.; Li, Y.Q. Neurochemical
features of endomorphin-2-containing neurons in the submucosal plexus of the rat colon. World J. Gastroenterol.
2015, 21, 9936–9944. [CrossRef]
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