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Abstract: Low levels of reactive oxygen species (ROS) are critical for the operation of regular neuronal
function. However, heightened oxidative stress with increased contents of oxidation markers in
DNA, lipids, and proteins with compromised antioxidant capacity may play a harmful role in
the brain and may be implicated in the pathophysiology of neurodegenerative diseases. Sestrins,
a family of evolutionarily-conserved stress-inducible proteins, are actively regulated by assorted
stresses, such as DNA damage, hypoxia, and oxidative stress. Three highly homologous genes that
encode sestrin1, sestrin2, and sestrin3 proteins exist in the genomes of vertebrates. Under stressful
conditions, sestrins are activated with versatile functions to cope with different types of stimuli. A
growing body of evidence suggests that sestrins, especially sestrin2, can counteract oxidative stress,
lessen mammalian/mechanistic target of rapamycin (mTOR) expression, and promote cell survival,
thereby playing a critical role in aging-related disorders including neurodegeneration. Strategies
capable of augmenting sestrin expression may; thus, facilitate cell adaptation to stressful conditions
or environments through stimulation of antioxidant response and autophagy process, which may
carry clinical significance in neurodegenerative diseases.
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1. Introduction

Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are essential for maintaining
the operation of regular neuronal function [1]. On the contrary, excessive RNS/ROS is proposed to play
a harmful role and leads to widespread destruction of the cell membranes, DNA structures, and protein
components that can, together, result in cell death. Growing evidence suggests that neurodegenerative
diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD)
are all characterized by increased levels of oxidation markers, including DNA, lipids, proteins, or
compromised antioxidant capacity in the brain [2,3]. Counteracting the detrimental effect of excessive
RNS/ROS levels or enhancement of the antioxidant ability may be beneficial to prevent the disease
development or progression in neurodegenerative disorders.

Sestrins, a family of highly-conserved stress-inducible proteins with molecular weights ranging from
52 to 57 kDa, were discovered rather recently during probing for new stress-responsive proteins [4–6].
The fundamental properties of sestrins are gradually recognized in recent years [7,8]. The structure of
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sestrin contains three distinct functional sites, namely suppression of ROS production, regulation of
mammalian/mechanistic target of rapamycin (mTOR), and leucine-binding [7,8]. The crucial roles of
sestrins in various disorders including neurological diseases are emerging. In this review, we discuss
recent advances in the molecular mechanisms underlying the sestrin-mediated protective effects against
neuronal dysfunction in various neurological insults, especially neurodegenerative diseases.

2. Energy Supply in the Brain and Oxidative Damages to the Neurons

The brain with active metabolism performs diverse signaling functions that require high energy
demands, thereby resulting in overproduction of various reactive species and heightened oxidative
stress. Evidence from biochemical studies suggested that a great portion of cerebral adenosine
triphosphate (ATP) consumption is devoted to the process of the electrical activity of neurons [9].
Neurons are a specialized cell type in the brain exceedingly active in transmitting neuro-electrical
signals through their long, extended out-reaching neurites to cope with functional needs of living
organisms. High oxidative metabolism rate and relatively lower levels of antioxidant enzymes are
found in neurons, making them exceptionally vulnerable to oxidative stress [10,11]. An adequate
energy supply from mitochondria is; thus, indispensable for neuronal excitability and survival. Given
the highly polarized neuronal structures, coordination of trafficking and anchoring of mitochondria
in the axons, such that neurons can sense and respond to constantly altered energy requirements, is
important for both normal function under physiological conditions and for survival under pathological
conditions [12]. Furthermore, neurotransmission is an energy-demanding process that requires
adequate ATP supply to support various steps, including the maintenance of ionic gradients, reversing
changes in intracellular Ca2+ that arise from opening voltage-gated Ca2+ channels, as well recycling
synaptic vesicles [13]. Given these reasons, it has been recognized that the brain is vulnerable to oxidative
stress. Mechanistically, many factors contribute to this observation. These include redox signaling,
Ca2+ overload-induced O2

−/H2O2 generation, glutamate-induced Ca2+ release leading to formation of
ONOO− and excitotoxicity, glucose-related formation of advanced glycation end-products (AGEs),
mitochondrial O2

- production, monoamine oxidase metabolism generating H2O2, neurotransmitter
(e.g., dopamine) oxidation, modest or low levels of reduced glutathione (GSH), microglia-related
NOX2-mediated O2

− formation, redox active transition metals (e.g., Fe2+ and Cu+), nNOS-mediated
NO production, and hydroxyl radical-mediated RNA/DNA oxidation [10,14]. Thus, oxidative stress
as a recognizable feature in various neurodegenerative disorders and contributes to progression of
neuronal death and neural dysfunction, indicating that oxidative stress is a crucial pathogenic player
in neurodegeneration [15].

It is widely accepted that low levels of ROS and RNS are vital for maintaining neuronal function [1].
However, increased oxidative stress with heightened levels of oxidation markers in DNA, lipids, and
proteins or lower antioxidant capability in the brain may play a harmful role to the organism and may
be implicated in the pathophysiology of multiple neurodegenerative diseases such as AD, PD, and
HD [2,3]. Various events including calcium overload, excitotoxicity, mitochondrial dysfunction, and
apoptotic processes play a role in oxidative stress-mediated neurodegeneration [1]. Molecules from
exogenous or endogenous origins with the ability to counteract these detrimental effects may be crucial
for the development of effective treatments for neurodegenerative diseases (Figure 1).
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Figure 1. Both exogenous and endogenous factors may induce superoxide ions, reactive oxygen 
species (ROS), and reactive nitrogen species (RNS) to insult proteins, DNA, and lipids, which may 
further lead to oxidative damage and thereby create a vicious cycle to promote pathogenesis of 
neurodegenerative diseases. However, this also opens possibilities of developing therapeutic 
treatments for these diseases. 

3. Sestrins: An Acute Stress-Responsive Protein  

Sestrins, a family of stress-inducible proteins, are activated and upregulated upon exposure to 
hypoxia [5], oxidative stress [16], as well as genotoxic stress [6,17]. The sestrin family may possess 
protective functions in many physiological and pathological conditions through regulation of various 
mechanisms such as autophagy, endoplasmic reticulum (ER) stress, inflammation, metabolic 
homeostasis, and oxidative stress [18]. Three isoforms, namely sestrin1 (also known as PA26), sestrin2 
(also known as Hi95), and sestrin3, are identified in mammalian cells [4,5,19]. Although the structures 
of sestrin1 and sestrin3 remain to be fully characterized, the crystal structure of human sestrin2 
reveals two globular subdomains with distinctive functions [7]. The N-terminal domain lessens alkyl 
hydroperoxide radicals via its helix-turn-helix oxidoreductase motif, while the C-terminal domain 
adjusts this motif to physically interact with GTPase activating protein (GAP) activity towards Rags 
2 (GATOR2), thereby resulting in suppression of mTOR complex 1 (mTORC1) [7]. Another functional 
site for leucine binding in sestrin2 was found. Binding of leucine results in a conformational 
adjustment and thus alters the position of the GATOR2-binding site in the C-terminal domain of 
sestrin2; such a leucine–sestrin2 interaction; thus, disrupts the association of sestrin2 with GATOR2 
with stimulation of the mTORC1 activity [8,20]. A diagram showing stress-mediated activation of 
transcription factors leading to induction of sestrin and its downstream pathways regulating 
autophagy is depicted below in Figure 2. 

Figure 1. Both exogenous and endogenous factors may induce superoxide ions, reactive oxygen species
(ROS), and reactive nitrogen species (RNS) to insult proteins, DNA, and lipids, which may further lead
to oxidative damage and thereby create a vicious cycle to promote pathogenesis of neurodegenerative
diseases. However, this also opens possibilities of developing therapeutic treatments for these diseases.

3. Sestrins: An Acute Stress-Responsive Protein

Sestrins, a family of stress-inducible proteins, are activated and upregulated upon exposure
to hypoxia [5], oxidative stress [16], as well as genotoxic stress [6,17]. The sestrin family may
possess protective functions in many physiological and pathological conditions through regulation of
various mechanisms such as autophagy, endoplasmic reticulum (ER) stress, inflammation, metabolic
homeostasis, and oxidative stress [18]. Three isoforms, namely sestrin1 (also known as PA26), sestrin2
(also known as Hi95), and sestrin3, are identified in mammalian cells [4,5,19]. Although the structures
of sestrin1 and sestrin3 remain to be fully characterized, the crystal structure of human sestrin2
reveals two globular subdomains with distinctive functions [7]. The N-terminal domain lessens alkyl
hydroperoxide radicals via its helix-turn-helix oxidoreductase motif, while the C-terminal domain
adjusts this motif to physically interact with GTPase activating protein (GAP) activity towards Rags 2
(GATOR2), thereby resulting in suppression of mTOR complex 1 (mTORC1) [7]. Another functional site
for leucine binding in sestrin2 was found. Binding of leucine results in a conformational adjustment
and thus alters the position of the GATOR2-binding site in the C-terminal domain of sestrin2; such a
leucine–sestrin2 interaction; thus, disrupts the association of sestrin2 with GATOR2 with stimulation
of the mTORC1 activity [8,20]. A diagram showing stress-mediated activation of transcription factors
leading to induction of sestrin and its downstream pathways regulating autophagy is depicted below
in Figure 2.



J. Clin. Med. 2019, 8, 1001 4 of 16J. Clin. Med. 2019, 8, x FOR PEER REVIEW 4 of 15 

 

 

Figure 2. The sestrin2–GATOR interaction triggered by oxidative stress regulates mTORC1 activity 
and downstream autophagy homeostasis. 
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conditions; these include nuclear factor erythroid 2 like 2 (Nrf2), activating transcription factor4 
(ATF4), ATF6, c-Jun N-terminal kinase (JNK)/c-Jun pathway, hypoxia-inducible factor-1α (HIF-1α), 
X-box-binding protein 1 (XBP1), and CCAAT/enhancer-binding protein beta (C/EBPβ) [23–28]. 
Together, these previous reports imply vital roles of sestrins in coping with cellular stress under 
different physiological and pathological conditions. 

4. Sestrins and Oxidative Metabolism 

Sestrins play a vital role in alleviating cellular oxidative damages under stressful conditions. All 
three family members of sestrins are activated by oxidative stress, possibly involved in the 
metabolism of ROS and/or its reactive metabolites [29]. Causative evidence revealed that silencing 
the expression of sestrin genes by shRNA can cause ROS accumulation in various cell lines [19,30], 
result in DNA damage and genetic instability [31,32], or lead to cell death [5,19,21,30]. In addition to 
mammalian cells, suppression of sestrin homologue in Drosophila, or dSesn, can also result in ROS 
accumulation to cause oxidative damage in skeletal muscle [33], suggesting that anti-oxidation is an 
evolutionarily-conserved unique property of sestrins. 

Several mechanisms have been proposed to underlie the antioxidant actions of sestrins. The first 
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Figure 2. The sestrin2–GATOR interaction triggered by oxidative stress regulates mTORC1 activity
and downstream autophagy homeostasis.

Numerous factors have been identified to regulate the expression of sestrins. It was originally
found that the expression of sestrin1 and sestrin2 was regulated by p53 [6], whereas the expression of
sestrin3 was regulated by transcription factor forkhead box O (FOXO) [21,22]. Later, additional studies
reveal several regulators crucial for the expression of sestrins under various stressful conditions; these
include nuclear factor erythroid 2 like 2 (Nrf2), activating transcription factor4 (ATF4), ATF6, c-Jun
N-terminal kinase (JNK)/c-Jun pathway, hypoxia-inducible factor-1α (HIF-1α), X-box-binding protein
1 (XBP1), and CCAAT/enhancer-binding protein beta (C/EBPβ) [23–28]. Together, these previous
reports imply vital roles of sestrins in coping with cellular stress under different physiological and
pathological conditions.

4. Sestrins and Oxidative Metabolism

Sestrins play a vital role in alleviating cellular oxidative damages under stressful conditions. All
three family members of sestrins are activated by oxidative stress, possibly involved in the metabolism
of ROS and/or its reactive metabolites [29]. Causative evidence revealed that silencing the expression
of sestrin genes by shRNA can cause ROS accumulation in various cell lines [19,30], result in DNA
damage and genetic instability [31,32], or lead to cell death [5,19,21,30]. In addition to mammalian cells,
suppression of sestrin homologue in Drosophila, or dSesn, can also result in ROS accumulation to cause
oxidative damage in skeletal muscle [33], suggesting that anti-oxidation is an evolutionarily-conserved
unique property of sestrins.

Several mechanisms have been proposed to underlie the antioxidant actions of sestrins. The
first mechanism involves peroxiredoxins, which are the enzymes critical for the antioxidant defense
system that metabolizes peroxides in living organisms. Sestrins contain a conventional redox-active
domain homologous to alkyl hydroperoxide reductase (AhpD), a crucial component of the bacterial
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antioxidant defense system; AhpD can catalyze the reduction to regenerate overoxidized bacterial
peroxiredoxins, alkyl hydroperoxide reductase C (AhpC) [19]. Initial results indicated that purified
sestrin2 protein supports ATP-dependent reduction of overoxidized peroxiredoxin-I in vitro, indicating
that, unlike AhpD that is a disulfide reductase, sestrins are cysteine sulfinyl reductases [19]. Later
it was reported that sestrin2, unlike sulfiredoxin, is not a reductase for cysteine sulfinic acid of
peroxiredoxins [34]. Sulfiredoxin facilitates access to the peroxiredoxin active site and selectively
repairs the hyperoxidized forms of typical 2-Cys peroxiredoxins in an ATP-dependent manner; however,
sestrin2 lacks sequence similarity with sulfiredoxin [35]. Nevertheless, it was revealed that sestrins can
activate the antioxidant transcription factor Nrf2 [36], whereas one of the target genes downstream of
Nrf2 is sulfiredoxin. Thus, it is also possible that sestrins may enhance the expression of sulfiredoxin to
regenerate peroxiredoxins indirectly.

In addition to regenerating overoxidized peroxiredoxins, the second anti-oxidative mechanism
of sestrins contributing to redox homeostasis may be the AMP-dependent kinase/mTOR complex 1
(AMPK-mTORC1) signaling pathway that regulates autophagy, an intracellular degradation system
that delivers a cytoplasmic component to the lysosomes [37]. mTOR is a serine/threonine kinase first
discovered in the early 1990s as the target of rapamycin, an anti-fungal drug [38,39]. As a part of protein
complexes mTORC1 and mTORC2, mTOR functions as a sensor for energy, nutrient, and redox states to
regulate protein synthesis and autophagy [40,41]. Under various stressful events, such as deprivation
of nutrients or deficiency of growth factors, mTOR is inhibited and autophagy is initiated [42,43].
Following a series of processes, the phagophore forms to engulf the target contents to be degraded
and becomes autophagosome, which then fuses with lysosome and is termed as autophagolysosome
that contains hydrolytic enzymes for the degradation of the engulfed intracellular materials from
autophagosome [43]. By contrast, in the presence of nutrients or growth factors, mTOR can inhibit the
kinase activity of Unc-51 like autophagy-activating kinase-1 (ULK1) and thereby suppress autophagy
through phosphorylation. Under various insults, such as DNA damages and ER stress, sestrins can
regulate both AMPK and mTORC1 kinase [44,45]; the former activates the process of autophagy
while the latter inhibits it [46,47]. Among the intracellular organelles, mitochondria are one of the
major organelles capable of ROS production and are under persistent oxidative stress from the ROS
produced as metabolic byproducts during cellular respiration and oxidative phosphorylation [16,48].
Impaired mitophagy, the selective degradation of mitochondria by autophagy [49], can lead to
accumulation of dysfunctional mitochondria with resultant build-up of ROS and ultimately damage
macromolecules in cellular structures [16,50,51]. It was recently reported that sestrin2 can suppress
sepsis through induction of mitophagy and inhibition of NLR family pyrin domain-containing 3
(NLRP3) activation in macrophages; sestrin2 enhances the autophagic efficiency by recognizing and
shipping the damaged mitochondria to lysosomes for degradation [52]. Thus, activation of sestrins
can eradicate the dysfunctional mitochondria through autophagy [53] as a molecular mechanism
alternative to regenerating functional peroxiredoxins for the maintenance of redox balance. Notably,
dysfunctional mitochondria are well-known to trigger mitochondria-dependent intrinsic apoptosis
involving cytochrome c release and formation of apoptosomes. Enhancement of mitophagy by sestrins
may; therefore, contribute to its anti-apoptotic actions. The potential protective mechanisms of sestrin2
in neurological disorders are shown below in Figure 3.
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Figure 3. The schematic diagram illustrates that sestrin2 induced by oxidative stress plays a central role
in the maintenance of cellular homeostasis by regulating multiple mediators involved in anti-oxidation,
metabolism, and cellular degradation (autophagy).

5. Sestrins in Aging-Related Clinical Conditions other than Neurodegeneration

Convincing evidence supports the contention that aging is associated with various detrimental
mechanisms, such as accumulation of oxidative damages, genomic instability, loss of protein
homeostasis, mitochondrial dysfunction, cellular senescence, as well as stem cell exhaustion [54].
Thus, aging is considered a risk factor for a variety of diseases in addition to neurodegeneration;
these include cancer, cardiovascular diseases, type II diabetes, and stroke [54–56]. Inhibition of either
ROS or mTORC1 can counteract aging [7] and sestrins have both characters to exert such beneficial
effects [33,57]. Indeed, augmentation of sestrin expression decreases aging markers; in contrast,
attenuation of sestrin expression accelerates aging processes [33,58–60]. Aging is accompanied with
accumulation of cellular damages among various tissues in living organisms that leads ultimately to
functional disruption, thereby causing disability or death. Although aging is not a specific disease
entity, it is closely associated with numerous diseases [54].

Aging is the predestined time-dependent decline in physiological condition and a key risk factor
toward cancer development. Cancer and aging share the same phenomena of time-dependent increase
of cellular damages. As sestrins play a pivotal role in aging [33,61], sestrins may play crucial role in
cancers. Sestrins are viewed as potential tumor suppressors. Higher sestrin2 expression is a favorable
prognostic factor in patients with non-small cell lung cancer and low sestirn2 expression was associated
with poor tumor differentiation, advanced tumor, node, and metastasis (TNM) stage, and lymph node
metastasis [62]. In patients with colorectal cancer, it was reported that decreased expression of sestrin2
represented an unfavorable outcome [63]. Through control of mTORC1, sestrin1 is crucial to suppress
the development of follicular lymphomas [64]. It was reported that the promoter area of SESN3, the
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sestrin3 gene, is methylated in 20% of the endometrial cancer, which denotes the character of sestrin3
as a tumor suppressor [65].

Hypernutrition can induce chronic activation of mTORC1 and p70S6 kinase to cause obesity and
related pathology such as hepatosteatosis and insulin resistance. Activation of sestrin2 can prevent
insulin resistance and fatty liver disease [66]. Induction of sestrin2 causes AMPK activation, mTORC1
inhibition, and maintenance of a high AKT activity that leads to suppression of gluconeogenesis in
the liver and decrease the level of blood sugar. In contrast, sesntrin2-deficient obese mice exhibit
an obvious reduction of AKT activity that causes insulin resistance and glucose overproduction [66].
Sestrin3 also carries the ability to regulate hepatic insulin sensitivity and prevents insulin resistance
through maintaining AKT activity [66,67].

Previously it was demonstrated that loss of sestrins in Drosophila caused age-associated
pathologies such as muscle degeneration, cardiac malfunction, and triglyceride accumulation. The
cardiac malfunction includes slower heart rate and reduced heart function. The effects induced
by sestrin deficiency in Drosophila were generally precluded by AICAR, the AMPK activator, and
rapamycin, the mTORC1 inhibitor [33]. These findings suggest that sestrin family may play important
roles in the regulation of cardiac pathophysiology [68].

In the endothelium, downregulation of sestrin2 increases pro-inflammatory reactions and ER
stress in an AMPK-dependent way [69]. Several papers showed that sestrin2 inhibits the inflammatory
pathway and lessens the extents of inflammation in macrophages, an important mediator for the
formation of atherosclerosis [70–72].

While manipulations of sestrin expression for clinical application are still not feasible, genetic
deletion of sestrins in model animals, especially in mice, has provided valuable information revealing
the crucial functions of these proteins. Mice deficient in all three sestrins exhibit reduced postnatal
survival associated with defective mTORC1 inactivation in multiple organs during neonatal fasting, thus
revealing a non-redundant mechanism by which the sestrin family of guanine nucleotide dissociation
inhibitors (GDIs) regulates the nutrient-sensing Rag GTPases to control mTORC1 signaling [73].
Sestrin2 knockout mice displayed enhanced expression of proinflammatory genes and activation of
basilar membrane macrophages; these results suggest that sestrin2 plays an important role in cochlear
homeostasis and immune responses to stress [74]. Other phenotypes of sestrin2 knockout mice included
worsened hair cell loss in gentamicin-treated cochlear explants, implying an important role of sestrin2
in protecting hair cells against gentamicin [75]. As discussed below in the section of neurodegeneration,
sestrin2 knockout mice also exhibited considerably increased late-phase neuropathic pain behavior
that was associated with elevated ROS levels [76].

6. Potential Roles of Sestrins in Neurological Disorders and Neurodegenerative Diseases

Among the age-related disorders, neurodegenerative diseases are especially critical due to the
paucity of effective treatment to date, irreversible clinical course, and accompanying heavy social
economic burdens [56,77,78]. The potentially important roles of sestrins in neurological disorders have
not been fully demonstrated, but they are gradually appreciated in recent years. These include seizure,
neuropathic pain, ischemic stroke, and neonatal hypoxic-ischemic encephalopathy. As mentioned
above, sestrins can directly suppress oxidative stress by regenerating overoxidized peroxiredoxins and
indirectly mitigate oxidative stress by regulating mTOR to enhance autophagy, or more specifically
mitophagy. The N-terminal domain of sestrins reduces oxidative stress through its helix-turn-helix
motif, whereas the C-terminal domain of sestrins may modify this motif to adapt physical relation
with GATOR2, thereby resulting in inhibition of mTORC1 [7]. However, in addition to oxidative
stress, another common pathogenic mechanism of chronic neurodegenerative diseases is accumulation
of aberrantly processed and/or misfolded proteins. These include amyloid-beta peptide (Aβ) and
hyperphosphorylated tau protein in AD, Lewy body containing α-synuclein in PD, mutant huntingtin
(Htt) in HD, TAR DNA-binding protein-43 (TDP-43) in amyotrophic lateral sclerosis (ALS), and others.
Autophagy-activating drugs may; thus, open a new opportunity for the treatment of neurodegenerative



J. Clin. Med. 2019, 8, 1001 8 of 16

diseases caused by misfolded protein toxicity [79]. The dual biological functions of sestrins, namely
anti-oxidation and autophagy promotion to remove the aggregated proteins; therefore, place them in a
unique position defending neurodegeneration as compared to other antioxidants.

Through studies in human patients with temporal lobe epilepsy, it was shown that sestrin3 is
a regulator of a proconvulsant gene [80]. Using rat temporal lobe epilepsy as a model system, it
was revealed that silencing rno-miR-155-5p can increase sestrin3 expression and reduce acute seizure
activity, pathological features, and cell apoptosis [81]. Sestrins exert the beneficial effects both in
central and peripheral nervous system. ROS are critical for developing and maintaining neuropathic
pain; the antioxidant activity of sestrin2 lessens neuropathic pain after peripheral nerve injury [76].
These results suggest a therapeutic potential for the management of chronic neuropathic pain in
human patients. Several studies have also explored the roles of sestrins in cerebral ischemia [82–86].
With the current knowledge of sestrins, it is presumed that sestrins possess endogenous protective
properties following cerebral ischemia, which are related with blood–brain barrier (BBB) preservation,
neuroprotection, and amelioration of inflammation [82]. Transient global cerebral ischemia can induce
sestrin2 expression and offer a protective effect against ischemic damage in the rat hippocampal
CA1 region [83]. The AMP-activated protein kinase/peroxisome proliferator-activated receptor γ

coactivator-1α (AMPK/PGC-1α) pathway takes part in controlling mitochondrial biogenesis and lessens
cerebral ischemia/reperfusion (I/R) damage. Downregulation of sestrins2 expression can decrease
mitochondrial biogenesis, which involves the AMPK/PGC-1α pathway [84]. It was demonstrated that
sestrin2 enhances AMPK phosphorylation and negatively regulates mTOR to provide neuroprotective
effects in neonatal hypoxic-ischemic encephalopathy in rat pups [85]. In addition to the MAPK
pathway, in neonatal rats, sestrin2 can be induced by HIF-1α to protect the BBB via reducing VEGF
expression after severe hypoxia-ischemia [86]. The protective effects can be enhanced by recombinant
human sestrin2 and reversed by silencing sestrin2 expression. These studies clearly demonstrated the
crucial roles of sestrins as an endogenous protective mediator against various neurological disorders
in the brain.

Several studies including ours explored the underlying protective mechanisms of sestrins in AD,
the most common neurodegenerative disease with cognitive decline [87–91]. In an earlier study, it
was shown that sestrin2 is one of Aβ-responsive genes in human neuroblastoma CHP134 cells [90].
We later showed that sestrin2 can be induced in primary rat cortical neurons treated with Aβ and in
aged APPswe/PSEN1dE9 transgenic mice; furthermore, sestrin2 serves as an endogenous protective
mediator against Aβ-induced neurotoxicity through the regulation of autophagy [92]. Presenilins
are essential for regulating neurotransmitter release and mutations in the presenilin genes are the
main cause of familial AD [91]. Loss of presenilin activity may impair synaptic functions leading
to dementia and neurodegeneration [89]. Cells deficient in presenilin have lower levels of sestrin2
expression accompanied by mTOR dysregulation, further suggesting a crucial role of sestrin2 in
AD-related conditions [88]. One previous study showed that synaptic activity, through NMDA
receptor (NMDAR) signaling, boosts antioxidant defenses, reduces overoxidized peroxiredoxin, and
promotes resistance to oxidative stress; more importantly, synaptic activity also upregulates sestrin2, the
peroxiredoxin-activating genes via C/EBPbeta [93]. These studies reveal the critical functions of sestrin2
involving oxidative stress and nutrient-sensing through mTOR in AD-related neurodegeneration. In
addition to pre-clinical investigations, a human study compared the protein concentrations of sestrin1
and sestrin2 in the serum among AD patients, mild cognitive impairment (MCI) patients, and control
group. Results showed significantly higher levels of sestrin2 protein and mRNA in the AD patients
compared to MCI and elderly control groups; no significant difference in sestrin1 level was observed
among these study groups. These results suggested the possibility of using sestrin2 as a protein
marker in AD patients [87]. In addition to AD-type dementia, sestrin2 expression is altered in the
brains of subjects diagnosed with human immunodeficiency virus (HIV)-associated neurocognitive
disorders. In one study, sestrin2 immunoreactivity was determined in 42 isocortex sections from
HIV-1-infected subjects compared to 18 age-matched non-HIV controls and 19 advanced AD cases.
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With HIV infection, the sestrin2 immunoreactivity pattern shifted from neuropil predominance (N) to
neuropil and neuronal-soma co-dominance (NS) and neuronal-soma predominance (S); in AD brains,
sestrin2 immunoreactivity was mostly intense in the neuropil and co-localized with phosphor-Tau
immunoreactivity in a subset of neurofibrillary lesions [94].

Parkinson’s disease (PD) is a common neurodegenerative disease that mainly affects the motor
system with slow movement, tremor, and rigidity as clinical presentations [95]. The causes of PD remain
to be fully defined but may involve both genetic and environmental factors [95]. The main pathological
finding includes an abnormal α-synuclein accumulation bound to ubiquitin in the damaged central
nerve cells, which is termed as Lewy body (LB) [96,97]. Immunostaining and Western blot analysis
using the brains of normal controls and patients with PD and dementia with Lewy body (DLB)
revealed that sestrin3 is present in brainstem-type LBs, suggesting that autophagy modulators like
sesestrin3 are incorporated into LBs and that the expression of these proteins can be increased by
various factors including aging [98]. Another study reported elevated expression of sestrin2 in the
midbrain of patients with PD [99]. In the in vitro PD model, increases in sestrin2 expression protect
against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity [99]. In a rotenone-induced cellular model
of PD, sestrin2 can also protect dopaminergic cells against rotenone toxicity through AMPK-dependent
autophagy activation [100].

ALS is the main type of motor neuron disease (MND) involving death of motor neurons that
control voluntary movements, thereby leading to weakness in the limbs, difficulty in speech or
swallowing, and respiration failure as a final cause of death [101,102]. Instead of studying nerve tissues,
investigation with biopsied skeletal muscles from three ALS, three MND, and three control subjects
using genome-wide gene expression analysis and RT-PCR validation showed that sestrin3 is one of the
several genes that were overexpressed only in the ALS group [103]. This finding suggests that sestrins
play a role in this devastating neurodegenerative disease. Further studies are needed to evaluate their
potential protective roles in this disease.

3-Nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial succinate dehydrogenase,
has been used to investigate the molecular mechanisms of mitochondrial dysfunction-induced cell death
and neurodegeneration in HD [104]. We have demonstrated before that brain-derived neurotrophic
factor (BDNF) augments sestrin2 expression to protect neuronal damage against 3-NP-induced oxidative
stress, which is via attenuation of ROS formation; moreover, BDNF induction of sestrin2 involves the
pathway of NO/PKG/NF-κB [105]. Finally, in a mouse model of age-related cochlear degeneration, a
significant age-related reduction in sestrin2 expression in cochlear tissues was observed, which was
associated with early onset hearing loss and accelerated age-related sensory cell degeneration.

Based on the above information, a table with a list of neurological diseases in which sestrins have
been investigated is shown below (Table 1). Collectively, these lines of evidence revealed that sestrins
may be critical to protect various pathological conditions including neurodegeneration. Enhancing
the expression levels of sestrins, especially sestrin2, may have clinical significance to prevent disease
development or delay progression. With either animal models of neurological disorders or patients
with neurodegenerative diseases, alteration of sestrins signaling with resultant alterations of ROS and
autophagy by molecular or pharmacological approaches will advance our understanding towards
these diseases and may lead the way to innovative approaches for their prevention and treatment.



J. Clin. Med. 2019, 8, 1001 10 of 16

Table 1. Evidence of neurological disease mechanisms related to sestrins. The symbol “#” indicates
those reports involving human samples or clinical studies.

Neurological Diseases Sestrins References and Potential Mechanisms of Sestrins

Temporal lobe epilepsy sestrin3 [80]#: to regulate proconvulsant gene network
[81]: to counteract oxidative stress

Neuropathic pain sestrin2 [76]: antioxidant activity against ROS

Cerebral ischemia sestrin2

[83]: to regulate ribosomal protein S6 for hippocampal protection
against transient global ischemia

[84]: to regulate mitochondrial biogenesis via the AMPK/PGC-1α
pathway for protection against focal cerebral ischemia

[85]: to regulate the mTOR pathway for protection in neonatal
hypoxic-ischemic encephalopathy

[86]: induced by HIF-1α to protect blood-brain barrier (BBB) against
severe hypoxic injury in neonatal rats

Alzheimer’s disease sestrin2

[87]#: to increase sestrin2 protein and mRNA in the Alzheimer’s
disease (AD) patients, no change in sestrin1

[88]: deficient in presenilin, mTOR dysregulation
[90]: amyloid-beta peptide (Aβ)-responsive genes

[92]: to regulate autophagy for protection against Aβ neurotoxicity

Parkinson’s disease sestrin2
[99]#: Lewy body formation, p53 pathway involving ROS, and

mitochondrial function
[100]: neuroprotection via AMPK-dependent autophagy activation

Amyotrophic lateral sclerosis sestrin3 [103]#: investigation with biopsied skeletal muscles

Huntington’s disease sestrin2 [105]: Brain-derived neurotrophic factor (BDNF) induction of sestrin2
involves NO/PKG/NF-κB pathway and carries antioxidant activity

7. Conclusions and Future Perspectives

The sestrin family, as critical intracellular sensors, regulate multiple processes such as autophagy,
ER stress, inflammation, metabolic homeostasis, and oxidative stress. Hence, sestrins are also regarded
as acute stress-responsive proteins. Emerging evidence reveals that sestrins may have important
clinical functions to cope with pathological conditions resulted from various stressful conditions such
as DNA damage, hypoxia, metabolic derangement, and oxidative stress. In aging-related neurological
disorders, especially neurodegenerative diseases, excessive oxidative stress and autophagy play
crucial roles in the pathogenesis of these diseased conditions. Sestrins, with unique functional sites
to counteract ROS and mTOR regulation, are expected to play a pivotal role in neurodegenerative
diseases, although, up to date, only very limited information is available to unveil their importance. In
addition, most of the studies in neurological disorders focused on sestrin2, information regarding the
roles of sestrin1 and sestrin3 in the nervous system is relatively scarce. Potentially unique functions of
these two sestrins in neurodegeneration; therefore, warrant further investigation. Certain molecules
and proteins can affect the expression levels of sestrins. It is assumed that any measure capable of
enhancing sestrin expression should have clinical significance in counteracting disease-related stressful
conditions. On the other hand, it should also be noted that it is currently unclear whether uncontrolled
activation of sestrins may result in negative impacts; this may be significant given that sestrins are
involved in autophagy regulation, whereas excessive autophagy may lead to autophagic cell death.
Such a concern further reveals the critical importance for an in-depth understanding towards both the
downstream and upstream regulators of sestrins. Clarification of the signal transducing pathways of
sestrins would promote the discovery of innovative therapeutics for disease treatment without the
potential confounding side effects, especially for the devastating neurodegenerative diseases.
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