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Abstract

Self-control is the process of favoring abstract, distal goals over concrete, proximal goals during decision-making and is an
important factor in health and well-being. We directly compare two prominent neurocognitive models of human
self-control with the goal of identifying which, if either, best describes behavioral and neural data of dietary decisions in a
large sample of overweight and obese adults motivated to eat more healthfully. We extracted trial-by-trial estimates of
neural activity during incentive-compatible choice from three brain regions implicated in self-control, dorsolateral
prefrontal cortex, ventral striatum and ventromedial prefrontal cortex and assessed evidence for the dual-process and
value-based choice models of self-control using multilevel modeling. Model comparison tests revealed that the value-based
choice model outperformed the dual-process model and best fit the observed data. These results advance scientific
knowledge of the neurobiological mechanisms underlying self-control-relevant decision-making and are consistent with a
value-based choice model of self-control.
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Introduction
Self-control is central to health and well-being and thus is a
promising target for preventive interventions. Designing effec-
tive interventions requires a precise neurocognitive model self-
control, but identifying a working model of self-control that
maps onto underlying brain systems has proven challenging
(Fujita et al., 2018). One barrier to progress is that neural models
of self-control are almost always tested in isolation, not directly
compared to one another. Here, we define self-control as the
process of favoring abstract, distal goals over concrete, proximal
goals during decision-making (Fujita, 2011) and compare two
prominent neurocognitive models of self-control with the goal of
identifying which, if either, best describes behavioral and neural
data of dietary self-control-relevant decisions. The overarching
purpose of this work is to develop a more-refined neurocognitive
model of self-control to enable translational interventions to
improve health outcomes.

We focus on two prominent models of self-control: dual-
process models and value-based choice models. There are many
variations on each class of models within the fields of social
psychology and neuroeconomics; we draw hypotheses from the
features that are most common within each model family. As
such, it should be noted that the statistical models we compare
in this paper are just several of many possible model instanti-
ations. In general, dual-process models describe self-control as
a battle between ‘hot’ affective states (e.g. craving) and ‘cold’
cognitive states (e.g. inhibitory control). In these models, self-
control outcomes are the product of an antagonistic, seesaw
relationship between affect and cognitive control (Kotabe and
Hofmann, 2015). Though the precise neural location of these
states differs substantially across studies (Berkman, 2017), dor-
solateral prefrontal cortex (dlPFC) is posited as a key node for
flexibly maintaining goal representations (Braver et al., 2009) and
implementing cognitive control across a variety of cognitively
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demanding tasks (MacDonald et al., 2000; Miller and Cohen, 2001;
Duncan, 2013; Shenhav et al., 2013; Buhle et al., 2014). On the
other hand, regions in the mesolimbic dopamine system, such
as ventral striatum (VS), are posited as key nodes for reward
processing (McClure et al., 2007). According to these models,
‘cold’ regions inhibit activity in ‘hot’ regions (Figner et al., 2010),
and therefore the balance, or difference, between lateral and sub-
cortical activity should predict self-control-relevant outcomes
(Heatherton and Wagner, 2011; Lopez et al., 2014; Lopez et al.,
2017). This is because these regions are hypothesized to serve
opposing functions during self-control-relevant choices.

In value-based choice models, subjective values from a range
of choice attributes are integrated into a single accumulated
expected value (or utility) for each choice (Berkman et al., 2017a).
Attributes are not limited to just ‘hot’ and ‘cold’—they con-
tribute separately to an accumulation process rather than com-
pete with each other directly. Evidence for choice options is
accumulated over time until one choice reaches the threshold
for enactment, determining behavior and therefore self-control-
relevant outcomes (Harris et al., 2018; Tusche and Hutcherson,
2018). Although it’s possible to classify outcomes as self-control
‘successes’ or ‘failures’ (c.f. Hare et al., 2009), value-based choice
models often focus on the weights assigned to choice attributes
(e.g. taste and health) during decision-making rather than the
outcomes per se. This is because choices are a combination of
both signal and noise, but with enough choices available, it is
possible to estimate parameters for relevant choice attributes
that are more stable and drive behavior in the long run. For
example, even if an individual ‘fails’ to exert self-control by
choosing to eat an unhealthy snack, that specific choice may
occur in the presence of a relative shift in the value of health-
iness or tastiness, which may accumulate over time to impact
the probability of selecting healthy foods overall.

In value-based choice models, dlPFC and VS are also impli-
cated as important nodes during dietary decisions, but their
relationship is not expected to be antagonistic. Instead, these
regions are hypothesized to independently encode the subjec-
tive value (i.e. goal value) derived from different choice attributes
relevant to the decision-making process (e.g. health and taste
of food options), which are ultimately integrated in ventrome-
dial prefrontal cortex (vmPFC). Although dlPFC is expected to
contain information about the subjective value of health while
individuals with goals to eat healthfully make dietary decisions,
it is unclear whether dlPFC computes goal values, implements
cognitive control to modulate the value of health or plays some
other role (Plassman et al., 2010; Shenhav, 2017). In any case,
within the value-based choice framework, (a) dlPFC is expected
to show increased activation to healthy foods, (b) VS is expected
to show increased activation to tasty, unhealthy foods and (c)
both regions are expected to positively correlate with vmPFC.
Notably, options that are tasty and healthy are expected to
elicit activity in both dlPFC and VS. In contrast to dual-process
models, which predict that the balance between dlPFC and VS
predicts self-control, value-based choice models theorize that
self-control-relevant choices should be recoverable from activity
in vmPFC. Although it remains unclear what precise role vmPFC
plays in decision-making and whether it may serve as a final
common pathway for choice, it has been implicated in choice
regardless of stimulus type (e.g. food or money) or motivation
(Rangel and Hare, 2010; Hare et al., 2010; Hare et al., 2009; for
meta-analyses, see Clithero and Rangel, 2013; Bartra et al., 2013)
and is thought to serve functions such as contributing to the
integration or comparison of value signals (Lim et al., 2011;
Padoa-Schioppa and Conen, 2017; Levy and Glimcher, 2012) or

alternatively, the construction of integrated meaning of the self
in context (Roy et al., 2012) or situational processing (Lieberman
et al., 2019). Consequently, value-based choice models suggest
that the choice that evokes the greatest activation in vmPFC is
likely to be enacted, and activation in vmPFC is driven by inputs
from regions such as dlPFC, VS and potentially their interac-
tion. However, in contrast to dual-process models, which imply
that lateral prefrontal and subcortical regions should be neg-
atively correlated during decision-making, value-based choice
models posit that there is not necessarily a directional relation-
ship between neural activity in brain regions representing the
subjective value of choice attributes, which are subsequently
integrated in vmPFC (i.e. these value signal inputs might be
positively, negatively or not related).

Despite these different predictions about how neural activity
in dlPFC, VS and vmPFC relate to self-control-relevant decisions,
these predictions are rarely compared within the same study.
Researchers typically test the neural predictions of dual-process
(Lopez et al., 2017) and value-based choice models (Hare et al.,
2009; Hare et al., 2011) separately, with notably few attempts to
directly compare the models (Hutcherson et al., 2012). This may
be because traditional univariate analyses are not well suited to
model comparison.

Here, we employ a trial-by-trial modeling approach that
allows us to relate neural activity to self-control-relevant
decisions in the dieting domain on a finer time scale than
has previously been possible and provides relative model fit
indices. We recruited a large sample of overweight and obese
participants (N = 94; BMI M = 31.33, BMI SD = 3.95) who had
explicit dieting goals and examined neural responses in three
brain regions of interest (ROIs)—dlPFC, VS and vmPFC—while
they made real dietary decisions about healthy and unhealthy
snack foods during a food auction task (Hutcherson et al., 2012).
Because participants enrolled in this study to improve healthy
eating habits, there is an implicit self control dilemma between
distal health goals and proximal hedonic goals during the task.
On each trial, we extracted the average blood-oxygenation-level-
dependent (BOLD) signal within each ROI, regressed bid value on
these BOLD signal estimates and assessed the relative evidence
for each model of self-control using multilevel modeling. Dual-
process models predict an association between the balance
between activity in dlPFC and VS with bid value, whereas value-
based choice models predict that vmPFC should be associated
with bid value, even when dlPFC and VS are included in the
statistical model. Our primary hypotheses and related analytic
decisions were preregistered and are available in Supplementary
material and online: https://osf.io/8bvxe/registrations.

Methods
Participants

Participants were 94 adults aged 35–46, (77 females, 16 males,
1 declined to respond; age M = 39.2, age SD = 3.5) with goals to
eat healthfully, recruited as part of a 6-month longitudinal inter-
vention study to improve healthy eating habits during middle
age. The present study is a secondary analysis of the data.
The sample size was determined based on the power analysis
accompanying the original grant application (7R21CA175241–03)
and constrained by the grant budget and award period. The
data were collected before participants were randomized into
intervention groups. To ensure all participants shared a healthy
eating goal, only interested participants who endorsed readiness
to change their eating habits were enrolled. We excluded four
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Fig. 1. Task design. Each trial consisted of a 4 s snack food presentation,

followed by a 4 s bid period. Snack foods were either healthy (e.g. carrot sticks)

or unhealthy (e.g. candy). All trials ended with a jittered fixation cross presented

for 3–6 s (M = 4.38 s).

participants: two due to excessive motion, one due to technical
failure and one due to an incidental finding, yielding a total of
90 participants for statistical analyses. This study was approved
by the University of Oregon Institutional Review Board; all par-
ticipants gave written informed consent and were compensated
for their participation.

Food auction task

To measure individual subjective value of healthy and unhealthy
snack foods, participants completed a willingness-to-pay task
(Hutcherson et al., 2012; http://github.com/UOSAN/WTP/tree/
chives) while undergoing functional neuroimaging. The task is
an incentive-compatible economic auction in which participants
view images of thirty healthy and thirty unhealthy snack
foods and choose how much they are willing to pay for each
item. Foods that are energy-dense and high-sugar or contain
processed or red meat were classified as unhealthy, whereas
foods that are not energy-dense and are high-fiber, low-fat and
low-sugar were classified as healthy. Participants were endowed
with $2.00 to buy a snack and were told that one trial would be
randomly selected and enacted. Bids greater than or equal to
a randomly selected bid resulted in the participant getting the
snack, whereas lower bids resulted in participants receiving the
money, but not the snack. The optimal strategy is to bid the true
amount one is willing to pay for each item. The task utilized
an event-related design (Figure 1), and food image order was
randomized for each subject.

Neuroimaging data acquisition

Data were acquired using a 3 T Siemens Skyra scanner at the
University of Oregon’s Lewis Center for Neuroimaging. High
resolution anatomical volumes were acquired using a T1-
weighted MP-RAGE pulse sequence and functional volumes were
acquired using a T2∗-weighted echo-planar sequence (voxel
size = 2 mm3). Scan parameters are listed in Supplementary
material.

Neuroimaging data preprocessing and analysis

Neuroimaging data were pre-processed and analyzed using
SPM12 (Wellcome Department of Cognitive Neurology; http://
www.fil.ion.ucl.ac.uk/spm). For each participant, functional
images were realigned, coregistered to the high-resolution
anatomical image, unwarped to reduce susceptibility artifacts
and smoothed using a 2 mm3 FWHM Gaussian smoothing
kernel. First-level statistical analyses were conducted in native

Fig. 2. ROIs in volumetric space.

space. Each trial was entered in the model as a separate
regressor (rather than grouped by condition). Trial duration was
specified as 8 s from food image onset to fixation (Figure 1).
Realignment parameters were transformed into five motion
regressors, including absolute displacement from the origin
in Euclidean distance and the displacement derivative for
both translation and rotation and a single trash regressor for
images with motion artifacts (e.g. striping) identified using
automated motion assessment (Version v0.2-alpha; Cosme et al.,
2018) and visual inspection. These regressors were included as
covariates of no interest. Two participants were excluded for
having >10% unusable volumes, which was more than three
standard deviations from the median (Mdn = 1.57%, SD = 3.21%).
The resulting statistical maps for each trial were concatenated
to create a beta-series (Rissman et al., 2004). Preprocessing and
analysis scripts are available online (https://osf.io/pevmy).

ROI definition and parameter extraction

We defined bilateral ROIs for dlPFC, vmPFC and VS (Figure 2)
using the Desikan-Killiany (Desikan et al., 2006) and Destrieux
(Destrieux et al., 2010) cortical parcellation atlases and the
FreeSurfer segmentation atlas (Fischl et al., 2002) and mapped
these ROIs to participants’ T1-weighted anatomical scans
using FreeSurfer 6 (Fischl, 2012). To determine which cortical
parcels to use, we inspected meta-analytic association test
maps from NeuroSynth (Yarkoni et al., 2011) for the following
terms: cognitive control, dlPFC, value and vmPFC and identified
overlapping FreeSurfer parcels (Supplementary Figure S1). To
create the dlPFC ROI, we concatenated the middle frontal gyrus
and the inferior frontal sulcus parcels. We created the vmPFC ROI
using the medial orbitofrontal cortex parcels and the VS ROI by
concatenating the nucleus accumbens and putamen segments.
All ROIs were concatenated and binarized using the fslmaths
function in FSL 5.0.10 (Jenkinson et al., 2012) and resliced to 2
mm3 using SPM12. This process yielded individually defined
dlPFC, vmPFC and VS ROIs for each participant. To calculate
the mean BOLD signal across the voxels in each ROI, we use
the 3dmaskave function in AFNI 18.2.04 (Cox, 1996). For each
participant, we extracted the mean parameter estimate of BOLD
signal within each ROI for each trial in the beta-series. To
account for differences in variability between individuals and
ROIs, parameter estimates were standardized within participant
and ROI.

http://github.com/UOSAN/WTP/tree/chives
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Multilevel modeling

Evidence for the dual-process and value-based choice models
of self-control was assessed by inspecting parameter estimates
from a series of multilevel models. Statistical analyses were con-
ducted in R 3.5.1. (R Core Team, 2018; https://www.r-project.org/)
using the lme4 package (Bates et al., 2015). For each theoretical
model, we compared a series of nested statistical models in
which bid value was the criterion and neural predictors were
added to a base model that included only the fixed effect of
Food Type (healthy or unhealthy). For all models, only participant
intercepts were treated as random effects. We compared nested
models using chi-square difference tests; models were treated
as significantly improving model fit if P < 0.05. To determine
the best fitting model across theoretical models, we inspected
the Akaike information criterion (AIC). Because AIC improves
as the predictive value of a model increases (Aho et al., 2014),
this comparison reveals which of the models maximizes accu-
racy in predicting bid value (where smaller AIC indicates better
prediction accuracy). To estimate multilevel model effect sizes,
we calculated R2 according to the guidelines in Lorah (2018). To
estimate correlations between ROIs and account for the nested
structure of trials within participants, we calculated repeated
measures correlations using the rmcorr package (Bakdash and
Marusich, 2017) in R. Because these models are only several of
many possible ones, we also run additional, non-preregistered
models and compared model fit using a specification curve
(Simonsohn et al., 2015). The results of this analysis can be found
in Supplementary material.

Dual-process model comparison

To characterize the competitive nature of dlPFC and VS posited
by the dual-process model, we created a ‘balance’ score (Lopez
et al., 2017) by subtracting estimates of activity in VS from dlPFC
on each trial. Positive values indicate relatively greater dlPFC
activity, whereas negative values indicate relatively greater VS
activity. To test dual-process predictions, we compared model
fit among the following models. As stated in our preregistration,
if DP1 is the best fitting model and the balance score (dlPFC—
VS) is significantly associated with bid value, we will interpret
this as evidence for the dual-process model of self-control. How-
ever, if DP2 is the best fitting model, suggesting that vmPFC is
significantly associated with bid value, we will interpret this as
evidence for the value-based choice model, which is the only
model that predicts a critical role for vmPFC in self-control.

First level models:
Base model: Yij (Bid value of trial i by person j) = β0j + β1jFood

Typeij + εij

DP1: Yij (Bid value of trial i by person j) = β0j + β1jFood
Typeij +β2j(dlPFCij − VSij) + εij

DP2: Yij (Bid value of trial i by person j) = β0j + β1jFood Typeij +
β2j(dlPFCij − VSij) + β3jvmPFCij + εij

Second level equations:
β0j = γ 00 + μ0j

β1j = γ 10

(In DP1 and DP2): β2j = γ 20

(in DP2): β3j = γ 30

Value-based choice model comparison

To assess evidence for this theoretical model, we compared the
following statistical models. As stated in our preregistration,

if VB1—which specifies terms for dlPFC and VS to represent
subjective value of relevant choice attributes and vmPFC as
the value integrator—is the best fitting model and the neural
predictors are significantly associated with bid value, we will
interpret this as evidence for the value-based choice model. To
mirror the model comparison for the dual-process models, we
also planned to test whether adding the balance score (dlPFC—
VS) to the model (VB2) would improve model fit. However, this
model did not converge because the balance score is a linear
combination of dlPFC and VS and was therefore inestimable.

First level equations:
Base model: Yij (Bid value of trial i by person j) = β0j + β1j Food

Typeij + εij

VB1: Yij (Bid value of trial i by person j) = β0j + β1j Food
Typeij + β2jdlPFCij + β3jVSij + β4jvmPFCij + εij

VB2: Yij (Bid value of trial i by person j) = β0j + β1j Food Typeij

+ β2jdlPFCij + β3jVSij + β4jvmPFCij + β5j(dlPFCij − VSij) + εij

Second level equations:
β0j = γ 00 + μ0j

β1j = γ 10

(In VB1 and VB2): β2j = γ 20

(In VB1 and VB2): β3j = γ 30

(In VB1 and VB2): β4j = γ 40

(In VB2): β5j = γ 50

Value integration in vmPFC

The value-based choice model specifies that value signals from
dlPFC and VS are integrated in vmPFC. To assess evidence for
this hypothesis, we regressed trial-level vmPFC activity on dlPFC
and VS activity and their interaction. Participant intercepts were
modeled as random effects. We expected that if vmPFC inte-
grates the value signals from dlPFC and VS, then the fixed main
effects of each region on vmPFC activity would be significant
and positive and that the interaction between these regions also
would be significantly associated with vmPFC activity.

First level equation:
VMPFC: Yij (vmPFC on trial i by person j) = β0j + β1jdlPFCij + β2jVSij

+ β3jdlPFCij ×VSij + εij

Second level equations:
β0j = γ 00 + μ0j

β1j = γ 10

β2j = γ 20

β3j = γ 30

Results
Descriptives

Inspection of the data revealed a main effect of the Food Type
(healthy vs. unhealthy) on bid value, such that participants
were willing to pay more for healthy foods than unhealthy
foods (Figure 3; Mhealthy = 0.96, SDhealthy = 0.65; Munhealthy = 0.66,
SDunhealthy = 0.63). This is not unexpected given the dieting goals
of participants in the sample. Visual inspection of the neural
data revealed moderate positive correlations among the ROIs
(Table 1). In terms of differential neural activation, healthy foods
were associated with greater BOLD signal than unhealthy foods
in dlPFC and VS, but not vmPFC (Figure 4). In terms of behavioral
responses, higher bid values were associated with increased
BOLD signal in all ROIs (Figure 5) and similar trajectories were
observed for both healthy and unhealthy foods (Figure 6). The
relevant inferential tests are reported in the following section.

https://www.r-project.org/


D. Cosme et al. 961

Table 1. Repeated measures correlations among ROIs

ROI M SD 1 2 3

1. VS 0.82 1.10 –
2. dlPFC 0.79 1.10 0.52 [0.50, 0.54] –
3. vmPFC 0.13 1.09 0.35 [0.33, 0.37] 0.50 [0.48, 0.52] –

Note. N = 5220 trials. All correlations are statistically significant, P < 0.001. 95% confidence intervals are bracketed. Correlations adjust for trials nested within participant
using multilevel modeling.

Fig. 3. Mean bid value in dollars for healthy and unhealthy snack foods.

Points represent mean bid value for individual participants. Error bars are 95%

confidence intervals across trials.

Fig. 4. Mean parameter estimates of BOLD signal as a function of Food Type

(healthy or unhealthy) and ROI. Error bars are 95% confidence intervals across

trials.

Model comparison

In general, results of the multilevel modeling analyses did not
support the dual-process hypothesis. Compared to the base
model that included only the fixed effect of Food Type, adding
the difference term representing the relative activation of dlPFC
and VS to the model DP1 did improve model fit as indicated
by a statistically significant change in chi-square, χ2(1) = 8.42,
P = 0.004 (Table 2 for a summary of model fit results). However,
the model that included an additional term for vmPFC activ-
ity (DP2) significantly improved fit over the basic dual-process

Fig. 5. Mean parameter estimates of BOLD signal as a function of bid value

and ROI. Points are scaled by the number of observations. Error bars are 95%

confidence intervals across trials.

model (DP1), χ2(1) = 31.26, P < 0.001. In DP2 (Table 3), each one
standard deviation increase in vmPFC activity was associated
with a 5.0 cent increase in bid value (b = 0.05, 95% CI = [0.03, 0.06],
P < 0.001), while the difference between dlPFC and VS activity
was associated with a 1.8 cent increase for each SD change
(b = 0.02, 95% CI = [0.00, 0.03], P = 0.046).

In contrast, results generally supported the hypotheses of
the value-based choice model. Fit improved significantly from
the base model when individual terms for dlPFC, vmPFC and
VS activity were added, according to the chi-square difference
test, χ2(3) = 53.73, P < 0.001. Furthermore, directly comparing the
canonical dual-process and value-based choice models (DP1
and VB1, respectively) revealed the value-based choice model as
the better fitting, AICDP1 = 9746.80, R2

DP1 = 0.19, AICVB1 = 9705.49,
R2

VB1 = 0.20. Critically, VB1 was also the best fitting model
compared to other, non-preregistered potential specifications of
dual-process and value-based choice models (see specification
curve in Supplementary material). Inspection of the fixed effects
of the canonical value-based choice model (VB1) revealed that
bid value was positively associated with dlPFC activity (b = 0.04,
95% CI = [0.02, 0.06], P < 0.001) and vmPFC activity (b = 0.03, 95%
CI = [0.01, 0.05], P = 0.003). Each one standard deviation increase
in dlPFC activity was associated with a 4.4 cent increase in bid
value, whereas it was associated with a 3.1 cent increase for
vmPFC. VS activity was not significantly associated with bid
value, b = 0.00, 95% CI = [−0.02, 0.02], P = 0.950. See Table 3 for VB1
parameter estimates and statistics.

We also observed qualified support for vmPFC integrating
responses from dlPFC and VS, as hypothesized by the value-
based choice model (Table 4). The results of this multilevel model
showed that both dlPFC (b = 0.43, 95% CI = [0.40, 0.46], P < 0.001)
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Fig. 6. Mean parameter estimates of BOLD signal as a function of bid value, Food Type (healthy or unhealthy) and ROI. Points are scaled by the number of observations.

Error bars are 95% confidence intervals across trials.

Table 2. Summary of model comparison results

Model df χ2 (df) AIC Deviance P

Dual-process models
Base model 4 9753.22 9745.22
DP1 5 8.42 (1) 9746.80 9736.80 0.004
DP2 6 31.26 (1) 9717.54 9705.54 <0.001

Value-based choice models
Base model 4 9753.22 9745.22
VB1 7 53.73 (3) 9705.49 9691.49 <0.001

Note. Models were compared sequentially in t he order presented here using a change in chi-square difference test. A statistically significant P
value (i.e. P < 0.05) indicates that that model fits the data better than the model above. The bolded model is the best fitting model.

and VS (b = 0.12, 95% CI = [0.09, 0.14], P < 0.001) were positively
associated with vmPFC activity, but their interaction was not
(b = 0.01, 95% CI = [0.00, 0.02], P = 0.123).

Discussion
We used a novel trial-by-trial statistical modeling approach to
compare two prominent neurocognitive models of self-control.
Analyses focused on the three ROIs (dlPFC, VS and vmPFC)
commonly implicated in dual-process and value-based choice
models of self-control. We preregistered and tested competing
hypotheses about these regions posed by the theoretical models
and then compared the models based on their fit to the data.

Our results did not support the core hypothesis posed by the
dual-process model—that the relative activation between dlPFC
and VS is what drives self-control-relevant outcomes (Lopez
et al., 2017). If this were the case, DP1 should have been the
best fitting model, but it was not. In addition, the consistent
improvement in fit when including vmPFC is inconsistent with
dual-process theory. Though chi-square statistics are sensitive
to the number of free parameters, the lack of evidence for the
dual-process model is not merely a function of reduced degrees
of freedom. Because we preregistered our models, parameters
were not included or excluded based on chance variation in
the data. Also, VB1 had the lowest AIC, which penalizes addi-
tional parameters to reduce overfitting, despite having the most
model parameters. Therefore, these results are inconsistent with

the hypothesis that self-control-relevant decisions result from
antagonism between dlPFC and VS.

In contrast, our results support the value-based choice
hypothesis that vmPFC activity is associated with self-control-
relevant decisions. Including vmPFC improved model fit, and
the value-based choice model, VB1, was the best fitting model
overall. Further, activations in the two regions that putatively
represent the value of relevant choice attributes in this context—
health in dlPFC and taste in VS—were both positively related to
vmPFC activation. The observed positive correlation between
VS and dlPFC is more consistent with the value-based choice
model, where multiple attributes can contribute to the value of
an option simultaneously.

Together, these results have implications for translational
interventions to improve self-control. For example, they suggest
that interventions seeking to amplify the subjective value of food
health and/or decrease the value of food taste (e.g. via cognitive
reappraisal) may be more effective than interventions targeting
inhibitory control. Additionally, because the value-based choice
model isn’t limited to ‘hot’ and ‘cold’ choice attributes, this
model suggests that other sources of value, such as social norms
or identity (Nook and Zaki, 2015; Berkman et al., 2017b; Pfeifer
and Berkman, 2018), may be useful intervention targets.

However, our results did not support one secondary
hypothesis of the value-based choice model. The model posed by
Berkman et al. (2017a) specifies that vmPFC integrates value
signals from dlPFC and VS, but it is unclear exactly how
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Table 3. Results of the multilevel models DP1, DP2 and VB1

Fixed effects

DP1 b SE t (df) P

Intercept 0.96 0.03 34.08 (106.04) <0.001
Food Type −0.30 0.02 18.43 (5219.69) <0.001
dlPFC—VS 0.02 0.01 2.90 (5305.03) 0.004

Random effects

Variance SD

Participant 0.06 0.24

Fixed effects

DP2 b SE t (df) P
Intercept 0.95 0.03 33.78 (106.18) <0.001
Food Type −0.30 0.02 18.44 (5218.74) <0.001
dlPFC—VS 0.02 0.01 2.00 (5305.17) 0.046
vmPFC 0.05 0.01 5.60 (5305.69) <0.001

Random effects

Variance SD

Participant 0.06 0.24

Fixed effects

VB1 b SE t (df) P

Intercept 0.92 0.03 31.34 (125.43) <0.001
Food Type −0.30 0.02 18.25 (5218.31) <0.001
dlPFC 0.04 0.01 3.83 (5304.49) <0.001
VS 0.00 0.01 0.06 (5301.72) 0.950
vmPFC 0.03 0.01 3.00 (5305.26) 0.003

Random effects

variance SD

Participant 0.06 0.24

Note. DP1 is the model representing the core dual-process theoretical model; DP2 adds a term for vmPFC to DP1; VB1 is the model representing the
core value-based choice theoretical model. The reference group for Food Type is healthy. Bolded values indicate statistical significance at P < 0.01.
Degrees of freedom (df) were calculated using the Satterthwaite approximation.

Table 4. Results of the multilevel model regressing vmPFC activity on dlPFC and VS.

Fixed effects b SE t (df) P

Intercept −0.32 0.04 7.69 (101.75) <0.001
dlPFC 0.43 0.01 29.75 (5306.36) <0.001
VS 0.12 0.01 8.08 (5306.96) <0.001
dlPFC×VS 0.01 0.01 1.54 (5262.86) 0.123

Random effects variance SD

Participant 0.14 0.37

Note. This model represents an ancillary hypothesis of value-based choice models that the interaction between dlPFC and VS is associated
with vmPFC activity. Bolded values indicate statistical significance at P < 0.001. Degrees of freedom (df) were calculated using the Satterthwaite
approximation.

this ‘integration’ happens. If vmPFC merely serves to sum
the weighted inputs, then an additive, ‘main effects only’
model might be possible. If vmPFC performs a more complex
calculation (e.g. input-contingent) then an interaction model
might also be possible. Thus, we tested both possibilities.
Contrary to our hypothesis, while VS and dlPFC were positively
associated with vmPFC activity, their interaction was not.
Though there is no consensus across the various formulations
of value-based choice models as to whether or not there
are interactions among the inputs to the value accumulation
(Berkman et al., 2017a; Hare et al., 2011; Lim et al., 2018; Sullivan

et al., 2015), these data indicate that an interaction might not be
present, at least in this task.

In light of the vmPFC model results, it is notable that this
study design did not permit us to test directional relationships
among ROIs. Though it would be possible to assess directionality
using structural equation modeling, this method requires large
samples (Kline, 2016) and we were underpowered to utilize it.
Examining the structural relationship among these ROIs is an
important avenue for future research. Previous tests of the direc-
tional relationship between vmPFC and dlPFC using a similar
food task indicated that dlPFC moderated activity in vmPFC,



964 Social Cognitive and Affective Neuroscience, 2019, Vol. 14, No. 9

which in turn influenced choice (Hare et al., 2011). The influence
of dlPFC on vmPFC value signals has also been observed in other
contexts (Hare et al., 2009; Hare et al., 2014).

The pattern of activity in VS is noteworthy in two ways.
This region has been implicated in reward motivation (Schultz
et al., 1992; Kelley, 2004), providing the basis of the dual-process
prediction that VS activation would be more closely linked with
bids for hedonically rewarding, unhealthy foods compared to
healthy ones. In contrast, activity in VS was positively corre-
lated with bid value regardless of stimulus type (Figure 5). It
is possible that VS can represent non-hedonic types of reward
(such as health) when stimuli come to be associated with those
rewards for some other reason (such as a dieting goal). At the
same time, we observed a drop in the magnitude of the pos-
itive relation between bid value and VS activity when dlPFC
activity was entered into the model. This reduction may be
due to the collinearity between VS and dlPFC, which in turn
might be attributable to the participants’ dieting goals. Cases
where participants choose between one option that has (mostly)
hedonic value and another that has both abstract goal value and
(at least some) hedonic value are understudied in the research
literature but might more realistically reflect how self-control-
relevant decisions operate. Compared to dual-process models,
value-based choice models can more flexibly account for these
cases because the value-integration process is agnostic about
the number and sign of value inputs to a choice. Only in value-
based choice models can VS, presumably representing hedonic
or immediate reward value of some kind, contribute positively
toward both options in a choice.

This study has several limitations. First, we did not col-
lect independent liking, health or taste ratings. These ratings
would be necessary to make claims about the engagement of
self-control or the relative contributions of taste and health
on any single trial. Instead, our approach was to induce self-
control goal dilemmas by sampling dieters with healthy eating
goals and looking at average effects across participants to test
neurocognitive models of self-control. Second, we used a bid
increment of $0.50, which may limit power in studies with
smaller sample sizes and/or fewer experimental trials (Simms
et al., 2019). Finally, region-to-region differences in signal-to-
noise ratio (SNR) can make it difficult to compare the relative
contributions of various brain regions to a statistical model.
Indeed, there were region-wise differences in SNR (Supplemen-
tary material), but vmPFC had the lowest SNR of the three
focal regions, suggesting that SNR alone cannot account for the
observed effects.

The primary contribution of this research is the first direct
comparison of two neurocognitive models of self-control, but
several other features of the study are also noteworthy. The
ecological validity of the task was high because our participants
were overweight dieters who were bidding on food they would
actually receive. This feature of the study is in contrast to many
studies in the self-control literature that use a convenience
sample without necessarily verifying that they have goals (e.g.
dieting) that would confer subjective value to the healthiness of
a food (Milyavskaya et al., 2018). The translational value of the
results stems in part from the fact that the most common target
for weight-reducing interventions is precisely the population
from which the sample is drawn—overweight people who want
to diet.

This study also highlights the usefulness of studying self-
control within the context of an actual goal, dieting, that has
strong translational potential. Dieting is a promising model
for self-control because it unfolds across a longer time span

than a typical laboratory study—extending weeks or months as
opposed to an hour—and yet consists of a series of individual
decisions (i.e. food choices) that can be investigated with a brief
laboratory session. The context of dieting can also be fruitful for
informing models of self-control because it can imbue different
types of stimuli with value by increasing the importance of
different attributes; for example, a slice of cake holds both
(positive) hedonic value and, simultaneously (negative) value
with respect to the dieting goal. Though our study design
precluded a test of whether participants’ valuation of snack
foods changed across contexts, our data are consistent with the
possibility that the healthy foods might have accumulated some
hedonic value in addition to their health goal value. In this way,
dieting provides a more nuanced, complex test of self-control
theories by shifting and broadening the set of food attributes
that are relevant to participants’ multiple and (sometimes)
competing goals.

Conclusions
We found that the value-based choice model of self-control
better described the observed data. Our results neither prove
nor disprove the theories of self-control, but instead provide
evidence in support of the predictions of this and similar value-
based choice models that activity in vmPFC is related to deci-
sions requiring self-control and is positively associated with
dlPFC and VS. Contrary to predictions, we found evidence sug-
gesting that dlPFC and VS are not interactively associated with
vmPFC, and our study design could not clarify the directional-
ity of the relationships among these regions. Nevertheless, our
unique approach to modeling neuroimaging data on a trial-by-
trial basis and comparing theoretical models has helped refine
our understanding of the neurobiological mechanisms underly-
ing self-control and may, in turn, help inform the development of
translational interventions to aid those who struggle with self-
control.
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