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Abstract: Since herpes simplex virus type 1 (HSV-1) infection is so widespread, several antiviral
drugs have been developed to treat it, among which are uracil nucleosides. However, there are major
problems with the current medications such as severe side-effects and drug resistance. Here we
present some newly synthesized cyclic and acyclic uracil nucleosides that showed very promising
activity against HSV-1 compared to acyclovir.
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1. Introduction

Viruses are the main causes of fatal infectious diseases affecting humans worldwide [1].
One of the major viral human pathogens is the Herpes virus family, which has the potential
to cause lifelong latent infection. Life-threatening diseases can result from the primary
infections of the herpes viruses and also from their reactivation, especially in immune-
compromised patients [2]. Herpesviridae is a large family of DNA viruses consisting of
eight members that are grouped according to biological and genomic similarities into three
subfamilies (α, β, and γ) [3]. The γ subfamily includes Kaposi’s sarcoma associated with
herpes and the Epstein–Barr virus (EBV). The β subfamily includes cytomegalovirus and
the human herpesviruses HHV-6 and HHV-7 [4,5]. The α subfamily includes herpes sim-
plex viruses (HSV-1, HSV-2) and the varicella zoster virus (VZV) [3,6,7], which are among
the most common human diseases. HSV usually becomes dormant until reactivated under
certain conditions, like emotional stress, fever, and immunosuppression [1]. Symptoms
of HSV vary from mild vesicular lesions [8], oral and perioral infections, cold sores and
keratitis to serious symptoms such as corneal blindness, encephalitis and disseminated
neonatal infections [1,2].

The U.S. Food and Drug Administration (FDA) approved antiherpetic drugs belonging
to three classes. The first class consists of nucleoside (purine and pyrimidine) analogues
in which the sugar moiety is changed [2,8,9]. This class includes acyclovir (ACV) [10]
(9-(2-hydroxyethoxymethyl) guanine) [1,2], its valyl ester prodrug valacyclovir (VCV),
famciclovir (FCV) (the oral prodrug of penciclovir (PCV)) [11], and ganciclovir (GCV).
The second class pertains to acyclic nucleoside phosphonate (ANP) derivatives, and the
drug here is cidofovir (CDV). The third class contains pyrophosphate analogues to which
belongs phosphonoformic acid or foscarnet (FOS) [7]. Generally speaking, ACV and related
drugs are highly successful in treating HSVs [12] because they possess the advantages
of metabolic stability, low toxicity and high antiviral potency [2]. However, because of
prolonged use, resistant viral strains have emerged, leading to serious clinical problems like
severe mucosal infection and visceral dissemination, especially in immunocompromised
patients [12]. After their discovery, ANPs, including CDV, became a fundamental class of
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antiviral drugs for their durable antiviral effects, including on viruses that had become
resistant to other drugs [13]. Recently, both CDV and FOS were used to treat severe HSV
infections that had become resistant to ACV or FCV [8] but with poor results. The use of
CDV and GCV is limited due to poor oral bioavailability and the nephrotoxicity of CDV
and hematological toxicity of GCV [2]. Current approaches for improving anti-herpetic
activity include a series of 5-substituted 2′-deoxyuridine derivatives such as 5-halovinyl-
uracil nucleosides (e.g., brivudin (BVDU, Zostex®, Zerpex®), and the arabinosyl analogues
BVaraU and Sorivudin, which showed particularly potent anti-VZV activity. However,
due to the potential toxicity of (BVU), its use as a therapeutic agent is limited [8]. For the
abovementioned reasons, research into 5-substituents other than the 5-halovinyl group
was encouraged, and for this the newly prepared cyclic sugar moieties have demonstrated
specific anti-VZV activity [14–18]. The chemical structures of some of the drugs mentioned
above, together with other potent anti-viral agents belonging to the class of cyclic and
acyclic nucleoside analogues, are discussed in Figure 1.
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The COVID-19 pandemic has driven the whole world into a rush to invent anti-COVID
drugs [24,25]. The RNA-dependent RNA polymerase (RdRp) is essential for coronaviral
replication and transcription, and that marks it as the primary target for the antiviral
nucleotide analogue drugs [26,27]. Researchers have identified quite a few molecules that
interfere with the polymerase reaction, some of which are already FDA-approved to treat
other viruses [28,29]. Among these drugs is favipiravir, which has been proven effective in
clinical trials to treat SARS-CoV-2 [29–31] and has the ability to shut down the polymerase
reaction. Our immune system can easily destroy SARS-CoV-2 if it can stop the polymerase
reaction [30,32]. The target of all currently available drugs for treating herpes infections
is a viral DNA polymerase [33]. Chemically, polymerase inhibitors are classified into two
main groups [34,35]: nucleoside analogues and non-nucleoside inhibitors (pyrophosphate
derivatives) [36,37]. Among these drugs, cidofovir is an acyclic nucleoside phosphonate
approved to treat AIDS and used to treat many other DNA viral infections (e.g., HSV
and the papillomavirus) [38,39]. Some of the approved anti-viral drugs are being used in
clinical trials to treat SARS-CoV-2, and they are discussed in Figure 2.
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The well-known mode of action for nucleoside analogues is through the triphosphate
(TP) active form, which allows these analogues to act as competitive inhibitors of the viral
DNA polymerase [36]. To become active, the free OH group undergoes three intracellular
phosphorylation reaction that convert the nucleoside analogues into (TP) forms. Our newly
synthesized compounds are nucleoside analogues that bear the free OH group, which
helps them undergo phosphorylation inside the viral cell; however, further investigation
into their mode of action must be performed.

Based on the above information, we applied our interest in pyrimidine-derived bioac-
tive molecules to prepare new cyclic and acyclic nucleosides that incorporate 6-substituted-
pyrimidine moieties to increase their biological activities.

2. Results

2.1. Chemical Results

The synthesis of pyrimidine nucleoside analogues was performed via the alkyla-
tion of silylated pyrimidine alkylation, according to Vorbrüggen and Niedballa’s pro-
cedure [40–42]. First, 6-(2,4-dibromophenoxy methyl)-pyrimidine-2,4-dione 1 was pre-
pared via the condensation of ethyl-4-(2,4-dibromophenoxy)-3-oxobutanoate with urea
in the presence of sodium ethoxide [43–45]. Pyrimidine-2,4-dione 1 on reaction with
hexamethyldisilazane (HMDS) [45], afforded Bis(trimethylsilyl) 2. which was then re-
acted with different acyclic sugar analogues, namely, 2-acetoxyethyl acetoxymethyl ether
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i, 2-(acetoxymethoxy)propane-1,3-diyldibenzoate ii and benzyloxymethyl acetate iii to
produce the corresponding protected nucleoside analogues 3, 4, and 5 respectively. Di-
alkylation occurred when compound 2 interacted with benzyloxymethyl acetate iii, to
offer dibenzoxymethyl derivative (6) [40,42]. The structures of all the newly prepared
compounds were fully characterized by (Mass, 1H-NMR and 13C-NMR analysis). The
1H-NMR showing the disappearance of the NH proton, with the appearance of new signals
in the range δ≈ 5.40–5.45 ppm for O–CH2

*–N, indicated the formation of acyclic analogues
3, 4 and 5 (13C-NMR appearance of oxymethyl C (O–CH2

*–Ph) in the range of 71–72 ppm.
For compound 6, where dialkylation occurred, the disappearance of NH was observed,
and two new signals at δ ≈ 5.32 and 5.46 ppm attributed to 2H* of O*CH2N1 and 2H*
of O*CH2N3 appeared. 13C-NMR showed the appearance of the two oxymethyl carbon
groups (2* (O–CH2

*–Ph) in the range ≈71–73 ppm)
Protection removal for compounds 3 and 4 was achieved by splitting the ester blocking

with an MeOH/NH3 solution [46–49] to give 7 and 8 in a fairly moderate yield (≈55 to
80%), respectively, as revealed in Scheme 1. The 1H-NMR showed the appearance of the
free OH protons in the range δ ≈ 4.5–4.9 ppm.
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Cyclic nucleosides (9–11) were prepared via the reaction of silyated pyrimidine 2 with
various activated cyclic sugars, namely, 1-acetate-2,3,5-tri-0-benzoate-ß-D-ribofuranose iv, 2-
deoxy-3,5-di-0-p-chlorobenzoyl-D-ribofuranosyl chloride v and 1-bromo-2,3,4-tetra-0-acetyl-ß-
D-glucopyranose vi as reported in [9,50,51], giving the protected nucleosides 9, 10 and 11 as a
ß-anomers. 1H-NMR showed a doublet signal in the range δ≈ 6.20–6.48 ppm, corresponding
to the anomeric proton of a sugar moiety with a coupling constant (J1,2 = 9.10–9.50 Hz) that
was attributed to the diaxial orientation of H-1 and H-2 protons, indicating the presence of a
ß-configuration. Compounds 9, 10 and 11 were deprotected by using an MeOH/NH3 solution
at room temperature [52] to give the compounds 12, 13, and 14, respectively, as revealed in
Scheme 2. The 1H-NMR showed the appearance of the free OH protons, new signals in the
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range δ≈ 3.75–4.6 ppm and the 13C-NMR showed the appearance of six carbons from the cyclic
sugar moiety in the range≈ 62–98 ppm).
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2.2. Biological Results

Antiherpetic Activity of the Synthesized Compounds

Cytopathic effect (CPE) inhibition was evaluated for the 12 synthesized compounds at
different concentrations (6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 µg/mL) against
the HSV-1 KOS strain. ACV was included as a control in each assay. The percentage values
for CPE inhibition were reported in (Table 1).

From Table 1, we can see that the tested compounds exhibited varied antiherpetic
activity compared to that of ACV, yet 6 µg/mL of all compounds and ACV could not
prevent CPE presentation. A concentration of 12 µg/mL also could not prevent CPE except
for compounds 4, 6, and 8, which gave a CPE inhibition of 14, 30 and 32%, respectively. At
a concentration of 36 µg/mL, total prevention of viral CPE presentation was induced in
compounds 6 and 8, while the control drug ACV needed a higher concentration (42 µg/mL)
to produce the same effect. The results clearly indicated that two synthetic compounds
(6 and 8) showed higher antiviral activity than did ACV. Compound 4 also produced
total prevention of viral CPE presentation at the same concentration as ACV (42 µg/mL).
Antiviral activity was also expressed as the EC50, and the results are reported in Figure 3.
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Table 1. Inhibition of HSV-1-related CPE using different concentrations of tested compounds and a standard drug (ACV).
C

on
ce

nt
ra

ti
on

(µ
g/

m
L)

CPE Inhibition (%)

A
C

V
*

C
pd

.3

C
pd

.4
*

C
pd

.5

C
pd

.6
*

C
pd

.7

C
pd

.8
*

C
pd

.9

C
pd

.1
0

C
pd

.1
1

C
pd

.1
2

*

C
pd

.1
3

C
pd

.1
4

6 0 0 0 0 0 0 0 0 0 0 0 0 0

12 29 0 14 0 30 0 32 0 0 0 0 0 0

18 50 12 22 15 45 0 42 0 0 0 0 0 0

24 70 28 42 28 65 10 72 0 10 0 32 0 0

30 77 34 62 40 80 16 80 22 20 18 44 22 18

36 92 38 70 65 100 20 100 28 32 22 75 34 28

42 100 55 100 82 26 34 50 26 86 45 36

48 77 100 66 38 82 34 100 52 46

54 80 74 47 100 46 66 58

60 100 88 65 48 72 76

66 100 88 74 77 82

72 100 78 82 100

78 85 100

84 100

* Most potent compounds.
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Figure 3. Inhibitory effect of tested compounds and ACV represented by average EC50.

According to statistical analysis, it was found that compounds 4, 6 and 8 were active
against HSV-1 with an average EC50 of 25.23, 15.76 and 15.1, respectively, which were
close to that of ACV (13.96). There was also an insignificant difference (p > 0.05) between
their EC50 values compared to that of ACV, but there was a significant difference (p < 0.05)
between them and those of other compounds. Some compounds (3, 5 and 12) showed mod-
erate activity l with an EC50 of 36.69, 31.54 and 30.35, respectively. The other compounds (7,
9, 10, 11, 13 and 14) showed low activity. The strongest antiviral synthesized compounds
were chosen, and the antiviral assay experiment was repeated three times. The results are
reported in Table 2.

Table 2. Inhibition of HSV-1-related CPE by using different concentrations of the most potent tested
compounds and a standard drug (ACV).

Concentration
(µg/mL)

Compound 4 Compound 6 Compound 8 ACV

CPE Inhibition (%) Mean ± SE

6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

12 14.25 ± 3.75 30.30 ± 3.40 31.95 ± 2.75 29.00 ± 3.00

18 22.35 ± 2.25 45.90 ± 3.40 41.25 ± 4.05 49.80 ± 3.40

24 42.35 ± 1.85 65.15 ± 1.75 72.25 ± 2.05 70.45 ± 2.75

32 62.00 ± 5.00 80.40 ± 10.00 80.00 ± 10.00 77.65 ± 1.75

36 75.75 ± 9.85 99.00 ± 1.00 99.00 ± 1.00 92.50 ± 4.50

42 99.50 ± 0.50 99.50 ± 0.50
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3. Discussion

From the abovementioned results, we can conclude that the activity of acyclic nu-
cleosides predominated over that of the cyclic forms. In fact, the acyclics 4, 6 and 8
showed the highest activity. Compound 4, the protected form of compound 8 containing
N-substitution-bearing dibenzyloxymethyl displayed the lowest activity (25.23%), and
removing one benzyloxymethyl group from compound 6 increased its activity (15.76%);
these two findings indicated that the addition of a bulky group in an acyclic moiety re-
duced its activity. The highest activity, given by compound 8 (15.19%), occurred after the
hydrolysis of a benzoyl group into a free hydroxyl group, indicating the importance of the
hydrophilicity the free OH group provided to the activity. Compound 8 was similar to
ACV in its free amidic moiety and free-OH acyclic sugar. On the other hand, the cyclic form
carrying the O-acetyl-ß-D-glucopyranosyl moiety, as in compound 11 showed the lowest
activity (59.13%) compared to ACV, indicating that the bulkiness of the N1-substitution
decreased activity as shown in Figure 4.
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In this study, some of the synthetic compounds, uracil nucleoside analogues, showed
very good antiherpetic activity almost equal to that of ACV as shown in Figure 2 and Table 2.
Uracil nucleosides are one of the two main groups that inhibits the polymerase [10], which
has been studied over many years and represents a highly important target for antiherpetic
drugs [53,54]. Another example of uracil nucleoside analogues with a significant antiher-
petic activity was presented by Mansour and co-workers (1994). A thiouridine derivative
was effective against both HSV-1 and HSV-2 [16,55].

Our results are very promising as these compounds could work to overcome the
current resistance to antiherpetic drugs already in use. ACV and related nucleoside
analogues have been the gold-standard molecules for treating HSV infections during the



Molecules 2021, 26, 2988 9 of 15

past decades [1]; however, the long-term use of antiherpetic drugs has led to selective strain
resistance [56–58]. These HSV mutants can lead to more severe and chronic infections
in immunocompromised patients [1] and even a significant morbidity [56]. For all those
reasons, HSV resistance is presented as a major clinical problem for immunocompromised
patients [1]. The fact that the numbers of transplant and cancer patients are escalating
makes it obvious why the emergence of drug-resistant HSV infections is now a common
problem [1]. There are several resistance mechanisms of HSV to ACV 2; (a) decreased
viral TK production, (b) complete deficiency of viral TK activity, and (c) altered substrate
specificity of the viral TK protein and DNA polymerase [7].

Resistance to another nucleoside analogue (VCV, the prodrug of ACV) has also been
reported, and the mechanism of resistance is identical to that of ACV [59]. PCV and its
prodrug FCV, which are also among the gold-standard agents for the prophylaxis and
treatment of HSV-1, have been reported to induce resistance in HSV-1. FOS is an antiviral
drug that can overcome HSV-developed ACV resistance [60], but it causes nephrotoxicity,
which is a major drawback that limits its clinical use [61,62]. Moreover, some mutants with
double resistance to both ACV and FOS can also occur [56]. Another drug that is able to
overcome HSV resistance is CDV, an acyclic nucleoside phosphonate, that is reported to
be effective against ACV and FOS-resistant HSV in immunocompromised patients [63].
However, it is also nephrotoxic [64], and mutations that have cross-resistance to ACV and
FOS have reduced susceptibility to it [65].

Because polymerase target binding sites are highly conserved among virus fami-
lies [10], nucleoside analogue inhibitors possess a relatively high barrier to viral resistance,
meaning that the nucleoside analogues presented in our study represent a very good
approach for the treatment of drug-resistant HSV-1.

4. Materials and Methods

4.1. Chemistry

All reagents and solvents were purchased from Merck (Darmstadt, Germany) and
used without further purification. All melting points were uncorrected and measured
using Electro-thermal IA 9100 apparatus (Shimadzu, Kyoto, Japan). The NMR spectra
were recorded on Bruker AMX400 and Bruker Current AV400 Data spectrometer (400 MHz
for 1H, 100.6 MHz for 13C), Bruker BioSpin GmbH, Rheinstetten, Germany. Spectra and
chemical shifts (δ) were expressed as ppm against TMS as an internal reference. ESI mass
spectra using a Finnigan Thermo Quest MAT 95XL spectrometer and FAB high-resolution
(HR) mass spectra using a VG Analytical 70-250S spectrometer (Palmer, Hampden, MA,
USA) were conducted using an MCA method with polyethylene glycol as a support.
The reactions were monitored by thin layer chromatography (TLC) analysis using silica
gel (60 F254)-coated aluminum plates (Merck), which were visualized by UV irradiation
(254 nm) and iodine vapors. Column chromatography was performed using 60–120 mesh
silica gel. All reactions were carried out under the influence of dry nitrogen.

4.1.1. Preparation of 4-((2,4-Dibromophenoxy)methyl)-2,6-bis (trimethylsilyloxy)
pyrimidine 2

Uracil 1 (3.8 g, 10 mmol), (NH4)2SO4 (10 g, 7.5 mmol) in [(CH3)3Si]2NH) (HMDS)
(50 mL, 2.25 mmol) was refluxed with stirring for 4 h. The reaction solvent was evaporated
under reduced pressure to give compound 2.

4.1.2. General Procedure for Preparation of Acyclic and Cyclic Nucleosides

A mixture of (10 mmol) acylated reagents was carried out in dry acetonitrile (30 mL),
and these consisted of i, acyclic 2-acetoxyethyl acetoxymethyl ether; ii, 2-(acetoxymethoxy)
propane-1,3-diyldibenzoate; iii, benzyloxymethyl acetate; iv, cyclic 1-acetate-2,3,5-tri-O-
benzoate-ß-D-ribofuranose; v, 2-deoxy-3,5-di-O-p-chlorobenzoyl-D-ribofuranosyl chloride;
and vi, 1-bromo-2,3,4-tetra-O-acetyl-ß-D-glucopyranose. SnCl4 (2 mL) was added to the
residue of 2 (10 mmol) and stirred at−30 ◦C for 24 h. The reaction mixture was treated with
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dry pyridine (4 mL), left until an inorganic residue formed then filtered off. The filtrate was
diluted with CHCl3 (40 mL), washed with a saturated solution of NaHCO3 (50 mL), then a
1 N solution of HCl (50 mL), followed by brine (50 mL) and H2O (50 mL) successively. The
mixture was dried over anhydrous Na2SO4 and concentrated until drying under reduced
pressure. The residue was separated by silica-gel column chromatography (graduated
mixture of CH3COOEt and petroleum ether ratio 9:1) to give acyclic nucleosides (3–6) and
cyclic nucleosides (9–11) (Supplementary Materials).

1-[(2-Acetoxyethoxy)methyl]-6-(2,4-dibromophenoxymethyl)uracil (3)

Yield: 1.8 g (70%), m.p. 170–172 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 2.33 (s,3H,
CH3C=O) 3.5–4.50 (m, 6H,3*(CH2), O-CH2), 5.41(s,2H,OCH2N1), 5.62(s,1H,CH uracil),
7.10–8 (m, 3H,ArH a s,1H,*NH).13C-NMR (DMSO-d6, 100 MHz): δ 20.5, 63.2, 65.0, 66.7,
72.1, 100.7, 115.9, 116.0, 122.9, 126.1, 128.6, 129.9, 151.5, 151.9, 152.0, 162.7, 170.6. MS (EI)
m/z: 405.02 [M-AcOCH2CH2]+. Anal. Calcd for C16H16Br2N2O6: C, 39.05; H, 3.28; N, 5.69;
Found C, 39.02; H, 3.31; N, 5.65.

2-[(6-(2,4-dibromophenoxymethyl)-2,4-dioxo-1-pyrimidinyl)methoxy]-1,3-propanediyl
dibenzoate (4)

Yield: 4.3 g (73%), m.p. 163–165 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 3.8–4.50 (m,
5H,2*CH2,CH), 5.11 (s,2H, CH2, phenoxy), 5.43 (s,2H,OCH2N), 5.62 (s, 1H, CH uracil),
6.90–8.03 (m, 13H, Ar-H and s,1H,NH8). 13C-NMR (DMSO-d6, 100 MHz): δ 64.1, 64.8, 71.3,
74.3, 100.6, 115.6, 122.8, 125.9, 128.4, 129.0, 129.5, 129.8, 133.8, 151.3, 151.7, 152.2, 162.5, 165.8.
MS (EI) m/z: 688.2 [M+]. Anal. Calcd for C29H24Br2N2O8: C, 58.11; H, 4.04; N, 4.67. Found
C, 58.24; H, 4.13; N, 4.53.

1-(Benzyloxymethyl)-6-(2,4-dibromophenoxy methyl) uracil (5)

Yield: 2.8 g (69%), m.p. 133–135 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 4.62 (s,2H,
CH2Ph), 5.25 (s,2H, CH2, phenoxy), 5.45 (s,2H,OCH2N), 5.81(s,1H, CH uracil), 7.28–7.81(m,
8H, Ar-H), 8.25 (s,1H,*NH). 13C NMR (DMSO-d6, 100 MHZ): δ 64.1, 70.3, 71.5, 100.6, 115.6,
122.6, 125.7, 127.0, 127.7, 128.1, 128.2, 129.5, 137.3, 150.9, 151.5, 151.6, 158.8, 162.5, 165.8. MS
(EI) m/z: 402.2 [M-CH2Ph]+. Anal. Calcd for C19H16Br2N2O4: C, 45.99; H, 3.25; N, 5.65.
Found C, 45.96: H, 3.29; N, 5.61.

1,3-di(Benzyloxymethyl)-6-(2,4-dibromophenoxy methyl) uracil (6)

Yield: 3 g (58%), m.p. 148–150 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 4.43,4.45 (2s,4H,
2*CH2

*Ph), 5.24 (s,2H, CH2, phenoxy), 5.32 (s,2H,OCH2N1), 5.47 (s,2H,OCH2N3), 5.81(s,
1H, CH uracil), 7.25–7.67(m, 13H, Ar-H), 8.01(s,1H,*NH). 13C NMR (DMSO-d6, 100 MHz):
δ 65.1, 70.6, 70.9, 71.4, 73.1, 100.2, 116.0, 122.9, 126.1, 127.7, 127.8, 128.1, 128.4, 128.5, 128.6,
129.9, 137.7, 138.8, 150.8, 151.8, 152.2, 161.6. MS (EI) m/z: 527.3 [M+]. Anal. Calcd for
C27H24Br2N2O5: C, 58.11; H, 4.04; N, 4.67. Found C, 58.24; H, 4.13; N, 4.53.

1-(2,3,5-Tri-O-benzoyl-ß-D-ribofuranosyl)-6-(2,4-dibromophenoxy methyl) uracil (9)

Yield: 4.5 g(62%), m.p. 117–119 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 4.31–4.40 (m, 2H,
H-5′,5”) 4.51–4.60 (m, 1H,H-4′), 4.91 (s,2H, CH2, phenoxy), 5.71 (s,1H,CH uracil), 5.90–6.11
(m, 2H, H-2′,H-3′), 6.4(d, 1H,j = 9.10 Hz, H-1′), 7.10–7.98(m, 18H, Ar-H), 8.21(s,1H, *NH).
13C-NMR (DMSO-d6, 100 MHz): δ 63.7, 66.2, 70.7, 73.8, 74.1, 74.5, 78.2, 98.0, 102.9, 115.7,
116.2, 123.0, 125.9, 128.6, 128.8, 128.9, 129.1, 129.2, 129.5, 129.6, 129.7, 129.9, 133.7, 134.0,
134.1, 150.2, 150.9, 151.8, 162.5, 164.9, 165.1, 165.8. MS (EI) m/z: 730.2 [M+]. Anal. Calcd for
C37H28Br2N2O10: C, 58.11; H, 4.04; N, 4.67. Found C, 58.24; H, 4.13; N, 4.53.

((2R,3S,5R)-3-(4-chlorobenzoloxy)-5-(6-((2,4-dibromophenoxy)methyl)-2,4-dioxo-3,4-
dihydropyrimidin-1-(2H)-yl)tetrahydrofuran-2-yl)methyl-4-chlorobenzoate (10)

Yield: 4.5 g (62%), m.p. 117–119 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 4.31–4.40
(m, 2H,H-5′,5”) 4.51–4.60 (m, 1H,H-4′), 4.91 (s,2H, CH2, phenoxy), 5.71 (s,1H,CH uracil),
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5.90–6.11 (m, 2H,H-2’,H-3′), 6.4(d, 1H,j = 9.10 Hz, H-1’), 7.10–7.98 (m, 18H, Ar-H), 10.91(br
s,1H,NH). 13C NMR (DMSO-d6, 100 MHZ): δ 34.8, 66.4, 67.6, 74.9, 75.6, 80.3, 82.3, 102.9,
115.7, 128.5, 129.1, 129.2, 129.3, 129.4, 129.8, 129.9, 130.4, 130.6, 131.0, 131.1, 131.3, 131.4,
131.5, 138.6, 150.4, 150.8, 151.1, 162.8, 163.0, 164.9, 165.0. MS (EI) m/z: 730.2 [M+]. Anal.
Calcd for C37H28Br2N2O10: C, 58.11; H, 4.04; N, 4.67. Found C, 58.24; H, 4.13; N, 4.53.

1-(2,3,4,6-Tetra-O-acetyl-ß-D-glucopyranosyl)-6-(2,4-dibromophenoxymethyl) uracil (11)

Yield: 4.3 g (63%), m.p. 140–142 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 1.82–2.12 (4s,
12H, 4COCH3), 3.32 (m, 1H, H-2′), 5.62(s,1H, CH uracil), 6.21 (d,1H,J1,2 = 9.51 Hz, H-1′),
7.10–7.82 (m, 3H, Ar-H), 10.92 (br s, 1H,NH). 13C-NMR (DMSO-d6, 100 MHz): δ 15.4, 20.1,
20.4, 20.6, 62.0, 65.2, 65.5, 67.8, 68.0, 68.2, 73.0, 77.7, 79.5, 96.6, 99.2, 115.6, 122.8, 125.8,
149.7, 151.6, 152.2, 162.2, 162.6, 169.2, 170.1. MS (EI) m/z: 706.2 [M+]. Anal. Calcd for
C25H26Br2N2O12: C, 42.51; H, 3.71; N, 3.97. Found C, 42.64; H, 3.63; N, 3.83.

4.1.3. General Procedure for De-Protection of Nucleosides to Prepare (7, 8, 12–14)

Protected nucleosides (3–5, 9–11) (10 mmol) were dissolved, individually, in MeOH
(20 mL) with NH3 (3 mL) and stirred for 48 h at room temperature. The solution was then
concentrated to drying, under reduced pressure, and the resulting residue from MeOH
was recrystallized to give unprotected nucleosides (7, 8, 12–14).

1-(2-Hydroxyethoxy methyl)-6-(2,4-dibromophenoxy methyl) uracil (7)

Yield: 2.8 g (81%), m.p. 222–224 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 3.71, 3.77
(2t,4H,HOCH2

*CH2
*O), 4.91 (s,1H,OH*),5.52 (s,2H, Ph-CH2

*), 5.54 (s,2H,OCH2N), 6.14 (s,
1H,C-5-H uracil), 7.41–7.81 (m, 3H,Ar-H), 8.11 (s, 1H,NH). 13C-NMR (DMSO-d6, 100 MHz):
δ 60.3, 60.5, 70.2, 80.8, 100.5, 116.0, 122.9, 126.0, 128.6, 129.9, 151.7, 151.1, 152.8, 162.7. MS
(EI) m/z: 450.07 [M+]. Anal. Calcd for C14H14Br2N2O5: C, 37.36; H, 3.14; N, 6.22. Found
C,37.38; H,3.26; N, 6.19.

1-[2-Hydroxy-1-(hydroxyl methyl) ethoxymethyl]-6-(2,4-dibromo phenoxymethyl) uracil (8)

Yield: 3.3 g (83%), m.p. 188–190 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 3.41–3.57 (m,
5H,2* CH2,CH), 4.85 (m, 2H, OH*), 5.51 (s, 2H,CH2 phenoxy), 5.61(s, 2H, OCH2N), 5.87 (s,
1H,CH uracil), 7.31–7.65 (m, 3H,Ar-H), 8.45 (br s,1H,NH*). 13C-NMR (DMSO-d6, 100 MHz):
δ 61.0, 61.4, 70.2, 71.6, 80.5, 100.1, 115.4, 116.4, 122.8, 125.9, 129.6, 129.8, 152.1, 152.2, 163.2.
MS (EI) m/z: 480.10. Anal. Calcd for C15H16Br2N2O6: C, 37.53; H, 3.36; N, 5.83. Found C,
37.48; H, 3.39; N, 5.89.

1-(ß-D-Ribofuranosyl)-6-(2,4-dibromophenoxy methyl) uracil (12)

Yield: 2.8 g (67%), m.p. 133–135 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 3.41–3.45 (m,
2H, H-5’,5”), 3.57–3.61(m, 1H,H-4’), 3.71–3.86 (m, 1H,H-3’), 4.10–4.23 (M,1H,H-2’), 4.15
(d,1H,OH*), 4.54 (d, 1H,OH*), 4.60 (d,1H,OH), 4.9 (s, 2H,CH2 phenoxy), 5.13 (m, 1H,OH),
5.72 (s,1H,CH uracil), 6.08 (d,1H,7.75 Hz,H-1’),7.20–7.72 (m, 3H,Ar-H), 11.92 (br s, 1H,NH).
13C-NMR (DMSO-d6,100 MHz): δ 62.6, 65.7, 70.5, 71.2, 84.6, 87.7, 98.1, 115.6, 122.8, 125.8,
128.6, 129.9, 150.4, 152.2, 163.0. MS (EI) m/z: 508.11 (M+, 15.4%), 510.12(M+2, 14.46%). Anal.
Calcd for C16H16Br2N2O7: C, 37.82; H, 3.17; N, 5.51. Found C, 37.78; H, 3.29; N, 5.60.

6-(2,4-Dibromophenoxy)methyl)-1-((2R,4S,5R)-4-hydroxy-5-(hydroxylmethyl)tetra-
hydrofuran-2-yl)pyrimidine-2,4-(1H,3H)-dione (13)

Yield: 2.6 g (70%), m.p. 186–188 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 2.24–2.26 (m,
2H, H-2’, 2”),3.14–3.36 (m, 2H, H-5’,5”), 3.75 (br s, 2H, 2* OH), 4.53 (m, 1H,H-3’), 4.74 (s,
2H, CH2 phenoxy), 5.11 (m, 1H, 4-H’), 5,34 (s, 1H, CH uracil), 5.57 (m, 1H, H-1’), 7.08–7.71
(m, 3H, Ar-H), 10.92 (br s, 1H, NH). 13C-NMR (DMSO-d6, 100 MHz): δ 61.7, 62.6, 65.7, 70.9,
71.5, 81.4, 86.0, 87.7, 98.1, 115.6, 122.9, 125.8, 128.6, 129.9, 150.7, 151.1, 152.2, 163.2. MS (EI)
m/z: 492.11 (M+, 12.8%), 494.11 (M+2, 11.7%). Anal. Calcd for C16H16Br2N2O6: C, 39.05; H,
3.28; N, 5.69. Found C, 39.08; H, 3.27; N, 5.63.
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1-(ß-D-Glucopyranosyl)-6-(2,4-dibromophenoxy methyl) uracil (14)

Yield: 2.8 g (60.5%), m.p. 205–207 ◦C. 1H-NMR (DMSO-d6, 400 MHz): δ 2.82–2.94 (m,
1H, 3H-3’), 3.18–3.48 (m, 4H, H-4’, H-5’, H-6’, 6”), 4.12 (dd, 1H, J1,2 = 9.96, J2,3 = 9.16 Hz,
H-2’), 4.14 (m, 4H, 4OHs), 4.72 (s, 2H, CH2 phenoxy), 5.33 (d, 1H, J = 9.96 Hz, H-1’), 5.55
(s, 1H, CH uracil), 7.04–7.68 (m, 3H, Ar-H), 8.12(br s, 1H, NH*). 13C-NMR (DMSO-d6,
100 MHz): δ 61.1, 65.2, 68.4, 70.9, 78.7, 81.6, 83.4, 96.9, 99.2, 115.8, 122.7, 125.7, 128.6, 129.6,
152.3, 163.8, 166.6. MS (EI) m/z: 538.14 (M+, 9.8%), 540.14 (M+2, 8.7%). Anal. Calcd for
C17H18Br2N2O8: C, 37.94; H, 3.37; N, 5.21. Found C, 37.88; H, 3.39; N, 5.35.

4.2. Biology

4.2.1. Cell and Virus

HSV-1 propagation was carried out using the African green monkey kidney cell line
(Vero). To culture the cells Dulbeco minimum (Gibco, Paisley, UK) with 10% fetal bovine
serum (Gibco) was used. An HSV-1 KOS strain was used examine antiviral activity. Vero
cells were used to propagate the virus and the propagated viral stock titer stock was then
fixed as TCID 50 mL−1 by using Karber’s method. Finally, after the titration, the viral stock
was dispensed in sterile tubes, which were then stored at −70 ◦C for later use [66].

4.2.2. Preparation of Tested Compounds and the Standard

ACV was purchased from Sigma (St. Louis, MO, USA), and the tested compounds
were prepared as previously described. Dimethyl sulfoxide (DMSO) was used as a solvent
for the tested compounds and ACV.

4.2.3. Antiherpetic Activity Assay

A CPE inhibition assay was used to determine the semi-quantitative antiviral activity
of the 12 tested compounds according to [66]. In most studies, DMSO showed an antiviral
effect in vitro on different cell types [67]; thus, the concentration of DMSO should be less
than 25, which is the lowest allowed concentration for an antiviral effect. Therefore, we
ignored its effect in our study when it was used as a solvent for the targeted compounds.
The degree of inhibition was expressed as a throughput percentage of virus control (% virus
control = CPE experimental group/CPE virus control× 100) [66]. The antiviral activity was
also expressed as the EC50, which is the concentration required to reduce a virus-induced
CPE or viral plaque formation by 50% compared to the untreated control [2].

5. Conclusions

In this research, we presented some new synthetic nucleoside analogues having good
activity against HSV-1 equal to or higher than the standard drug, ACV. The acyclic nucle-
osides predominated over the cyclic forms, with acyclic compounds 6 and 8 giving the
highest activities). They induced total prevention of viral CPE presentation at a concentra-
tion of 36 µg/mL, which was less than that needed by ACV (42 µg/mL). The EC50 values of
the compounds were (15.76 and 15.19, respectively, which was close to that of ACV (13.96).
Such compounds could be used as alternatives to the currently used antiherpetic drugs,
which have major disadvantages such as acquired viral resistance that has become life
threatening, especially for immunocompromised patients. With the fact that some antiviral
nucleoside analogues are actually being used in some clinical trials to treat SARS-CoV-2,
our nucleoside analogues could also serve as promising anti-COVID agents, but of course
that needs further study.

Supplementary Materials: The following are available online at. 1HNMR and 13C NMRspec-
tra copies.
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