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A B S T R A C T

Congenital Disorders of Glycosylation (CDG) are scarcely reported from Latin America. We here report on a
Mexican mestizo with a multi-systemic syndrome including neurological involvement and a type I transferrin
(Tf) isoelectric focusing (IEF) pattern. Clinical exome sequencing (CES) showed known compound missense
variants in PMM2 c.422G > A (p.R141H) and c.395 T > C (p.I132T), coding for the phosphomanomutase 2
(PMM2). PMM2 catalyzes the conversion of mannose-6-P to mannose-1-P required for the synthesis of GDP-Man
and Dol-P-Man, donor substrates for glycosylation reactions. This is the third reported Mexican CDG patient and
the first with PMM2-CDG. PMM2 has been recently identified as one of the top 10 genes carrying pathogenic
variants in a Mexican population cohort.

1. Introduction

Congenital Disorders of Glycosylation (CDG) are a heterogenous
group of nearly 140 genetic diseases due to defective glycoprotein and
glycolipid glycan synthesis and attachment [1]. Glycoprotein glycosy-
lation defects can be divided in N-glycosylation defects and O-glyco-
sylation defects [2]. Screening for N-glycosylation defects mostly occurs
by serum transferrin (Tf) isoelectric focusing (IEF). Defects in glycan
assembly in the cytosol and ER show a type I pattern (CDGeI) while
defects in glycan remodeling in the Golgi show a type 2 pattern (CDG-
II) [2]. The most frequent N-glycosylation disorder is PMM2-CDG, a
CDG-I [2]. We here report on the first Mexican mestizo with PMM2-
CDG.

2. Clinical report

This 7-year-old boy from Poza Rica, Veracruz (México), was born to
unrelated parents after a normal full-term pregnancy. Birth weight was
2700 g and length of 50 cm, Apgar score was 5/8. He presented with

breathing difficulty in the first hours of life, remaining hospitalized for
four days and was managed with an O2 helmet. Mild jaundice did not
require treatment. Since birth, he presented generalized hypotonia and
feeding difficulties. There were two seizures at four months.

Since the age of three he suffered from generalized seizures,
learning difficulties and dependence on several activities of daily life,
with psychomotor and developmental delay, inability to walk and
hearing loss. No ataxia or cerebellar syndrome was observed.
Dysmorphic features included bushy eyebrows and eyelashes, con-
vergent strabismus, slightly wide nasal bridge, normal lips, bilateral
microtia with atresia of the external auditory canal and pectum ex-
cavatum (Fig. 1A). Additionally, gluteal and pubic fat deposits were
observed (Fig. 1C-D) as were dental caries. Mammary glands were en-
larged without galactorrhea, hyperprolactinemia was detected (42 ng/
mL); normal range extremities did not present malformations, but de-
creased strength, slightly increased reflexes, low muscular tone and
discrete distal laxity were observed with contractures at the level of the
hips, knees and ankles. Normal percentiles of height, weight and head
circumference. The ophthalmological analysis showed retinal pigment
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epithelium dystrophy. The EEG showed generalized paroxysmal epi-
leptiform crises with predominantly left frontotemporal epilepsy. Brain
CT revealed significant generalized subcortical atrophy, an enlarged
fourth ventricle and no cerebellar abnormalities (Fig. 1B). Karyotype
was normal 46, XY.

3. Materials and methods

3.1. Informed consent

Informed consent was obtained from both parents to perform skin
biopsy, fibroblast cultures and all required research to obtain a mole-
cular diagnosis, and to publish other data on the patient.

3.2. Transferrin isoelectric focusing (IEF)

Serum from the patient (100 μL) was iron saturated at room tem-
perature for 1 h with 5 μL of 0.5 M NaHCO3 and 5 μL of 20mM FeCl3.
One microliter of 10-fold-diluted serum was spotted on polyacrylamide
gels (T=5%, C=3%) containing 5.7% ampholytes (pH 5–7). After
electrophoresis, the gel was covered with 100 μL of rabit anti-trans-
ferrin serum (made in house) for 30min at 4 °C. The gel was washed
overnight with physiological saline, fixed, stained with Coomassie
Brilliant Blue R-250, destained, dried, and photographed.

3.3. Cell culture

From a skin biopsy obtained from the patient a primary culture of
fibroblasts was obtained in D-MEM / F-12 medium (Gibco® by life
technologies ™) supplemented with 20% Bovine Fetal Serum (FBS
Gibco® by life technologies ™) and 1% penicillin/streptomycin anti-
biotic. Fibroblast cultures were maintained at 37 °C in a humidified
atmosphere containing 5% CO2. Fibroblasts were further processed to

obtain genetic material.

3.4. Clinical exome sequencing (CES)

Genomic DNA (gDNA) was extracted from fibroblasts using TRIzol
reagent (Life Technologies, Rockville, MD, USA). CES sequencing was
performed using the sequencing reagents provided in the Clinical
Exome sequencing panel kit, version 2 (Sophia Genetics SA, Saint
Sulpice, Switzerland). Library preparation and sequencing were per-
formed according to the manufacturer's protocol on MiSeq Instrument
(illumina San Diego, CA). The sequencing data was analyzed and var-
iants were annotated with the Sophia DDM® software version 5.7.2.1
(Sophia Genetics SA, Saint Sulpice, Switzerland). A bioinformatic filter
was constructed including all the genes previously reported to be re-
lated with CDG.

3.5. Sanger sequencing

The cDNA-based polymerase chain reaction (PCR) product corre-
sponding to the coding sequence of PMM2 was obtained using forward
primer PMM2s 5′-TGCCAACGTGTCTTGTAAGG-3′ and reverse primer
PMM2as 5′-GGAAGTTTCTGGCACTGGAG-3′ [3]. The PCR product
corresponding to exon 5 of PMM2 was amplified from gDNA using
forward primer PMM2-E5F 5′-GAAACATTGACCACACTAGCC-3′ and
reverse primer PMM2-E5R 5′-GTGTTGGGATTACAGGCATG-3′ [4]. Di-
rect sequencing of PCR products was carried out using an ABI Prism
3130xl autoanalyzer (Applied Biosystems, Foster City, CA).

4. Results

Serum Tf IEF showed a type I pattern (decreased tetrasialo Tf and
increased di- and asialo Tf) (Fig. 2).

The next step was CES showing two known variants in PMM2. Both

Fig. 1. A, microtia (bilateral), pectus excavatum and enlargement of mammary glands. B, Brain CT showed frontotemporal atrophy with a predominance of the left
side. C and D, Abnormal accumulation of pubic periscrotal and gluteal fat deposits.
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are missense point mutations in exon 5 (c.422G > A (p.R141H), and
c.395 T > C (p.I132T)). Sanger sequencing of the cDNA PCR of the
PMM2 coding sequence of the patient confirmed these mutations and
no others were found. Sanger sequencing of parental gDNA showed the
c.422G > A (p.R141H) was paternally inherited, while the
c.395 T > C (p.I132T) mutation was maternally inherited (see Fig. 3A-
B).

5. Discussion

Only two Mexican CDG patients have been reported; both showed
ATP6V0A2-CDG [5]. Here we report the first Mexican mestizo with

PMM2-CDG (OMIM 212065). Two known variants were involved:
c.422G > A (p.R141H) and c.395C > T (p.I132T). The compound
heterozygosity for the p.R141H / p.I132T mutations has been reported
to decrease the enzyme activity of PMM2 to 23–41% [6]. Our patient
showed the typical PMM2-CDG phenotype except that there were no
inverted nipples and no cerebellar hyopoplasia. The latter symptoms
are absent in a small minority of patients with this CDG.

A number of missense mutations higher than expected for a gene
associated with a recessive disease is observed in PMM2 [7]. According
to the professional version of Human Gene Mutation Database, 127
disease-causing mutations have been described in PMM2 (as of July
2020, professional version 2020.2). Most of them (100) are missense
variants (78.74%), therefore compound heterozygotes for two different
missense pathogenic variants are frequently found in these patients.

Eleven PMM2-CDG individuals carrying the p.R141H / p.I132T
heterozygous compound combination have been reported in the lit-
erature, but none from Latino ethnic origin [4,6,8–13]. The p.R141H
mutation found in this individual has been found in all ethnic groups
with the lower frequency ranging in East Asia (1/7536) and the higher
in Europe (non-Finnish) (1 in 121) (from gnomAD ExomesVersion:
2.1.1, as of July 2020). It has also been reported in about 1/70 Northern
Europeans, implying a selective advantage of the carrier state [14].
Interestingly, the homozygosity of the p.R141H mutation has not been
reported as it is probably lethal [4,15].

PMM2-CDG as most CDG is probably underdiagnosed, reason why it
is important to report cases to increase clinical awareness and promote
laboratory diagnosis in every country, particularly in the developing
world where CDG have been scarcely reported. This not only includes
diagnosis in patients, but also carrier screening in couples with in-
fertility or miscarriage issues. In Latin America, few PMM2-CDG cases
have been reported, mainly in Argentina and Brazil [16,17].

Increased awareness of CDG and particularly of PMM2-CDG should
be raised in view of the significant prevalence of pathogenic variants

Fig. 2. Serum transferrin (Tf) isoelectric focusing (IEF) showing an abnormal
type I profile. C, control sample; CDG-I control sample; P, patient sample.
Numbers in the edge correspond to the number of sialic acids in the transferrin
isoforms.

Fig. 3. Sanger sequencing chromatograms showing PMM2 mutations. A, patient and mother showing the heterozygous mutation in c.395 T > C (p.I132T) in gDNA.
B, patient and father showing the heterozygous mutation c.422G > A (p.R141H). Control= healthy individual.
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knows for this gene and evidenced in a cohort of 805 Mexican in-
dividuals [18]. The most common mutation found in this group was
(c.422G > A, p.R141H), followed by (c.470 T > C, p.F157S),
(c.255+ 1G > A), (c.442G > A, p.D148N) and (c.367C > T,
p.R123X) (C. Hernández-Nieto, personal communication).

Management of PMM2-CDG requires a multidisciplinary approach
and international management guidelines have been published [19]. No
curative treatment has been developed. A recent trial with acet-
azolamide, a long-known diuretic, showed a significant improvement of
the motor cerebellar syndrome in PMM2-CDG [20]. This is a nice ex-
ample of drug repositioning.

6. Summary

In conclusion, exome sequencing is an increasingly important tool
for the diagnosis of CDG, also in developing countries.
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