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The term “polyol process” was first used in the late eighties by Fiévet, Lagier, and Figlarz [1–3] as
a liquid-phase synthesis route to obtain finely divided metals from their oxides, hydroxides, or salts
in polyalcohols. The basic concept was to prepare metal powders using a liquid organic compound
acting both as a solvent of the solid precursor and as a reducing agent. Polyalcohols such as α-diols
and ether glycols, resulting from their condensation, appeared very convenient for this purpose. In this
initial context, polyols were able to reduce to zero-valent state ions of noble metals, copper, and also
more electropositive metals such as cobalt and nickel. From these first studies, it was foreseen in the
early nineties that the polyol process could be a versatile and promising method for the synthesis of
metal and alloy powders made up of non-agglomerated particles with a well-defined shape, narrow
size distribution, and controlled size in the micrometer or submicrometer [4,5] range and, in some
cases, as colloidal dispersions [6,7]. It was also clearly evidenced in this pioneering work that these
interesting morphological characteristics were the result of the kinetic control of a multi-step process:
the dissolution of a solid precursor, nucleation, and particle growth. It was shown that in some cases,
this control can be more easily achieved if homogeneous (spontaneous) nucleation is replaced by
heterogeneous nucleation by seeding the reactive medium with foreign nuclei [1–3].

A first example of shape control was given in the polyol-mediated synthesis of silver particles
from silver nitrate [6]. Whereas quasi-spherical and monodisperse silver particles were produced
through spontaneous nucleation, provided particle sintering was prevented during the growth step by
adding polyvinylpyrrolidone (PVP) as a protective agent, the heterogeneous nucleation of metallic
silver with a critical concentration of in situ-formed platinum nuclei produced mono-sized particles
with a rod-like shape. By adsorbing on a specific plane of the foreign nuclei’s surface, the protective
agent also acts as a crystal-habit modifier and induces the anisotropic growth of the particles. All these
features and others were then extensively studied by Xia et al., succeeding in reaching a total control of
silver nucleation and crystal growth in polyol and in producing on demand particles of different sizes
and shapes [7–9].

The next development of the polyol process began with the synthesis of monodisperse
submicrometer spherical zinc oxide particles from zinc acetate dihydrate in diethyleneglycol [10].
To obtain oxides, water is required and can be provided either by using hydrates as starting materials
or by adding definite amounts of water. The reaction is carried out at a temperature close to the boiling
point of the mixture in order to favor forced hydrolysis, followed by inorganic polymerization via
olation and oxolation reactions. Then, Feldmann et al. evidenced that this polyol-mediated preparation
method was able to provide nanoscale oxide particles with a mean size in the range 30–300 nm, with a
low degree of agglomeration and a monodisperse size distribution; the resulting colloidal suspensions
containing up to 20 wt.% solids were found to be stable [11]. Later, Feldmann et al. extended
the polyol route to the synthesis of many oxides to obtain nanoscale functional materials, such as
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luminescent materials (phosphor host lattices: e.g., Y2O3), pigments (CoAl2O4, Cr2O3, ZnCo2O4,
Ti0.85Ni0.05Nb0.10O2), transparent conductive oxides (ZnO:In3+), and catalytically active oxides (CeO2,
Mn3O4, V2O5) [12]. At the same time, Ammar et al. carried out the first synthesis of a spinel-like ferrite
(CoFe2O4) by forced hydrolysis in 1,2-propanediol [13]. They obtained monodisperse nanoparticles
(NPs) showing a surprisingly good crystallinity and a high saturation magnetization. Among various
methods of fabrication of ferrite NPs, the forced hydrolysis of metal salts in polyol appears therefore as
a new and attractive soft chemistry route. On the one hand, like the microemulsion method, this allows
one to control the nucleation and growth steps of the particles. The adsorbed organic species protect
the primary particles against coalescence and/or aggregation. On the other hand, this crystal growth
occurs under thermal conditions close to hydrothermal ones (in the range 150–225 ◦C under reflux).
As a consequence, a good crystallinity is achieved, which in turns results in an improved magnetic
order with a high saturation magnetization. This work paved the way to the synthesis by the polyol
process of a large variety of nanoscaled ferrites and to the study of their structural and magnetic
properties [14–21] and, in some cases, the study of the oxidation state of the involved cations and their
catalytic properties [22].

Simultaneously, by increasing the amount of added water in the polyol medium, Jouini
et al. obtained by hydrolysis and condensation reactions layered hydroxide acetate salts
M(OH)1−x(CH3COO)x·nH2O (M = Co, Ni, Co-Ni and Zn) [23]. The compounds obtained present
the typical features of the brucite-like structure, with turbostratic disorder and an interlayer spacing
ranging around 0.1 nm. Then, by exchanging acetate ions for halides [24] and n-alkylsulfonates
CnH2n+1SO3

− with n ~ 10–18 [25], they formed a series of derivatives with various interlayer spacing,
ranging between 0.7 to 3.2 nm, forming a novel series of magnetic layered materials for which the
model of ferromagnetic layers interacting through dipolar coupling can be applied [24,25].

Double hydroxide layers, typically those with NiAl and CoAl compositions, were also prepared
in polyols, with the advantage, over the standard co-precipitation method, of phase purity and a
controlled morphology [26].

At this stage, the polyol process appeared to be a new route for the preparation of powdery
metal, oxide, and hydroxide materials. It was shown through the cobalt example that the use of
acetate precursors, contrary to chlorides or sulphates, leads to the precipitation of a solid (metal, oxide,
hydroxide) whose nature depends on a main factor: the hydrolysis ratio h, defined by the water to
metal molar ratio [27].

As in the sol-gel method, acetate leads to the formation of intermediate alkoxyacetate complexes.
The absence of water favors metal formation, while its presence favors hydroxyacetate and oxide at
higher temperatures. Compared to the classical sol-gel route, the polyol-mediated synthesis offers
several advantages: the use of common ionic salts instead of alkoxides as precursors; a wide operating
temperature range making it possible to obtain oxides and metals with good crystallinity.

More recently, more complex oxides such as molybdates and tungstates [28,29] have been
successfully obtained in polyols without further thermal annealing.

Extrapolating the hydrolysis reaction to the larger nucleophilic substitution concept, other than
hydroxides and oxides, inorganic compounds were produced by the polyol process. Introducing in the
reaction medium the desired nucleophilic agents—S2−, PO4

3− or F−, for instance—allowed, for instance,
the preparation of size-controlled chalcogenide [30–34], phosphate [35–37], and fluoride [38,39] particles.
Nucleophilic substitution and condensation reactions allowed also the precipitation of well-shaped
and size-controlled metal glycolate crystals, which can themselves serve as experimental models for
the study of some theoretical electromagnetic features [40,41].

This list has been incremented by the pioneer work of Feldman et al., who first prepared Carbon
dots, a new generation of solid chromophores, by the thermal decomposition of polyols [42].

Clearly, the polyol process is emerging now as a powerful and scalable wet chemistry route for
the production of a large variety of chemically, structurally, and morphologically controlled inorganic
nanoparticles. Through a simple optimization of the operating synthesis conditions, it allows the
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design of well-shaped granular and nanostructured metals, oxides, chalcogenides, halides, alkoxides,
hydroxides, and others, with a great applicative interest for various technological fields, including
renewable energy, human health, environment, microelectronic, photonic, etc.

These particles have been also used as seeds, when dispersed in a metallic salt polyol solution,
to grow original hetero-nanostructures [43–46] with synergetic and improved functional properties,
thus offering a larger panel of original materials for the listed above applications.

They have been used also as starting matter for the fabrication of granular nanomaterials that
are new by composition, structure, or microstructure, thanks to a judicious subsequent treatment,
like oxidative [47,48] (or reductive [49,50]) annealing, cold plasma implantation [51] and reactive
sintering [52,53].

Selected recent results dealing with all these aspects, at least some of them, are highlighted in
this series. Typically, Lehmacher et al. [54] present a polyol-mediated synthesis of nitrogen-containing
C-dots with 1,2,4,5-tetracyanobenzene as a starting material. This one-pot liquid-phase synthesis
provides, with a good reliability, particles with interesting features—such as a narrow size distribution
(2–4 nm), high crystallinity, high dispersibility in water, and deep-red fluorescence—which may be used
as emitting biomarkers for histology. Another example of a polyol-mediated synthesis of nanoparticles
for bio-imaging applications is that illustrated by the work of Becerro et al. [55]. Indeed, they succeeded
in producing, in polyol, nanometer-sized Eu3+:(H3O)Lu3F10 single crystals. By varying the Eu content,
they obtained particles with an optimized luminescence response and X-ray attenuation capacity for
their use as bimodal probes for optical imaging and X-ray-computed tomography. To date, such a
synthesis has never been reported. The Eu3+:(H3O)Lu3F10 compound had only been fabricated in the
form of polycrystalline powders [56,57].

Similarly, pure ovoid-like shaped bismuth ferrite nanoparticles were successfully synthesized
for the first time in polyol by Coste et al. [58]. The synthesis parameters were controlled to obtain an
average particle size of 40 nm, which is under the periodicity of the modulated cycloidal arrangement
of iron spins. Due to their small size, the as-obtained particles exhibit a transformation of the overall
magnetic order and an exalted spontaneous magnetization compared to micrometer-sized particles.
The resulting improvement of the magnetoelectric coupling makes these nanostructured bismuth
ferrite powders low-cost potential candidates for spintronic applications.

Enhanced photochromic properties have been obtained as well with polyol-made WO3−x
nanoparticles. By varying the polyol synthesis parameters and the post annealing conditions,
Gaudon [59] et al. prepared WO3−x nanoparticles with a very broad range of coloration from black
to yellow (through blue-green colorations) and evidenced in these particles photochromic behavior
highly dependent on their composition and color. Rapid and important changes in coloration under
UV irradiation were especially observed on the blue compound, this photochromism being reversible
in a few hours. The developed polyol chemical route clearly offers new perspectives for the use of
tungsten oxides as smart photochromic compounds.

Jouini et al. [60] exemplify the ability of polyol-mediated synthesis to control the shape and size
of Cobalt nanorods. By applying an external magnetic field during the synthesis, they produced
anisotropic in shape metal particles of different lengths and aspect ratios. They also succeeded by
this way in avoiding conical heads at the extremities of these 1D nanomagnets, leading to assemblies
with greatly improved magnetic properties. Fujieda et al. [49] proposed another strategy in order to
prepare 1D nanomagnets. They prepared iron glycolate nanowires in polyol and they annealed them
subsequently under moderate reductive conditions. They showed that it is possible to produce in this
way ferrimagnetic magnetite and/or ferromagnetic iron while maintaining the one-dimensional shape
of their starting material.

Another original result concerns the direct synthesis of “iron particles” in polyol. Usually,
this method allows the size control of these particles through the use of hexachloroplatinic acid
as a nucleating agent and the variation in its content in the reaction medium [61]. Although the
concentration of Pt ions was low, it led to appreciable cost effects for any technological application.
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Thus, other routes to reduce the particle sizes of polyol-synthesized iron should be considered. Such an
approach is proposed by Leybo et al. [62] by adding ascorbic acid as a more powerful reducing
agent to the NaOH-polyol reacting medium. Iron powders, Fe/graphene oxide, and Fe/boron nitride
composites were so-synthesized, and the effect of the NaOH/Fe and ascorbic acid/Fe ratios on the
characteristics of the synthesized products were evaluated. The addition of NaOH results in the
formation of a passivation layer mainly composed of sodium carbonates, protecting the iron particles
from irreversible oxidation. The addition of ascorbic acid leads to the 10-fold decrease in the size.
Tested in wastewater treatment, these iron particles exhibit a 2-fold increase in the efficiency of lead
removal from wastewater.

The polyol-mediated synthesis of other composite powders has been also reported. Mnasri
et al. [63] succeeded to prepare in polyol multifunctional granular hetero-nanostructures based on
lanthanide doped fluoride single crystals coated by superparamagnetic iron oxide nanosatellites.
Dispersed as a colloid in water, the resulting composite particles evidence improved optical and
magnetic properties, as well as reasonable biocompatibility and low toxicity to be used as bimodal
agents for biomedical magnetic resonance and optical imaging.

Nguyen et al. [64] propose another polyol-mediated preparation of biocompatible multifunctional
hetero-nanostructures. They succeeded in building composite nanoparticles based on a polycrystalline
magnetite-like core surrounded by a star-shaped gold nanosatellite, exhibiting interesting magnetic and
plasmonic properties for magnetically assisted Surface-Enhanced Raman Scattering (SERS) detection.

Finally, Haj-Khlifa et al. [51] use polyol-made nano-metals as starting materials for the production
of crystallized nano-intermetallics by hydrogen cold plasma implantation. They evidence that the
nanometric size of nickel particles, even compacted as a thick pellet (millimeter in thickness) allows
the diffusion of atomic hydrogen and its interaction with nickel atoms to form, within optimized
processing conditions, Ni2H nano-intermetallics crystallizing in a hexagonal structure, paving the way
for an alternative route for the preparation of efficient substrates for solid hydrogen storage application.

Considering the high applicative potential of all these polyol-made nanoparticles and others,
and to be as exhaustive as possible in our approach, the ecotoxicological impact of such materials
is addressed. Brayner et al. [65] investigate, for instance, the fate of polyol-made ZnO and CdS
nanoparticles (NPs) in Seine river water (Paris, France) in the presence of Chlorella vulgaris microalgae.
They first observe the internalization of these particles after 48 h of contact with Chlorella vulgaris at
doses of 10−3 M in water. They also demonstrate by growth rate tests that the toxicity of these particles
is higher than that of free Zn2+ and Cd2+ ions. These results have to be considered very seriously before
any release of these particles in the environment and make us, as physicochemists of nanomaterials,
more than any other scientist, particularly concerned with the subject.

So, to conclude, this review clearly illustrates that the polyol process offers the possibility to obtain
a wide variety of granular homo- and hetero-nanostructures with optimized characteristics offering
an unprecedented panel of properties for a direct and rapid technological applicative transfer. It also
alerts us to their potential dangers if they are hazardously manipulated.
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