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Supersymmetry in quantum optics 
and in spin-orbit coupled systems
Michael Tomka1, Mikhail Pletyukhov2 & Vladimir Gritsev3

Light-matter interaction is naturally described by coupled bosonic and fermionic subsystems. 
This suggests that a certain Bose-Fermi duality is naturally present in the fundamental quantum 
mechanical description of photons interacting with atoms. We reveal submanifolds in parameter 
space of a basic light-matter interacting system where this duality is promoted to a supersymmetry 
(SUSY) which remains unbroken. We show that SUSY is robust with respect to decoherence and 
dissipation. In particular, the stationary density matrix at the supersymmetric lines in parameter 
space has a degenerate subspace. The dimension of this subspace is given by the Witten index and 
thus is topologically protected. As a consequence, the dissipative dynamics is constrained by a robust 
additional conserved quantity which translates information about an initial state into the stationary 
state. In addition, we demonstrate that the same SUSY structures are present in condensed matter 
systems with spin-orbit couplings of Rashba and Dresselhaus types, and therefore spin-orbit coupled 
systems at the SUSY lines should be robust with respect to various types of disorder. Our findings 
suggest that optical and condensed matter systems at the SUSY points can be used for quantum 
information technology and can open an avenue for quantum simulation of SUSY field theories.

Supersymmetry (SUSY) is one of the most beautiful and attractive concepts in physics, since it establishes 
a duality between bosons and fermions, cures divergency problems and resolves the mass hierarchy in 
quantum field theory1. Furthermore, in cosmology, it can serve as an explanation of the dark matter 
essence2. If SUSY exists in nature, it needs to be a broken symmetry, since in our surrounding environ-
ments there exists no phenomenon in which a boson is converted into a fermion. Therefore, in order to 
observe its signatures, the common opinion is that we need powerful accelerators. However, recent pro-
gress with quantum simulators using synthetic matter (like cold atoms, trapped ions or coupled cavities 
systems) opened a new possibility of realizing supersymmetric systems in a nowadays laboratory. Here 
we show that SUSY systems can be engineered in simple and fundamental models, either by means of 
solid state devices or by quantum optical schemes. One implementation we discuss is based on a gener-
alized version of the Rabi model of quantum optics, while the other one is based on the two-dimensional 
electron gas in a magnetic filed with the Rashba and Dresselhaus spin-orbit coupling. Further, we reveal 
that the manifolds in parameter space, where the SUSY is unbroken, are robust with respect to dissi-
pation and decoherence. This suggests that SUSY systems have an advantage of being used in quantum 
information science.

The role of spin-orbit coupling is central for a number of current developments in low-dimensional 
materials, for example the spin Hall effect, the anomalous Hall effect, spintronics3, topological insulators 
and superconductors4,5 and Majorana fermions6. Recently, synthetic gauge fields and spin-orbit coupling 
have also been realized in ultracold Bose and Fermi gases with Raman beams7–14. Behind all these devel-
opments stands the simple single-particle Rashba and Dresselhaus model. We found here that spin-orbit 
coupled systems can possess SUSY in a broad range of parameters.
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In the field of quantum optics, an even more fundamental role is played by the Jaynes-Cummings 
and Rabi models. These models describe a system of a single bosonic mode coupled to a two-level sys-
tem via dipole interaction. The understanding of the dynamics in these models led to a breakthrough 
in cavity-QED systems15 and nanophotonics. The very presence of bosons (light quanta) and fermions 
(two-level systems) suggests that there is a hidden SUSY in these quantum optical models.

In this paper, we reveal explicitly the presence of a supersymmetric structure in a generalized version 
of the Rabi model of quantum optics. Further, we show that the generalized Rabi model can be realized 
in a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit coupling subject to a per-
pendicular and constant magnetic field. In the next step, the influence of this SUSY on the dissipative 
dynamics of the generalized Rabi model is studied. We observe that, due to the supersymmetry the dis-
sipative dynamics, governed by the master equation in the dressed state picture, possesses an additional 
conserved quantity when the system is supersymmetric. Furthermore, we studied the behavior of this 
additional conserved quantity, if the system slightly deviates from the supersymmetric submanifold in 
parameter space.

The model and its realizations
We consider one of the simplest and most fundamental models describing the interaction of a single 
mode bosonic field (represented by the canonical operators â, â†) with a single two-level system (described 
by the Pauli matrices σ̂ i, i  =  ± , z),

   ω σ σ σ σ σ= +
Δ

+ ( + ) + ( + ). ( )− + + −
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †g gH a a

2
a a a a 1zgR 1 2

The energies of the bosonic field and the energy splitting of the two-level system are ω and Δ , respec-
tively, while the interaction constants g1,2 can be arbitrary real numbers.

In the realm of quantum optics, the model (1) describes a single mode electromagnetic field interact-
ing with a two-level emitter via dipole interaction and represents a direct generalization of two funda-
mental models in quantum optics. Namely, when either g2 =  0 or g1 =  0, it is known as the Jaynes-Cummings 
model16,17, while when g1 =  g2, it becomes the Rabi model18,19. In these limits, a number of spectral and 
dynamical properties are known, while it is much less studied for arbitrary g1 and g2. In the weak cou-
pling regime close to resonance ω ~ Δ , only the g1 term is relevant, and the g2 term scales to zero (this 
is called the rotating wave approximation, RWA). On the contrary, when the strong coupling regime is 
realized, both co- and counter-rotating terms have to be kept. We emphasize that, when the Rabi model 
is derived from the microscopic principles, then the coupling constants are such that g1 =  g2. The 
Jaynes-Cummings model was studied extensively in the literature and can be solved exactly since the 
total number of excitations, σ σ= + + −

ˆ ˆ ˆ ˆ ˆ†N a aex , is a conserved quantity. In contrast, the analytical solu-
tion of the Rabi model is still under active discussions20, despite the long history of the model. Similarly 
to the Rabi model, the Hamiltonian (1) commutes with the parity operator π= ( )ˆ ˆiP exp Nex . Further, 
while the spectrum of the Jaynes-Cummings model is well known, the spectrum of the Rabi model is 
given by a self-consistent set of equations which can be solved numerically20. We note that in the limit 
of strong coupling (both g1,2/ω are large), the spectrum consists of two quasidegenerate harmonic lad-
ders21. Both models are of immense experimental interest for circuit- and cavity-QED15 setups, super-
conducting qubits, nitrogen-vacancy (NV) centers, etc. The solid-state devices are able to approach the 
strong-coupling regime, where the g2 term becomes relevant22–25. In the field of quantum optics, the 
model with unequal g1 and g2 can be realized using the Λ-type 3- or 4-level transition schemes26,27, as 
shown in Fig. 1.

Indeed, consider two non-degenerate ground states |a〉 , |b〉  coupled to the excited state(s), via a quan-
tum field â, with couplings 

,g a b
. In addition, two classical laser fields with Rabi frequencies Ω a,b are 

applied to the system, driving transitions from the ground states to the excited state(s). Δ a,b denote the 
detunings between the lasers and the excited state(s). If Δ Ω ,, , ,� �ga b a b a b

 is assumed, one can perform 
an adiabatic elimination of the excited state(s). The resulting effective Hamiltonian then takes the form 
of the generalized Rabi model (=ĤgR) with an additional Bloch-Siegert shift, λ σ= +ˆ ˆ ˆ ˆ ˆ†H H a a zeff gR  (see 
the Supplement for an overview of the derivation). The parameters of the generalized Rabi model are 
then given by = Ω /Δ, , , ,g g a b a b a b1 2

, ( )ω = /Δ + /Δ / g g 2a a b b
2 2 , Δ = (Ω /Δ − Ω /Δ )a a b b

2 2  and 
( )λ = − /Δ − /Δ / g g 2a a a b

2 2 . While the couplings 
,g a b

 are predefined, the Rabi frequencies Ω a,b as well 
as the detunings Δ a,b can be tuned in a wide range and we can therefore consider the model (1) for 
variable g1,2. However, the Bloch-Seigert shift can be canceled if we choose /Δ = /Δ g ga a b b

2 2  and we 
obtain the generalized Rabi model (1). Ref. 28 proposes a simulation of the Rabi model with unequal g1 
and g2 and with an effective Bloch-Siegert shift ( σ∝ˆ ˆ ˆ†a a z) based on the resonant Raman transitions in an 
atom that interacts with a high finesse optical cavity mode (four-level transition scheme).

The same model appears in various branches of condensed matter science, where the spin-orbit inter-
action plays an important role. In particular, this is the case for a two-dimensional non-interacting 
electron system with Rashba and Dresselhaus spin-orbit coupling in a perpendicular magnetic field. In 
solid state devices, this can be realized either by the electron gas in quantum wells, in two-dimensional 
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topological insulators or in the quantum dots with a parabolic confinement potential. In cold atomic 
systems, spin-orbit coupling can be achieved artificially7–14,29. For the case of a two-dimensional electron 
gas subject to a perpendicular magnetic field B =  B0ez, the spin-orbit coupled Hamiltonian reads

Figure 1.  In the field of quantum optics, SUSY appears in a generalized Rabi model which can be 
realized in cavity-QED systems (a) using the Λ-type 3- or 4-level transition schemes (b). In solid state 
systems the two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings subject to a 
perpendicular magnetic field (c) can also be mapped to the Rabi model with unequal couplings of the co- 
and counter-rotating terms. In (d) we show the energy spectrum of these models as a function of the 
coupling parameter g1 ~ αR and for αD ~ g2 =  0.2, the SUSY lines occur when the parameters satisfy 

∆ω− =g g1
2

2
2 , in terms of Eq. (1). In Ref. 29 a possible realization of tunable Rashba and Dresselhaus spin-

orbit coupling with ultracold alkali atoms is proposed (e), where each state is coupled by a two-photon 
Raman transition, (f).
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 
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where Π = −ˆ ˆ ˆp yx x
eB

c2
0 , Π = +ˆ ˆ ˆp xy y

eB
c2
0  are momentum operators in symmetric gauge, αR represents 

the Rashba spin-orbit coupling, while αD denotes the Dresselhaus spin-orbit coupling, m* is the effective 
electron mass, g* is the gyromagnetic ratio and μB =  eħ/(2mec) is the Bohr magneton. A short derivation 
of the mapping from the Hamiltonian (2) to (1) is reproduced in the Supplement. This establishes an 
equivalence between the electronic Rashba and Dresselhaus model with a magnetic field and the 
Jaynes-Cummings-Rabi model from quantum optics, which we called the generalized Rabi model.

The correspondence =ˆ ˆH HRD gR has the potential to cross-fertilize two areas of research where these 
models play a fundamental role: condensed matter physics and the field of quantum optics. This is illus-
trated below by investigating the quench dynamics in both models.

Supersymmetry
Supersymmetric filed theories, which were studied intensively during the last 40 years, have supersym-
metric quantum mechanics (SUSY QM) as their low-energy limit. Introduced in 70's the SUSY QM 
became a subfield by itself30,31 with many applications. Here we are interested in the N =  2 SUSY QM. 
This SUSY QM is characterized by two supercharges Q̂1 and Q̂2 that satisfy the algebra

δ, = , , = , , ( )ˆˆ ˆ{ } i jHQ Q 2 1 2 3i j ij

where Ĥ is known as the SUSY Hamiltonian acting on some Hilber space HS. From the definition (3), 
it immediately follows that = =ˆ ˆ ˆH Q Q1

2
2
2
. This implies that the spectrum of Ĥ is non-negative and that 

the supercharges commute with the SUSY Hamiltonian, making them constants of motion. The super-
charges of a SUSY QM system generate transformations between different eigenstates of the SUSY 
Hamiltonian with non-zero eigenenergy. This becomes more apparent when one introduces the following 
linear combinations of the supercharges

= ( + ), = ( − ), ( )
ˆ ˆ ˆ ˆ ˆ ˆ†

i iQ 1
2

Q Q Q 1
2

Q Q 41 2 1 2

which imply = ( ) =ˆ ˆ †
Q Q 0

2 2  and , = ˆˆ ˆ †
H{Q Q } . The Witten parity operator ≡ , / ,ˆ ˆ ˆ ˆ ˆ† †

W [Q Q ] {Q Q } is 
constructed in such a way that it commutes with the SUSY Hamiltonian, anti-commutes with the super-
charges and has the eigenvalues ±  1. The operator Ŵ gives a natural way to decomposes the Hilbert space 
HS into a positive and negative Witten parity space, = ⊕+ −H H HS , where = Ψ ∈ ,±H H{ S  such 
that Ψ = ± ΨŴ }. This allows us to represent the operators acting on HS by 2 ×  2 matrices. For 
example we can write

=



 −





, =







, =










,

( )
ˆ ˆ

ˆ
ˆ ˆ ˆ

ˆ
†

†W 1 0
0 1

Q 0 q
0 0

Q
0 0
q 0 5

since =Q̂ 0
2

 and , =ˆ ˆ{Q W} 0. The operator q̂ transforms a state of negative Witten parity into a state with 
positive Witten parity and vice versa for ˆ †q . The SUSY Hamiltonian becomes diagonal in this 
representation

= , =











≡











,

( )

+

−

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

ˆ
†

†

†{ }H Q Q
qq 0

0 q q
H 0

0 H 6

where ±Ĥ  are called the super partner Hamiltonians. The supercharge Q̂ transforms a negative Witten 
parity eigenstate of Ĥ into a positive Witten parity eigenstate with the same positive energy, 
Ψ = ( / ) Ψ+ −ˆE1 QE E  and vice versa for ˆ †

Q . The factor / E1  appears due to the normalization condi-
tion of the eigenstates. Therefore, the strictly positive eigenenergies of the super partner Hamiltonians 
±Ĥ  are the same.

The SUSY of a quantum system is called unbroken if the ground state energy of Ĥ is zero (E0 =  0). In 
case that the ground state energy is strictly positive (E0 >  0), the SUSY is said to be broken. From this 
definition it immediately follows, that for an unbroken SUSY all the ground states are annihilated by all 
the supercharges |Ψ 〉= , ∀ ,,

ˆ i jQ 0i j0 , where j enumerates the possible degeneracy of the ground state. This 
is in analogy to supersymmetric field theories, where for an unbroken SUSY the supercharges leave the 
vacuum invariant.
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Our findings can be summarized as follows: 1) SUSY as a symmetry exists in the generalized Rabi 
model for a special combination of parameters,

ω− = Δ , ( )g g 71
2

2
2

when the Bloch-Siegert shift is zero, λ =  0, (in the special case of g1 =  g2 SUSY exists only for degenerate 
atomic levels, Δ  =  0, and the Hamiltonian has the form of a shifted harmonic oscillator). The associated 
supercharges in matrix representation are given by











ω
ω

ω
ω

=



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.
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ˆ ˆ ˆ
ˆ

ˆ

g

g
Q 0 q
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a

a
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1

2

At the SUSY line (7) we can write = ( , ) = ,+ −
ˆ ˆ ˆ ˆ ˆ †
H diag H H {Q Q }, with

      ω σ σ σ σ σ ω= = +
Δ

+ + + + + ( + ) , ( )+ − + + −ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †g g g g cH qq a a
2

a a a a 1 9z 2 2 1 1

= = + , ( )−
ˆ ˆ ˆ ˆ ˆ† cH q q H 1 10gR

and ( ) ω= + /( )c g g 21
2

2
2 , as demonstrated in the Supplement. The generalized Rabi model is thus part 

of the supersymmetric system at the SUSY line (7). When λ ≠ 0 the SUSY condition reads

λ ω λ ω λ ω λ ω λ



Δ
−


( − )( + ) = ( − ) − ( + ).

( )
g g2

2 111
2

2
2

2) On the SUSY line in parameter space the SUSY is unbroken and only the Hamiltonian −Ĥ  has a 
doubly-degenerate ground state with zero eigenenergy. The eigenenergies of the Hamiltonian +Ĥ  are 
strictly positive. Apart from the ground state of −Ĥ  with zero eigenenergy, the Hamiltonian +Ĥ  has the 
same spectrum as −Ĥ  if the parameters satisfy the SUSY condition (7). This implies that the Witten index 
is equal two.

The Witten index Wind is given by the difference between the number of zero eigenmodes n ±  of ±Ĥ , 
namely ≡ − = −− + − +

ˆ ˆW n ndimker H dimker Hind . This index is related to the index of the annihi-
lation operator q̂, i.e. = = −ˆ ˆ ˆ †W indq dimker q dimker qind , and has the property of topological invar-
iance32 according to the Atiyah-Singer index theorem. We show explicitly in the Supplement that there 
are two zero eigenmodes of   −Ĥ , and zero for +Ĥ , thus Wind =  2. Similarly, to the Rabi case, the Hamiltonian 
(1) commutes with the parity operator P̂, therefore the two zero-modes are the eigenstates of the parity 
operator P̂ and can be written as ν νΨ = ( ( ) |↑〉 ± (− ) |↓〉)/,±

− ˆ ˆD 0 D 0 20 , where 
ν ν( ) = ( − )ˆ ˆ ˆ†D exp[ a a  is a coherent state displacement operator with ν ω= /g g1 2

 and |↑ 〉 , |↓ 〉  are 
the eigenstates of σ̂ z. The explicit derivation of the supercharges and the zero-modes for the generalized 
Rabi model are given in the Supplement.

Dissipative dynamics
In the quantum optical realization of the generalized Rabi model the effects of coupling the system to 
the environment are usually accounted for by the master equation in the Lindblad form. Here, we show 
that the SUSY in the generalized Rabi model is stable against couplings to several types of dissipative 
baths. Effects of relaxation and decoherence are described by the Lindblad master equation for the den-
sity matrix in the dressed picture33–36: ρ ρ ρ∂ = − 

 ,  +ˆ ˆ ˆˆ Li Ht drgR , where the dissipator Ldr should be 
written in terms of the jump operators j k  between the exact eigenstates j , k  of the Hamiltonian, 

ε=ˆ j jH jgR ,

( )∑ ∑=







Φ








+ Γ + Γ ,

( )
κ γ

, >

L D Dj j j k[ ]
12

dr
j

j
j k k j

jk jk

:

where ( )ρ ρ ρ ρ= − −ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
D[O] 2O O O O O O1

2
 is a quantum dissipator. The different terms in Eq. (12) 

correspond to different sources of decoherence: The first term γ σΦ = ( )/φ ˆj j0 2j z , describes the 
diagonal part of the dephasing of the two-level system in the eigenbasis and γφ(0) is the dephasing rate 
quantified by the dephasing noise spectral density at zero frequency. The other two terms describe con-
tributions from the oscillator and the two-level system baths. They cause transitions between eigenstates 
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with the relaxation coefficients ( ) ( )π αΓ = Δ Δ ( )d C2c
jk

c kj c kj jk
c2 2

, where dc (Δ k j) is the spectral density of 
the bath and αc (Δ k j) is the system-bath coupling strength at the transition frequency Δ kj =  εk− εj. The 
transition coefficients are = +( ) ˆ ˆ†C j kc cjk

c  with σ= , −ˆˆ ˆc a . The spectral density is assumed to be con-
stant, while ( )α Δ ∝ Δc kj kj

2 . Hence, ϕΓ =
ω

Δ
Cc

jk
c jk

c 2kj , where ϕc =  κc, γc, which are the standard damp-
ing rates of a weak coupling scenario for the bosonic and spin channels of dissipation35.

Using the dressed-picture dissipative formalism we checked that the dynamics preserved the trace 
property and that the ground state evolution has no time dependence. In Fig.  2 we illustrate the time 
evolution of the mean-photon number when the initial state is taken in the “spin up” state with zero 
bosonic occupation. The evolution at the SUSY line exhibits oscillatory behavior, while away from the 
SUSY line the dynamics is damped.

Usually a dissipative quantum system has a unique limit for the stationary state density matrix. 
However, this is not always the case. Here we found that the stationary solution of the density matrix 
equation has a manifold of stationary states at the SUSY line. Namely, the stationary solution of the 
Lindblad equation ρ ρ− 

 , 
=ˆ ˆˆL i H 0dr st stgR , has a four-fold degenerate zero eigenvalue when γφ(0) =  0. 

This manifold of the stationary states density matrices is spanned by the operators |i〉 〈 j|, where i, j =  1, 2 
label the two degenerate states, and thus the manifold of the stationary states is equivalent to the space 
of unit quaternions, and can be parametrized by the SU(2) group. On the other hand, when γφ(0) ≠ 0, 
only the diagonal part of this SU(2) matrix survives and the stationary state is only doubly degenerate. 
In the Supplement, we demonstrate that the dimension of the space of the stationary density matrices is 
topologically protected by the Witten index and the supercharge cohomology. As a consequence of the 
degenerate stationary subspace there is, in addition to the trace, another conserved quantity commuting 
with the Liouvillian −  , ⋅ +

ˆ Li H drgR . These conserved quantities are constructed as an overlap between 
left and right eigenstates of the Liouvillan, ρ ρ= ( )( )I 0i

i . We explicitly show how to find these con-
served quantities in the Supplement. The conserved quantities can directly be used to calculate the 

Figure 2.  Dissipative dynamics of the generalized Rabi model: The time evolution of the mean-photon 
number for the initial state |0〉 |↑ 〉  (zero photons and excited two-level system). Upper panel: evolution for 
parameters of the model tuned to the SUSY line (7). The stationary value (dashed line) was computed with 
the help of the conserved quantity I1 and I2. Lower panel: dissipation far away from the SUSY line. In this 
case the stationary state is given by I1, which corresponds to the trace and gives the ground state expectation 
value of the mean-photon number.
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stationary value of observables for any initial state. The conserved quantities encode certain information 
about the initial state into the stationary state. This is demonstrated in Fig. 2.

We also investigated the robustness of the SUSY-like dynamics, when we are slightly detuned from 
the SUSY line. We observe that the additional integral of motion, I2, becomes a time-dependent function 
with an extremely slow decay. Namely, for deviations up to δ ω/ ∼ .,g 0 11 2

 from the SUSY line, the decay 
can be fitted with an exponential function κ( ) ∼ (− )I t texp2  with κ ~ 10−3 for a very long time interval, 
corresponding to the scale of Fig.  2. This demonstrates a robustness of the SUSY-related dynamical 
properties even outside of the SUSY line. We attribute this behavior to the topological nature of the 
stationary states manifold discussed above. From a more general viewpoint this brings an analogy with 
the classical KAM theory, where the invariant tori stay stable for a long time.

Cross-links: dynamics
Time evolution starting from a given initial state is very natural in the framework of quantum optics. In 
the Jaynes-Cummings model, when the evolution starts with a coherent state, one observes Rabi oscilla-
tions with a frequency Ω = + Δ /g n 4R 1

2 2 , and their collapse and revival, for a system with a large 
average number of photons n 137,38. In general, three time scales can be identified: the Rabi oscillation 
period ( Ω )−2 R

1, the collapse time = Ω /T g nc R 1
2  of the Rabi oscillations and the revival time 

π= Ω /T g2r R 1
2, the time after which the Rabi oscillations reappear. What would be the interpretation 

of these phenomena in terms of the Rashba model? Consider the operator ρ τ= (− / )ˆ ˆqexp 4q q
2 , where 

τ = (− − )/ˆ ˆ ˆ⁎ †iq iqexp[ a a 2 ]q  is a displacement operator. This operator is nothing but a generator of 
the GMP algebra of the lowest Landau Level projected density operators39, satisfying 

( )τ τ τ
 ,


 = +

∧ˆ ˆ ˆi2 sinq p q p
q p

2
, where q^p =  l2(q ×  p)·ez and l =  (ħc/eB0)1/2. Therefore, by preparing the 

condensed matter system with Rashba spin-orbit coupling in the eigenstate |q〉  of the projected density 
operator ρ = ( )ˆ q iq q2q , one should be able to observe collapse and revival of the Rabi 
oscillations.

Still another example of cross-links between quantum optical models and spin-orbit coupled con-
densed matter systems could be provided by the Ramsey π-pulse scheme (kicks) applied to the two-level 
subsystem40,41. Following the previous analogy with Jaynes-Cummings model one can suggest a Ramsey 
spectrometry magnetic field pulse scheme to measure decoherence effects in the Rashba model.

Coupled systems: prospects for quantum simulation of the SUSY field theories
We coupled several (up to three) cavities, each described by the generalized Rabi model and tuned to the 
SUSY line. We observe a persistent degeneracy of the ground state in a range of the tunneling parameter, 
see Fig. 3. A number of recent studies suggest that coupled systems of Jaynes-Cummings- or Rabi-cavities 
undergo the Mott insulator-superfluid transition, and e.g., in the weak tunneling limit the coupled sys-
tems can be mapped to an effective XY-model with a magnetic field (similar to42). To include the effect 
of the tunneling between the different cavities, one should use a degenerate perturbation theory to study 
the SUSY points. This leads to the XY-model without an effective magnetic field. Starting from two cav-
ities and transforming to the bonding unit-bonding basis, it is easy to show that the doubly degenerate 
SUSY line will exist in parameter space, although its position is altered by the tunneling rate. We con-
jecture that, in the continuum limit, coupled generalized Rabi cavities could be described by a continuum 
SUSY field theory at a specific parameter manifold. We do not exclude that the continuum model could 
have a critical line in parameter space, where the effective theory is a super-conformal field theory. This 
issue will be addressed elsewhere. Another possibility to observe SUSY, would be to design a system 
which is described by ∫= ( ) ( )†H dxQ x Q x , where Q(x) is a continuum analogue of Q̂ as introduced 
before. An experimental implementation of coupled generalized Rabi cavities, using an ensembles of NV 
centers coupled to superconducting microwave cavities, was recently proposed43.

Discussion
Further connections between dissipative dynamics of quantum optical models and spin-orbit coupled 
systems can be foreseen in view of the finding of44: for a vanishing magnetic field and when g1 =  g2, there 
is a SU(2) dynamical symmetry, which leads to non-diffusive spin transport in disordered spin-orbit 
coupled systems. The SUSY we found here has the same effect on transport for ∆ω− =g g1

2
2
2  and a 

nonzero magnetic field Δ .
In45 it was found that the parity operations of a generalized Dicke model (a many-level extension 

of the generalized Rabi model) are discrete transformations of the electric to the magnetic field or vice 
versa. These transformations are best defined in terms of the electric and magnetic coupling constants 
Ω E,B =  g1± g2, respectively. By breaking these symmetries separately in the generalized version of the 
Dicke model, one can establish separate electric and magnetic phases. It is interesting to note that in this 
picture, our SUSY line (7) is given by Ω EΩ B =  ωΔ , and corresponds to the electro-magnetic self-dual line 
in parameter space, which is invariant under the exchange Ω E ↔  Ω B.

We observe a nontrivial structure of the stationary state density matrix forming a SU(2) manifold. 
This inspires a profound study of the nontrivial topology of the density matrix encoded in dissipative 
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dynamics and possible classification of topologically non-equivalent stationary state density matrices. 
An initial state density matrix is mapped to the stationary state subspace, which implies that the initial 
state information will be partially stored in the compact space of the stationary state manifold. This 
concept could be very useful for the realization of (partial) decoherence-free algorithms in the quantum 
information science.
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