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Extremely large third‑order 
nonlinear optical effects caused 
by electron transport in quantum 
plasmonic metasurfaces 
with subnanometer gaps
Takashi Takeuchi* & Kazuhiro Yabana

In this study, a third‑order nonlinear optical responses in quantum plasmonic metasurfaces composed 
of metallic nano‑objects with subnanometer gaps were investigated using time‑dependent density 
functional theory, a fully quantum mechanical approach. At gap distances of ≥ 0.6 nm, the third‑order 
nonlinearities monotonically increased as the gap distance decreased, owing to enhancement of the 
induced charge densities at the gaps between nano‑objects. Particularly, when the third harmonic 
generation overlapped with the plasmon resonance, a large third‑order nonlinearity was achieved. 
At smaller gap distances down to 0.1 nm, we observed the appearance of extremely large third‑
order nonlinearity without the assistance of the plasmon resonance. At a gap distance of 0.1 nm, the 
observed third‑order nonlinearity was approximately three orders of magnitude larger than that seen 
at longer gap distances. The extremely large third‑order nonlinearities were found to originate from 
electron transport by quantum tunneling and/or overbarrier currents through the subnanometer gaps.

A plasmonic metasurface composed of periodically arrayed metallic nano-objects in two-dimensions has been 
demonstrated to be a useful platform for manipulating light-matter interactions. These interactions can be finely 
tuned over a wide range by the geometric characteristics of the nano-objects such as the object shapes, gaps 
(distance between the objects), and periodic  patterns1, 2. Although metasurfaces are well established in various 
linear optical applications, including subdiffraction  lensing3, 4, monochromatic or color  holography5–8, polari-
zation  converters9, 10, broad bandwidth Fourier  lens11, and energy-tailorable multifunctional thin  film12, there 
has been a growing interest in their applications for nonlinear optics, such as frequency  converters13–15, optical 
switching and  modulation16–18, and  others19, 20, in the past decade. Particularly, in recent years, a metasurface 
combined with multi-quantum-well semiconductor heterostuctures has attracted great attention to enhance a 
second-order optical nonlinearity that is expected for various  applications21, 22.

One of the key components for achieving a high nonlinearity in a metasurface is to generate a strongly 
enhanced electromagnetic field in the vicinity of the nano-objects. Such an enhancement can be realized by 
arranging the objects to make the gap distances small so that the induced surface plasmonic charge densities 
are closely coupled with each other. To further strengthen the enhancement, recent experimental studies have 
fabricated metasurfaces with extremely small gap distances using a self-assembly approach, reaching to a sub-
nanometer  scale23–25. In particular, the latest report has shown that a large third-order nonlinear susceptibility 
can be achieved in a plasmonic metasurface composed of ligand-capped gold nanospheres with a gap distance 
of 0.6  nm25. The study used an incident light pulse whose fundamental frequency was far from the plasmonic 
resonance. Although the plasmon resonance usually plays a key role in the electromagnetic field enhancement, it 
also causes unfavorable cumulative thermo-optical effects. Using the off-resonant condition, the high enhance-
ment originating from the large screening charge densities was realized with negligibly small heat accumulation 
owing to the subnanometer gaps. Such high nonlinearity achieved in metasurfaces will be crucially important 
for downsizing all-optical switches, as their size is inversely proportional to their nonlinear refractive  index16–20. 
In this way, plasmonic metasurfaces with subnanometer gaps are expected to be ideal candidates for nonlinear 
optical switches that could dramatically accelerate the evolution of optical communication network systems.
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In addition to the enhanced electromagnetic fields in plasmonic systems with subnanometer gaps, they also 
produce accompanying quantum mechanical effects. In the linear response of an isolated nanodimer system 
composed of two metallic nanoparticles with a small gap, quantum effects have been shown to affect the opti-
cal characteristics as previously reported in  theoretical26–30 and  experimental31–33 studies. The effects depend 
strongly on the relationship between the Fermi energy and the potential barrier at the gap. When the nanodimer 
is separated by a large gap distance, the Fermi energy is sufficiently lower than the potential barrier. At smaller 
gap distances comparable to the radius of the constituent nanoparticles, the potential barrier starts to decrease; 
however, the barrier height is still quite high compared to the Fermi energy. When the gap becomes smaller 
than 0.4 nm, the Fermi energy is approximately equal to or slightly greater than the potential barrier. In this 
case, electrons may cross the barrier via quantum mechanical tunneling and/or overbarrier currents through 
the gap. These currents produce charge transfer through the gap that suppresses the plasmonic enhancement.

In nonlinear responses, the quantum current flowing in the nanodimer has been reported to affect the 
electric field  enhancement34 and the harmonic generation  efficiency35. However, to the best of our knowledge, 
there have been no prior theoretical or experimental reports that discuss how such currents flowing across 
the gaps contribute to the nonlinearity of the metasurface with subnanometer gaps. Although there have been 
a few recent measurements, the gap distance was 0.6 nm in the smallest case, where the nonlinearities of the 
metasurface should still be solely determined by the strong optical enhancement at the  gaps25. Therefore, it is 
highly intriguing to explore whether higher nonlinearity can be achieved by the currents flowing through the 
gaps of the metasurface.

In this study, quantum plasmonic metasurfaces composed of metallic nanospheres with subnanometer gaps 
were theoretically investigated through a fully quantum mechanical calculation using time-dependent density 
functional theory (TDDFT)36, 37 combined with a two-dimensional (2D) coarse-graining  approach38 to the elec-
tromagnetism. We investigated their third-order nonlinearities for off-resonant incident pulses and clarified 
their dependence on the fundamental frequency and the gap distance. Our results show that, for gap distances 
of ≥ 0.6 nm, third-order nonlinearities monotonically increase as the gap distance decreases owing to the optical 
enhancement at the gap. In particular, when the frequency of the third harmonic generation overlaps with the 
plasmon resonance frequency, strong resonant third-order nonlinearities were observed. At smaller gap distances 
down to 0.1 nm, we found the appearance of extremely large third-order nonlinearity that is not assisted by the 
plasmon resonance. At the gap distance of 0.1 nm, the observed third-order nonlinearity is approximately three 
orders of magnitude larger than those at longer gap distances. It was found that the extremely large third-order 
nonlinearities originate from electron transport by quantum tunneling and/or overbarrier currents through the 
subnanometer gaps. Our findings demonstrate a new way to increase the nonlinearities of metasurfaces that 
should be enormously useful for downsizing all-optical switches.

Results
Studied system and theoretical approach. Figure 1a displays the studied system where metallic nano-
spheres with a diameter a are periodically arrayed in the xy plane with a gap distance d and a period length l. 
The incident light of a planar pulse propagates toward the negative z direction with the x-electric and y-mag-
netic components, Ei and Hi , respectively. The time profile of Ei is described in the Supplementary Information. 
To treat the quantum mechanical effects with a moderate computational cost, we employed the jellium model 
(JM) in which ionic structures are replaced by a positive background charge of a spherical shape with a shape 
boundary. Although this JM includes a considerable simplification, the plasmonic motion of electrons in the 
nanoparticles are well  described26, 28, 39. Previous studies reported quantitative agreement between the JM and 
measurements of plasmonic systems with subnanometer gaps where the quantum electron tunneling played 
a key  role31, 32. In the JM, the medium is specified by the Wigner–Seitz radius, rs, that specifies the average 
charge density, n+  = ((4π)rs

3/3)−1. We employed a value of rs = 4.01 Bohr corresponding to the Na metal. We set 
a = 3.1 nm, where each nanosphere included 398 electrons that constitute the closed shell structure. This size is 
sufficiently large to ensure that the nanoparticle exhibits a well-developed plasmonic  resonance29.

Figure 1.  (a) Schematic picture of the studied metasurface composed of Na nanospheres. The parameters a, d, 
and l, represented by the red, blue, and green arrows, denote the diameter of the sphere, the gap distance, and 
the length of the period, respectively. (b) Linear optical absorption rate of the metasurfaces. The horizontal and 
vertical axes denote the gap distance d and the optical frequency, respectively. The white dashed line indicates 
d = 0 nm where the constituent spheres start to overlap geometrically.
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To calculate the optical responses of the metasurface, we employed the TDDFT that has been extensively 
used to investigate the optical properties of  molecules40 and  solids41 at a first-principles level. We combined the 
TDDFT with a 2D coarse-graining approach in which the light-matter interaction in two-dimensional materials 
is aptly described by coupling to the Maxwell’s  equations38. Adiabatic and local density approximations were used 
for the exchange–correlation  potential42. All the calculations were carried out using SALMON, an open-source 
code (https ://salmo n-tddft .jp/) developed in our  group43. The Supplementary Information contains a detailed 
description of the adopted numerical approach.

Linear optical response. Before discussing nonlinear optical responses, we briefly look back on the lin-
ear response of the metasurface. Figure 1b shows the linear optical absorption rate of the metasurfaces as the 
gap distance d was varied. When d is sufficiently large, the optical absorption shown by a bold red and yellow 
band appears at approximately 3 eV, which is not significantly different to the plasmon resonance of a single 
nanosphere. As the gap distance d decreases to 0.2 nm, the frequency of the absorption starts to be red-shifted, 
and the magnitude increases. These features originate from increasing interactions between the nanospheres. 
The plasmonic charge densities induced on the spheres are strongly attracted to each other, forming the bond-
ing dipolar plasmon mode. However, at the locus of d ≤ 0.2  nm, the plasmon resonance rapidly decays and 
hybridizes into multiple plasmon modes including the bonding octopolar- and the void-plasmon modes that are 
caused by quantum tunneling and/or overbarrier currents flowing through the subnanometer gaps. At the locus 
of d ≤ 0 nm where the constituent spheres start to overlap geometrically, there is no potential barriers that pre-
vent a conduction current from flowing throughout the metasurface. These trends had already been established 
in our previous  study44.

Nonlinear optical response. Next, we explored the nonlinearities in the optical response of the plas-
monic metasurfaces. First, we focused on the metasurface with d = 2 nm where the nanospheres are sufficiently 
separated from each other, and the response reflects the characteristic features of a single nanosphere, as seen 
in Fig. 1b. In the 2D coarse-graining approach adopted here, we employed a macroscopic description in which 
the metasurface shown in Fig. 1a was treated as a uniform thin-film of zero-thickness38. In this approach, the 
evolution of the electric field was described by Et = Ei − (2π/c)̃J[Et ] , where Ei and Et are the incident and the 
macroscopic transmitted electric fields, and J̃[Et ] is the 2D macroscopic electric current density that includes 
nonlinear signals and is produced by the field Et . The current J̃[Et ] was calculated from the microscopic electron 
dynamics for which we utilize the TDDFT. The boundary condition on the film, Et = Ei + Er , determines the 
macroscopic reflected electric field, Er . The details of the theory are explained in the Supplementary Informa-
tion. These macroscopic reflected and transmitted electric fields, Er and Et , should be observed in actual meas-
urements.

Figure 2a displays the time profiles of Ei and Er . In all subsequent results, electric fields divided by the maxi-
mum amplitude of Ei will be shown and denoted as E . The full duration of the incident pulse was set to 55 fs 
with the envelope shaped by a cosine-squared function. The mathematical expression for Ei is described in the 
Supplementary Information. The top panel displaying the black solid line is Ei , where the fundamental frequency 
ωi is set to 0.96 eV, far from the plasmon resonance at d = 2 nm, which is approximately 3 eV as seen in Fig. 1b. 
The middle panel shows Er calculated for the three different incident intensities I = 1011,  1010, and  109 W/cm2 
that are plotted by the blue, red, and green lines, respectively. Since we applied the off-resonant incident pulse, 
E
r was much smaller than Ei , indicating a high transparency. After t ≈ 20 fs, small nonlinear signals that depend 

on I were observed, as seen in the magnified box. To distinguish between the nonlinear signals more clearly, we 
calculated, �E

r , the difference between Er and the lowest intensity reflection of  109 W/cm2. The bottom panel 
shows �E

r
(t) for the two cases of I = 1011 and  1010 W/cm2, where the third harmonic generations ware clearly 

detected as the intensity increased.
In all subsequent results, we used a single intensity of I = 1010 W/cm2 that corresponds to the intensity of 

the pulse used in the previous experimental study on the plasmonic metasurface with subnanometer  gaps25. To 
clarify the dependence on the fundamental frequency ωi, we examined three different ωi values for the same 
metasurface, characterized by d = 2 nm. Figure 2b shows the resultant power spectrum of the normalized reflected 
electric field | Er(ω)|2, where the plasmon resonant frequency ωr is indicated by the vertically drawn gray line. 
The blue, red, and green lines correspond to ωi = 0.82 (= ωr/3.5), 0.96 (= ωr/3), and 1.15 (= ωr/2.5) eV, respectively. 
At the first harmonic generation, | Er(ω)|2 slightly increased with ωi because the frequency comes slightly closer 
to the plasmon resonance ωr. In contrast, for the third harmonic generation appearing around 3 eV, the highest 
nonlinearity was achieved at ωi = 0.96 eV. This is because the third-order signal appears closely to ωr and thus is 
plasmonically enhanced. There is a time-delay in the third-order harmonic generation with respect to the incident 
and the reflected fields, as seen by comparing the top, middle, and bottom panels of Fig. 2a, due to the inherent 
time requirement for resonant enhancement. The enhanced nonlinearity assisted by the plasmon resonance was 
also reported in the previous study that dealt with an isolated nanodimer  theoretically31. Finally, we note that 
the fifth harmonic generation is visible only at ωi = 0.96 eV.

Dependence on gap‑size. We now move on to the main subject of the present study, clarifying the third-
order nonlinearities of metasurfaces with various subnanometer gaps. To quantify the third-order nonlinear 
efficiency, we introduce a quantity, R(3)

NL(ωi , d) =
[∫ 3.5ωi

2.5ωi
|Er(ω)|2dω

]
/

[∫∞
0

∣∣Ei(ω)
∣∣2dω

]
 , the detailed definition 

of which is described in the Supplementary Information. In simple terms, R(3)
NL indicates the nonlinear reflectivity 

caused by third harmonic generation for the case with a gap distance d and the incident pulse with a fundamen-
tal frequency ωi. Figure 3a summarizes the resultant R(3)

NL for gap distances from − 0.2 to 2 nm and the fundamen-
tal frequencies ωr/3.5 < ωi < ωr/2.5, where ωr is the plasmon resonant frequency. When the fundamental fre-

https://salmon-tddft.jp/


4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21270  | https://doi.org/10.1038/s41598-020-77909-y

www.nature.com/scientificreports/

quency satisfies ωi = ωr/3, it is marked in Fig. 3 by a black pentacle. At d = 0 nm, ωi is widely sampled from 0.47 
to 1.1 eV, and the pentacle is not added to this case because the plasmon resonance is hardly distinguished, as 
seen in Fig. 1b. Figure 3a allows us to find three distinctive trends that are indicated by the different colored lines. 
The first trend is indicated by the blue lines representing d = 2, 1.2, and 0.6 nm. Here, the peaks appear close to 
the pentacles. The peak values gradually increase and the peak frequencies are red-shifted as the gap size 
decreases. These trends are in accordance with the linear responses shown in Fig. 1b, indicating that the large 
third-order nonlinearities are assisted by the plasmonic resonance of the bonding dipolar mode. The second 

Figure 2.  (a) Time-domain responses of the metasurface with the gap distance d = 2 nm. All electric fields 
are normalized by the maximum amplitude of the incident pulse, Ei . The fundamental frequency, ωi, is set to 
0.96 eV. The top panel shows the normalized incident pulse Ei as the black line. The middle panel shows the 
normalized reflected electric field Er , where the blue, red, and green lines correspond to the three different 
intensities I = 1011,  1010, and  109 W/cm2, respectively. The gray box shows the magnified view. The bottom panel 
shows the difference between each Er and the lowest intensity reflection,  109 W/cm2, �E

r . The blue and red 
lines represent reflection intensities of  1011 and  1010 W/cm2, respectively. (b) Power spectrum of the normalized 
reflected electric field | Er|2 at I = 1010 W/cm2. The vertical gray line indicates the frequency of the plasmon 
resonance, ωr, at d = 2 nm. Results for three different frequencies, ωi = 0.82 (= ωr/3.5), 0.96 (= ωr/3), and 1.15 
(= ωr/2.5) eV are plotted by the blue, red, and green lines, respectively.

Figure 3.  (a) Fundamental frequency dependence of the third harmonic generation component of the 
nonlinear reflection rate R(3)

NL , whose definition is described in the main text. Results of d = 2 to − 0.2 nm are 
shown by different symbols with colored lines. The black pentacles indicate the conditions at which ωi = ωr/3 is 
satisfied for each d. At d = 0 nm, the pentacle is not shown. (b) Gap distance dependence of  maxωi[R

(3)
NL(ωi , d) ], 

the maximum value of R(3)
NL at each d.
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trend is indicated by the red lines consisting of d = 0.4, 0.3, 0.2, and 0.1 nm. In this group, the peak frequencies 
do not coincide with the pentacle except for the d = 0.3 nm case. At the gap distance of d = 0.1 nm, the peak 
appears around 0.7 eV. It is noteworthy that the third-order nonlinearity at d = 0.1 nm is three orders of magni-

tude larger than R(3)
NL at the longest gap distance case of d = 2 nm. The last trend is indicated by the green lines 

consisting of d = 0, − 0.1, and − 0.2 nm. Here, the constituent nanospheres start to overlap geometrically. The 
results shown here assume that ωr for d = − 0.1 and − 0.2 nm is given by the upper branch, seen in the top left 
region of Fig. 1b. These green lines show a rapid decay of R(3)

NL with decreasing d.
To provide a clear measure of the gap distance dependence of the observed third-order nonlinearities, we 

introduce a new quantity,  maxωi[R
(3)
NL(ωi , d) ], by taking the maximum R(3)

NL observed for varying ωi at each d. The 
result is shown in Fig. 3b. It indicates that the gap distance dependence of the nonlinearity can be categorized 
into two regions; one is from d = 0.6 to 2 nm where max[R(3)

NL ] monotonically increases as the gap distance is 

reduced, the other is from d = − 0.2 to 0.4 nm where max[R(3)
NL ] shows a prominent maximum at d = 0.1 nm. To 

quantify the observed extremely large third-order nonlinearity of the studied metasurfaces, they were compared 
to the nonlinearity of a  SiO2 thin film which is conventionally used in all-optical  switches25. As described in the 
Supplementary Information, we estimated the R(3)

NL of a  SiO2 thin film with the same thickness, a, as the present 
metasurface. The value was calculated to be 1.43× 10−13 , eight orders of magnitude lower than the studied 
metasurface.

The origin of high nonlinearity. To clarify the physical origin of the different features observed for gap 
distances above and below d = 0.6 nm in Fig. 3b, we examined the nonlinear electric current density flowing in 
the metasurface. In the 2D coarse-graining approach employed here, the reflected field Er(t) is equivalent to the 

2D macroscopic electric current density J̃(t) up to a constant factor, Er = −(2π/c)̃J[Et ] , and J̃(t) is given from 

the microscopic current density j
(
x, y, z, t

)
 by J̃(t) =

∫ ∫ (
dxdy/l2

) ∫
dzj

(
x, y, z, t

)
 . To investigate the physical 

mechanism that produces the nonlinear behavior, we introduce the nonlinear current density defined as 
jNL(x, t) =

∫ (
dy/l2

) ∫
dz
[
j
(
x, y, z, t

)
−

√
I/ILjL(x, y, z, t)

]
 , where jL is the linear current density that is calcu-

lated using the incident pulse with the same time profile and sufficiently weak intensity IL . In practice, we use IL 
=  109 W/cm2 to calculate the linear current. Likewise, we define the nonlinear 2D current density, J̃NL(t) by 
integrating jNL(x, t) over x. To investigate nonlinear optical responses that appear in different frequency regions, 

we introduce the spectrally divided nonlinear 2D current density, J̃(n)NL (ωi , d) =
∫ (n+0.5)ωi

(n−0.5)ωi

∣∣∣̃JNL(ω)
∣∣∣
2

dω . For 

n = 3, this quantity is proportional to R(3)
NL in Fig. 3b. Similarly as in Fig. 3b, we took the maximum of J̃(n)NL for ωi 

at each d; the result is presented in Fig. 4a where the blue lines with the circles and the triangles correspond to 
n = 1 and 3, respectively. The max[ J̃(3)NL ] shows similar behavior to R(3)

NL . Since J̃NL starts from the third-order to 
the electric field, we show 

∣∣Emax

∣∣6 by the red line with the crosses for reference, where Emax denotes the maxi-
mum electric field sampled on the xy plane including the center of mass of the nanospheres, normalized by the 
amplitude of the incident pulse. For the cases where d ≥ 0.6 nm, both max[ J̃(n)NL ] with n = 1 and 3 increase as d 
decreases, and are approximately proportional to 

∣∣Emax

∣∣6 . The magnitude of max[ J̃(n)NL ] with n = 3 is much larger 
than that of n = 1, owing to the resonant enhancement of the n = 3 component. The maximum electric field 
appears at the surfaces of the nanospheres, and the interaction of the induced charges at the surfaces enhances ∣∣Emax

∣∣6 as the gap distance decreases. At gap distances below 0.6 nm, where the extremely large third-order 
nonlinearities are obtained, the increase of the 

∣∣Emax

∣∣6 is no longer responsible for the increase of the max[ J̃(n)NL ]. 
It was observed that the nonlinear current component for n = 1, max[ J̃(1)NL ], rapidly increased and became com-
parable to the component for n = 3. This indicates that the enhancement is no longer caused by the resonant 
effect.

To elucidate the behavior causing the extremely large third-order nonlinearities, we focused on the temporal 
and spatial distribution of the nonlinear electric current density. The upper panels of Fig. 4b–e illustrate the 
spatio-frequency distribution of the nonlinear microscopic electric current density 

∣∣jNL(x,ω)
∣∣2 . The fundamental 

frequency, ωi, is set to the value that gives max[ J̃(3)NL ] for the metasurfaces with d = 2, 0.4, 0.1, and − 0.2 nm. The 
vertical axis is the x-axis of the metasurface that is parallel to the polarization direction of the incident pulse. The 
horizontally drawn pink dashed lines mark off the periodic length l with the left schematics showing the con-
stituent nanospheres. The lower panels indicate the nonlinear 2D macroscopic electric current density J̃NL(t) . In 
Fig. 4b, for d = 2 nm, J̃NL(t) solely consists of the plasmonically assisted third harmonic generation whose spatial 
distribution is fully confined to the sphere, as seen from the distribution of 

∣∣jNL(x,ω)
∣∣2 . This is explained by the 

position of the Fermi energy which is much lower than the potential barriers at the gaps. Although small second 
harmonic components are visible in jNL around the edge of spheres, they vanish after the spatial integration 
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because the components have opposite signs to each other. Figure 4c displays the case of d = 0.4 nm, where 
the potential barrier is slightly higher than the Fermi energy. The nonlinear current is still mainly composed 
of the third harmonic component. The amplitude is larger than that of the d = 2 nm case owing to the stronger 
electric field enhancement at the gaps. It was noted that a slight nonlinear component of the fundamental fre-
quency is visible in J̃NL at 10 ≤ t ≤ 30 fs. We confirmed that this weak signal is also seen in 

∣∣jNL(x,ω)
∣∣2 flowing 

across the gaps by quantum mechanical tunneling, although it cannot be seen on the color scale in the upper 
panel. As seen in Fig. 4d, J̃NL(t) at d = 0.1 nm shows drastic changes compared to the above-mentioned trends 
at larger gap distances. At this distance, the Fermi energy is slightly higher than the potential barriers, chang-
ing the mechanism of the current from tunneling to overbarrier. The nonlinear current includes both n = 1 and 
n = 3 components and propagates through the subnanometer gaps. As seen in Figs. 3b and 4a, this gap distance 
produced the largest third-order nonlinearity. At d = − 0.2 nm shown in Fig. 4e, the third harmonic generation 
current rapidly decreases. Here, the tunneling and/or the overbarrier currents are unified into a conduction one 

Figure 4.  (a) Gap distance dependence of  maxωi[ J̃
(n)
NL (ωi , d) ] (blue lines, left axis) and 

∣∣Emax(d)
∣∣6 (red line, right 

axis). Their definitions are given in the main text. (b–e) Nonlinear two-dimensional electric current density 
J̃NL (lower panels) and spatio-frequency distribution of the microscopic nonlinear electric current density jNL 
(upper panels) are shown for d = 2, 0.4, 0.1 and − 0.2 nm, respectively. The fundamental frequency ωi is set 
to the same value as that used to calculate  maxωi[R

(n)
NL(ωi , d) ] in Fig. 3b. In the upper panels, the vertical axes 

denote the x-axis of the metasurface which is parallel to the polarization direction of the incident pulse. The 
horizontally drawn pink dashed lines mark off the periodic length l along the x direction.
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flowing throughout the metasurface because nanospheres are directly connected. We noted that the magnitude 
of the nonlinear current decreases compared to the case of d = 0.1 nm. From these observations, we conclude 
that the extremely large nonlinearity is caused by electron transport through the gaps via the tunneling and/or 
the overbarrier mechanisms.

While performing this study, we used various approximations. They are outlined below in conjunction with 
the limitations of this study. Since we assume the Na nanospheres described by the JM, it does not include any 
d-electron effects that appear in typical plasmonic materials such as the noble metals. Therefore, in our simu-
lation, the nonlinearity caused by the d-electrons is ignored. Moreover, the JM ignores the ionic structure of 
metallic nanoparticles that may cause strong electric-field enhancements at the apexes of clusters, known as the 
lightning rod  effect29.

Although we have focused on very small nanospheres with a diameter of a = 3.1 nm, actual plasmonic nano-
particles used widely in measurements are larger in size, reaching 10–100  nm1, 2. Furthermore, despite the great 
advantage that the optical characteristics of metasurfaces can be finely tuned over a wide range by the shape of 
the nanoparticles, this study remained limited to the elementary geometry of spheres. These geometrical dif-
ferences would affect electron tunneling and/or overbarrier currents, modifying the nonlinearities. To explore 
such effects, one prospective candidate method is quantum hydrodynamic theory (QHT) that can describe the 
nonlinear light-matter interaction of plasmonic  systems45–47. In particular, a recently proposed QHT study has 
revealed that it can be directly derived from the TDDFT with the JM, demonstrating good agreement in the 
linear response  regime47. Nevertheless, the computational cost of the QHT is significantly lower than the TDDFT 
because the QHT is an orbital free approach. Therefore, the QHT is expected to allow investigations of much 
larger systems with various geometries. We consider that the application of the QHT to metallic metasurfaces 
and the comparison with the TDDFT results in the nonlinear regime is an important topic for a future study.

Discussion
In conclusion, we have presented a theoretical investigation of third-order nonlinearities in quantum plas-
monic metasurfaces with subnanometer gaps, mainly focused on third harmonic generation. Nonlinear optical 
responses of a metasurface composed of metallic nanospheres have been examined using the TDDFT with 
the JM, where an off-resonant incident pulse ensuring negligibly small cumulative thermo-optical effects was 
employed. We have calculated the third-order nonlinearities as functions of the fundamental frequency of the 
pulse and the gap distance of the metasurface. It has been shown that, for gap distances of ≥ 0.6 nm, the third-
order nonlinearities monotonically increase as the gap distance decreases. This is caused by enhancement of 
the screening charge densities that are induced at the interfaces of the nanospheres. When the frequency of the 
third harmonic generation overlaps with the linear plasmon resonance, large third-order nonlinearities are 
observed. At further smaller gap distances down to 0.1 nm, we find the appearance of the extremely large third-
order nonlinearity that is not assisted by the plasmon resonance. In particular, at the gap distance of 0.1 nm, we 
have achieved a third-order nonlinearity three orders of magnitude larger than that of the longest gap distance 
case. The extremely large third-order nonlinearities originate from electron transport by quantum tunneling 
and/or overbarrier currents through the subnanometer gaps. At gap distances of d ≤ 0 nm where the spheres 
geometrically overlap, the tunneling and/or the overbarrier currents are unified into a usual conduction current 
that flows throughout the metasurface. In that case, the third-order nonlinearities were observed to decrease. 
Our findings suggest a new way to increase the nonlinearity of metasurfaces, which is expected to be enormously 
useful for downsizing all-optical switches.
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