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Abstract

Micro-anatomical reentry has been identified as a potential driver of atrial fibrillation (AF). In

this paper, we introduce a novel computational method which aims to identify which atrial

regions are most susceptible to micro-reentry. The approach, which considers the structural

basis for micro-reentry only, is based on the premise that the accumulation of electrically

insulating interstitial fibrosis can be modelled by simulating percolation-like phenomena on

spatial networks. Our results suggest that at high coupling, where micro-reentry is rare, the

micro-reentrant substrate is highly clustered in areas where the atrial walls are thin and

have convex wall morphology, likely facilitating localised treatment via ablation. However,

as transverse connections between fibres are removed, mimicking the accumulation of

interstitial fibrosis, the substrate becomes less spatially clustered, and the bias to forming in

thin, convex regions of the atria is reduced, possibly restricting the efficacy of localised abla-

tion. Comparing our algorithm on image-based models with and without atrial fibre structure,

we find that strong longitudinal fibre coupling can suppress the micro-reentrant substrate,

whereas regions with disordered fibre orientations have an enhanced risk of micro-reentry.

With further development, these methods may be useful for modelling the temporal develop-

ment of the fibrotic substrate on an individualised basis.

1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia with significant impacts on

both morbidity and mortality [1]. Despite extensive research, there are significant disagree-

ments within the cardiac electrophysiology community as to the mechanisms underlying AF

[2, 3].

Most studies into the mechanistic origin of AF focus on the maintenance of AF, typically

arguing for either organised (mother waves or stable rotors) or disorganised mechanisms
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(multiple reentrant wavelets). However, if both organised and disorganised mechanisms of AF

coexist on a continuous spectrum of electromechanical organisation, as suggested recently [4],

it is unlikely that any single treatment strategy will be successful across the full spectrum of AF

mechanisms. It is for this reason that personalised, patient-specific approaches to AF treatment

have become a key research focus in recent years [5, 6].

Here we computationally investigate one mechanism of AF initiation and maintenance: the

formation of micro-anatomical reentrant circuits, which are continuously activated electrical

circuits anchored to the fibre structure of the atria [7]. This mechanism is controversial, with

supporting clinical evidence still required, but it has some “potential to unify . . . previous dis-

crepant observations” in the AF literature [8]. Importantly, the size of experimentally identi-

fied micro-reentrant circuits is often at, or below, the spatial resolution which can be resolved

with conventional multi-electrode mapping [7, 9]. Similarly, the interstitial fibrosis which

insulates these circuits is often not easy to detect using conventional LGE-MRI [4], and

extracting precise fibrosis densities is challenging given the variability in signal thresholding

choices between scans and patients [10]. Hence, computational approaches allow for a degree

of hypothesis testing which avoids some of these challenges.

In this proof of concept, we introduce a novel method to assess the feasibility of patient-spe-

cific predictions for the distribution of micro-anatomical reentry across the atria. In particular,

the method is inspired by the idea that it may be possible to predict the emergence of micro-

reentry before the atria have accumulated sufficient interstitial fibrosis, in contrast to most

other approaches which take a static view of the AF substrate [5, 11].

Starting from image-based models of the atria, we combine data regarding the atrial geome-

try and the underlying myocardial fibre structure to form a spatial network. By progressively

removing connections in the atrial structure, we assess where in the network a path exists

which is sufficiently long to harbour micro-reentry, an approach related to the study of perco-

lation in network science [12]. In the current work, our primary goal is to understand the util-

ity of the method and demonstrate its future potential. With this in mind, our research focuses

on how the regions predicted by our method of being susceptible to micro-reentry depend on

fibre structure and atrial geometry.

2 Aims

Experimental evidence from explanted human hearts has suggested that “AF may be driven by

microanatomic reentrant AF drivers anchored to fibrotically insulated tracks within the com-

plex atrial wall” [9]. To ensure that a given fibre tract can sustain micro-reentry, the reentrant

pathway through a fibrotically insulated fibre tract must be at least one refractory wavelength

long.

Our approach is illustrated schematically in Fig 1. Denoting the minimum refractory wave-

length during fibrillation as τ, our aim is to assess where in the atrial structure fibrotically insu-

lated reentrant pathways exist of length ℓ, such that ℓ� τ. In a healthy heart with minimal

interstitial fibrosis, atrial myofibres are well coupled in both the longitudinal and transverse

directions. Hence, the longest possible reentrant path is significantly shorter than one refrac-

tory wavelength, ℓ� τ. As the density of electrically insulating interstitial fibrosis increases,

the longest reentrant pathway increases until a threshold density is reached at which ℓ� τ and

the fibrotically insulated fibre tract can sustain continuous reentry during AF. Importantly

however, this threshold density may vary across different regions of the atria; some regions

may be susceptible to micro-reentry at a low fibrosis density, whereas other regions may

require a significantly higher fibrosis density before micro-reentry can be induced. If the
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density of fibrosis is too high in a region, micro-reentry may be prevented due to the absence

of any closed loops (compact fibrosis).

Our hypothesis is that the process of electrically insulating fibre tracts with interstitial fibro-

sis can be modelled using spatial networks. A spatial network is a graph consisting of nodes

representing entities in space, and edges representing spatial connections between those enti-

ties [13]. In our case, a node represents one or more atrial cardiomyocytes in a specific atrial

region, and an edge between two nodes indicates whether those groups of myocytes are electri-

cally coupled, that is whether an activation wavefront can pass directly from the group of myo-

cytes represented by one node, to the group of myocytes at the other node.

Starting from a network in which the local density of edges is high, our assertion is that the

accumulation of insulating interstitial fibrosis in the atria is structurally equivalent to the pro-

gressive removal of edges in our spatial network. If the density of fibrosis is low, then the den-

sity of edges in the spatial network is high, and similarly, if the density of fibrosis is high, the

Fig 1. A schematic illustrating our approach. Left column: (A) In the healthy atrial myocardium, cardiomyocytes (pink cells) are well coupled along

and across the principle fibre directions, such that the longest reentrant loop is too short to sustain micro-anatomical reentry (green arrows). (B) Over

time, the atria accumulate interstitial fibrosis (yellow cells) forming short segments of electrically isolated fibre. (C) The length of these segments grows

as more interstitial fibrosis accumulates until the isolated segments are sufficiently long to harbour micro-reentry (blue arrows). We hypothesise that

the accumulation of interstitial fibrosis can be modelled as a spatial network. Right column: Nodes (yellow points) representing a group of

cardiomyocytes are connected to their neighbours along fibres (red links) and across fibres (blue links). If the density of interstitial fibrosis is low, there

are many transverse (blue) links. We model the increase in the density of interstitial fibrosis as the progressive removal of transverse links, and equate

the micro-anatomical reentrant substrate to regions of the spatial network where a loop exists that is longer than one refractory wavelength.

https://doi.org/10.1371/journal.pone.0267166.g001

PLOS ONE Identifying atrial micro-reentry using spatial networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0267166 June 23, 2022 3 / 24

https://doi.org/10.1371/journal.pone.0267166.g001
https://doi.org/10.1371/journal.pone.0267166


density of edges in the spatial network is low. Then, by identifying loops in the spatial network

of length ℓ� τ, we can identify which atrial regions may act as a substrate for micro-anatomi-

cal reentry at a given fibrosis density.

3 Materials and methods

In this paper, we generate spatial networks from three atrial datasets (see below), each consist-

ing of a voxel mesh with local fibre orientation vectors. For each dataset, we generate spatial

networks according to two different approaches: one which preserves atrial fibre orientations

in the spatial network (the fibre model), and a null model approach which ignores the fibre ori-

entation data but retains other structural information such as wall thickness (the fibre-less null

model). These two approaches are shown schematically in Fig 2. By utilising both approaches,

we are able to identify how the underlying atrial fibre structure affects the observed micro-

reentrant substrate.

3.1 Atrial datasets

The spatial network algorithm is tested on three atrial datasets, one human dataset with MRI

derived geometry, but synthetic fibre orientations, and two sheep atrial datasets where the

fibre structure has been inferred from high resolution serial surface imaging. Each dataset pro-

vides a 3d grid of vectors indicating the local fibre orientation at each point in the atria. The

sheep datasets are high resolution and inferred directly from the anatomy of each dataset.

Summary statistics for the three image-based atrial fibre maps are given in Table 1.

3.1.1 Synthetic atrial fibre map. The human dataset is detailed in [15] based on tech-

niques developed in [14]. The atrial geometry used provides no information as to the atrial

fibre structure. Therefore, a synthetic fibre map is constructed using a semi-automated rules-

based approach which is described in the supplementary material (SM) section 1.1.1.

3.1.2 Anatomically derived fibre maps. We study two anatomically derived sheep atrial

datasets: one healthy sheep acquired in [16] and a sheep with pacing-induced heart failure

[17]. These datasets are individual-specific, retaining significant local heterogeneity in the

fibre maps, and are provided at high resolution, in contrast to the synthetic human fibre map.

Fig 2. A schematic showing the construction of spatial networks from atrial imaging data. (A) An image based model of the atria is derived from

atrial imaging. The model, represented by a mesh of voxels, is coupled with vectors representing the underlying fibre orientation at each point. (B) In

the fibre model, a spatial network is generated where nodes (yellow points) are connected with probability 1 along fibre tracts (pink edges), and low

probability across fibre tracts (blue edges). (C) In the fibre-less null model, the probability of forming an edge is not biased by the underlying fibre

orientation.

https://doi.org/10.1371/journal.pone.0267166.g002
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Information regarding the data acquisition process is provided in SM section 1.1.2. In this

proof of concept, our aim is not to assess the differences in micro-anatomical reentry between

humans and sheep, or between healthy and heart failure (HF) sheep, but to understand how

different sources of fibre orientation data affect our results.

3.2 Constructing spatial networks with fibre structure

The schematic shown in Fig 3 outlines the process by which each image-based model is con-

verted into a spatial network in which the underlying fibre structure is retained.

3.2.1 Fibre tractography. Fibre tracts are generated across the atrial geometry by applying

a modified version of the Evenly Spaced Streamlines (ESS) algorithm, see [18]: (1) Local fibre

orientation data for a given atrial dataset is coarse grained to a specific voxel resolution, Fig 3

(A). (2) Placing seed points randomly in the atrial mesh, separated by at least dsep = 0.7, global

fibre tracts are constructed by propagating forwards and backwards along the local fibre orien-

tation vectors until terminated according to a set of pre-specified rules, Fig 3(B). (3) After fibre

tracts have been generated to cover the atrial mesh at an approximately fixed density of 1 node

per voxel, points are placed evenly along each fibre, Fig 3(C). The ESS algorithm was modified

to maximise fibre length by generating longer fibres first. Importantly, unlike other common

tractography methods, this modified ESS approach ensures that the density of fibres is approx-

imately uniform across the atrial structure. Technical details for the tractography process are

provided in SM section 1.2.

3.2.2 Generation of spatial network structure. The fibres generated from tractography

are not connected to each other, Fig 3(C). To connect fibres in a single spatial network, nodes

are placed at even intervals (steps of 1 voxel length) along fibres starting at a random seed

point. These nodes connect to neighbouring nodes in the same fibre with probability p = 1.

Any two nodes which do not lie on the same fibre are connected with probability

pðx; r; cÞ ¼
1

erðx� cÞ þ 1
; ð1Þ

where x is the distance between the nodes, r = 7 is an arbitrary steepness parameter, and c is a

characteristic distance. Connecting nodes according to a distance dependent attachment func-

tion is a standard technique when studying percolation on spatial networks [12]. For better

performance, only nodes separated by x< 2 are considered for connection. By varying the spa-

tial coupling parameter c, the number of transverse connections between fibres can be con-

trolled from a state where fibres are strongly connected at c� 1, to a state where fibres become

increasingly disconnected as c! 0. We can think of the coupling c as representing the grade

of fibrosis. If the coupling is large, there is no, or only low-grade, interstitial fibrosis. As

Table 1. Summary information for the three atrial fibre orientation datasets.

Human Sheep Healthy Sheep Heart failure

Imaging Method MRI Serial Surface Imaging Serial Surface Imaging

Original Image Resolution 330μm 50μm 25μm
Fibre Orientation Extraction Estimated Anatomically derived Anatomically derived

Fibre Orientation Method Semi-automated rule based approach focusing on key

bundles

Eigen-analysis of structure

tensor

Eigen-analysis of structure

tensor

Resolution after Coarse

Graining

330μm 300 μm 300μm

Dataset Reference [14, 15] [16] [17]

https://doi.org/10.1371/journal.pone.0267166.t001
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coupling is reduced, this is equivalent to a greater burden of interstitial fibrosis. Ideally, our

distribution of spatial coupling should be modulated using individual-specific fibrosis data,

however, this information is not available with the current datasets.

For each dataset, spatial networks are generated with five values of the characteristic dis-

tance, c. The specific values used and corresponding risk parameters (see section 3.5.1), are

given in S2 Table in SM section 1.3.1 in S1 File. For convenience, specific parameter choices

are labelled as having a low, medium or high global risk of micro-reentry.

3.3 Constructing spatial networks without fibre structure

For comparison purposes, we consider a null model where the spatial network excludes fibre

orientation. All other geometric information is retained. The fibre-less spatial network is gen-

erated analogously to the fibre model, with the omission of the initial fibre tractography steps,

illustrated schematically in Fig 4. Nodes are randomly distributed across each atrial mesh at a

density of approximately 1 node per voxel and are added to the spatial network if the distance

between the new node and any existing nodes is greater than or equal to dsep = 0.7.

Fig 3. A 2D schematic showing the conversion of local fibre orientation vectors into global fibre tracts which are seeded with nodes and coupled

into a spatial network. (A) Each image-based model provides a vector field for the local fibre orientation. (B) Beginning from a set of random seed

points (red circles), fibres are generated using tractography, propagating forward and backwards in the direction of the local orientation vector. (C)

Nodes (yellow circles) are placed at approximately equal intervals along the fibres. (D) Nodes are coupled to neighbouring nodes with probability 1 if

nodes are adjacent and in the same fibre (pink edges), and according to a monotonically decreasing function of distance, p(x;r, c), otherwise (blue

edges). Nodes which are close together (green arrows) are more likely to be connected than those which are far apart (red arrows). (E) By applying a

discrete diffusion model (see section 3.4) to the network, we identify the micro-reentrant substrate by observing where conduction block (red/orange

circle) results in a wavefront (white circle) reentering a blocked fibre.

https://doi.org/10.1371/journal.pone.0267166.g003
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To construct the spatial network, nodes are connected using the same distance dependent

probability function as the fibre model given in Eq (1). Unlike the fibre model, none of the

nodes are already connected by edges which represent the underlying fibre structure of the

atria (no pink edges); the probability of connecting two nodes is independent of their

orientation.

For each atrial dataset, we generate spatial networks for three values of the characteristic

coupling, corresponding to high, medium and low risk cases, see S3 Table in SM section 1.3.2

in S1 File. The characteristic coupling values for the fibre-less null model are significantly

larger than for the fibre model since there are no permanent longitudinal edges.

3.4 Identifying the substrate for micro-anatomical reentry

For both the fibre and fibre-less models, we associate the substrate for micro-anatomical reen-

try with regions in the corresponding spatial network where closed loops exist of length ℓ� τ.

Here, τ represents a typical refractory wavelength. These are found by applying a discrete diffu-

sion model (DDM) to the network, see SM section 1.4.

Fig 4. A 2d schematic demonstrating the construction of the spatial network using the fibre-less null model. The process is similar to Fig 3 where

steps (A) and (B) are skipped. (A) Nodes are distributed uniformly in each voxel. (B) Nodes are connected according to a monotonically decreasing

function of distance, p(x;r, c), Eq (1), where c is a characteristic distance (dashed circle). There is no directional bias in the connection probability (blue

edges only). Nodes which are closer together than the characteristic distance (green arrows) are more likely to be connected than those which are far

apart (red arrows). (C) The micro-reentrant substrate is identified using the DDM.

https://doi.org/10.1371/journal.pone.0267166.g004
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The DDM is related to several extremely simple physics models of micro-anatomical reen-

try [19–23]. These models are not electrophysiologically realistic models of AF. The strength

of discrete models lies in the ease with which structural discontinuities can be modelled, in

contrast to conventional models which are significantly complicated when no-flux boundary

conditions are imposed at the local level [24]. This justifies the use of the DDM in the current

context where we focus exclusively on the structural basis for micro-reentry. However, this

approach is not suitable for studying the dynamics of micro-anatomical reentry. For a wider

discussion of the role of model choice see [25].

3.5 Analysis methods

3.5.1 Defining risk of micro-anatomical reentry. To derive a measure for the risk of

micro-reentry in each spatial network, we use the DDM and assume that all nodes in the net-

work are equally susceptible to conduction block. If each structure has a similar number of

nodes which, if blocked, may initiate a micro-anatomical reentry, then the probability of initi-

ating any given circuit is approximately constant. Hence, for a spatial network with N potential

substrates, the rate, λ, at which new micro-reentries are initiated in the DDM is directly related

to the number of substrates N. This argument follows directly from similar arguments in [21].

A mathematically precise formulation of this argument is provided in SM section 1.5. The rate

parameter, λ, is used as our measure of the global risk of micro-anatomical reentry across the

atria as a whole. A uniform probability of conduction block is likely an unrealistic assumption.

However, realistic conduction block behaviour is difficult to obtain in the DDM framework.

These issues are discussed in more detail in the limitations section.

To compute the risk of micro-anatomical in a given atrial region, we define the local risk for

a specific voxel, v, by calculating the number of circuits which form in that particular voxel,

Nv, when sampling a fixed number of identified circuits, N. The rescaled rate of reentry for the

voxel v is then given by

~Rv ¼
l � NvP

vNv
; ð2Þ

where the denominator provides a normalisation. If a specific atrial region is referred to as “at

risk”, this signifies a non-zero value of the local risk, ~Rv, in that region. Note that summing the

local risk over all the voxels in the atrial geometry gives the global risk, l ¼
P

v
~Rv.

Given that there are typically many more voxels in each atrial geometry than sampled cir-

cuits, we smooth the local risk using a 3d Gaussian convolution with a standard deviation of 5

voxels (* 1.5mm) when plotting onto the atrial surfaces.

3.5.2 Spatial clustering of reentrant circuits. For each spatial network, we measure how

spatially clustered the identified micro-reentrant substrate is. To do so, we sample 1000 voxels

from the set of voxels in which micro-anatomical reentry is identified for each network and

extract the coordinate of each sampled voxel. The number of independent spatial clusters is

then derived by using the DBSCAN algorithm, a standard algorithm for spatial data clustering,

see [26]. We set eps = 10 (� 3mm), which is the parameter controlling the distance between

points for these to be considered in the same cluster. The number of points required for a clus-

ter is set to 1. If only one cluster is identified by DBSCAN, this indicates that all 1000 sampled

circuits in a given network fall within a single, small region of the atrial structure. Conversely,

if 1000 clusters are identified, no two circuits are identified in the same location.

3.5.3 Atrial wall thickness & occupied voxel fraction. Wall thickness is a common mea-

surement used when analysing atrial geometry. One issue when calculating wall thickness is

that it is not easily defined in the atrial bulk. On the surfaces, wall thickness can be defined as

PLOS ONE Identifying atrial micro-reentry using spatial networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0267166 June 23, 2022 8 / 24

https://doi.org/10.1371/journal.pone.0267166


the distance through the atrial wall along the perpendicular surface vector (there are compet-

ing, but similar definitions). However, in the bulk many perpendicular surface vectors pass

through the same voxel so that the thickness is not uniquely defined.

To resolve this issue, we introduce a novel measure analogous to wall thickness, the occu-

pied voxel fraction (OVF), which quantifies the proximity of voxels to the atrial walls and cap-

tures differences in the local wall curvature and thickness gradients, see SM section 1.6. The

measure is defined as the number of voxels within a radius ~r ¼ 5 (approximately 1.5mm)

which are inside the atrial structure, normalised by the total number of voxels within a sphere

of radius ~r . The OVF increases (decreases) if the atrial walls become thicker (thinner), and dis-

tinguishes between regions with convex, flat, or concave wall morphologies.

3.5.4 Longitudinal connection fraction. For the spatial networks with fibre structure, we

would like to associate the identified micro-reentrant substrate with the degree of local fibre

alignment in a particular atrial region. Fibre alignment is not naturally defined in a spatial net-

work. Therefore, we use the longitudinal connection fraction (LCF) as a proxy measure. This

is defined as the average number of longitudinal connections (along the fibre direction), nor-

malised by the total number of connections, either longitudinal or transverse. If the LCF in a

voxel is large, then fibres in that region are well aligned. Conversely, if the LCF is small, the

fibre structure is highly disordered in a local area. Note, however, that the LCF can increase

both from an increase in the number of longitudinal connections, but also from a reduction in

the number of transverse connections. Therefore, larger LCF does not necessarily imply more

longitudinal connections. More detail is provided in SM section 1.7 where we validate that the

LCF in each spatial network accurately reflects the expected degree of fibre misalignment mea-

sured in the underlying data.

It is interesting to note that we can compare the LCF to the degree of microscopic anisot-

ropy, calculated using Eq (1), at the highest level of spatial coupling where micro-anatomical

reentry is inducible in our spatial networks. This demonstrates that the onset of micro-reentry

in our spatial networks occurs at approximately the same degree of structural anisotropy as

found experimentally by Spach et al. [27], see SM section 1.8 for details.

4 Results

4.1 Spatial distribution of identified micro-reentrant substrate

Figs 5 & 6 show the substrate identified as susceptible to micro-reentry in the human atria

using the fibre and fibre-less models respectively, at low, medium and high global risk (pro-

gressively larger reentry rate, λ). Note that low, medium and high global risk refers to the over-

all risk of micro-reentry across the whole atrial tissue, and does not refer to whether specific

regions identified are at low or high risk (which is captured by the local risk, ~Rv). The spatial

distributions of local risk for the sheep atria are shown in SM section 2.1. How the differences

in our datasets affect our results is discussed in SM section 2.2.

The reader should be conscious that the local risk distributions shown do not represent the

regions at risk for a single atrial tissue, but rather show the collation of the local risk regions

identified across 1000 randomly generated spatial networks. If a region is highlighted in the

left column, the low global risk case, this may be interpreted as an area which is susceptible to

micro-reentry even if the fibrosis density is low (but non-zero). Regions identified in the mid-

dle and right columns are regions susceptible to micro-reentry at moderate and high fibrosis

densities respectively. This illustrates a key result: different regions of the atria are susceptible

to micro-reentry at different fibrosis densities. In particular, regions may have a characteristic

fibrosis density range within which they are susceptible to micro-reentry; if the fibrosis density

is too high or low these regions will not exhibit micro-reentry.
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4.1.1 Micro-reentrant substrate in spatial network with fibre structure. At low global

risk, micro-reentry is exclusively observed along a spatially isolated ridge of the pectinate mus-

cles (PMs) in the right atrium, see Fig 5. At medium global risk, the pulmonary veins (PVs), in

particular the right inferior pulmonary vein (RIPV), emerge as the dominant micro-reentrant

substrate. Secondary substrates include the junction of the left LSPV and the PLA, and the

inter-atrial septum (IAS). However, the hole in the IAS may play a role in it emerging as a local

risk region. An additional strip of low local risk is observed in the superior right atrium,

Fig 5. The micro-reentrant substrate for the human atria at low (left column), medium (middle) and high global

risk of micro-reentry (right). A: Superior view. B: Posterior view. C: Inferior view. D: Cut-through. E: Superior right

atrial zoom. IVC/SVC: Inferior/superior vena cava. PRA/PLA: Posterior right/left atrium. RAA/LAA: Right/left atrial

appendage. TV/MV: Tricuspid/mitral valve opening. CS: Coronary sinus. FO: Fossa ovalis. PM: Pectinate muscles. CT:

Crista terminalis. IAS: Inter-atrial septum. RIPV/LIPV/RSPV/LSPV: Right/left, inferior/superior, pulmonary vein.

https://doi.org/10.1371/journal.pone.0267166.g005
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adjacent to the crista terminalis (CT), see Fig 5(E). The strip in question lies between two small

holes in the atrial dataset, with sub-millimetre diameters.

At high global risk, the susceptible substrate is significantly more diffuse than at lower

global risk. However, there remain multiple regions with very low or zero local risk, in particu-

lar the posterior right atrium (PRA), left atrial appendage (LAA) and inferior vena cava (IVC).

The dominant local risk substrate lies along the strip between two small holes in the superior

right atrium. Secondary regions of high local risk are maintained in the PVs, with local risk

migrating slightly further from the LSPV junction into the PLA. The opening of the the

Fig 6. The micro-reentrant substrate for the human atria using the fibre-less null model at low (left column),

medium (middle) and high global risk of micro-reentry (right). A: Superior view. B: Posterior view. C: Inferior view.

D: Cut-through. E: Superior right atrial zoom. See Fig 5 for labels.

https://doi.org/10.1371/journal.pone.0267166.g006
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coronary sinus forms a new substrate which is not observed at higher coupling. The local risk

observed previously at the IAS and PMs is largely absent.

4.1.2 Micro-reentrant substrate in spatial network without fibre structure. The local

risk substrate identified by the fibre-less null model, see Fig 6, is qualitatively similar to the

local risk regions identified in the fibre model. Key local risk regions including the superior

right atrium and the PV sleeves are common to both models. Likewise, the PRA, LAA and

IVC are not susceptible to micro-reentry in either model.

At low global risk, the dominant local risk substrate in the fibre-less null model is confined

to two spatially isolated PM ridges, one of which exhibits local risk in the fibre model. Addi-

tional diffuse local risk is observed in the superior right atrium and in the right PV sleeves. At

medium global risk, the low local risk substrate is retained, with additional local risk in all four

PVs and diffuse risk across the superior right atrium. These local risk regions are consolidated

at high global risk, with a small reduction in local risk observed along the spatially isolated PV

ridges. The substrates observed for the fibre model along the coronary sinus (CS) opening and

at the IAS are not observed in the fibre-less null model.

4.2 Clustering of micro-reentrant substrate

The observed micro-reentrant risk substrates for the fibre and fibre-less models suggest that

micro-reentry is spatially confined for both models at low global risk, but that the substrate

covers a wider area as the global risk of micro-reentry increases. Fig 7 shows that the substrate

is more clustered for the fibre model than for the fibre-less null model. One possible interpre-

tation of this result is that if all micro-reentrant circuits are confined to a small number of clus-

ters, these will be easy to destroy or isolate via catheter ablation. However, if circuits are widely

distributed, they will be more difficult, if not impossible, to destroy or isolate.

4.3 Occupied voxel fraction

Fig 8 shows the average occupied voxel fraction for the identified micro-reentrant substrates

in the fibre and fibre-less models. For all three atrial datasets, the figure demonstrates that at

low global risk, the micro-reentrant substrate is confined to regions with low OVF,

Fig 7. The number of independent spatial clusters identified as at local risk of micro-anatomical reentry. Data for the fibre

model (blue points) and the fibre-less null model (orange crosses) for (A) the human atria, (B) the healthy sheep atria, and (C) the

HF sheep atria, as a function of the global risk parameter, λ. Each clustering value is calculated from 1000 sampled micro-

reentrant circuits. Error bars from bootstrapping.

https://doi.org/10.1371/journal.pone.0267166.g007
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significantly below the average value for each dataset. As global risk increases (increasing λ),

the mean OVF increases. This indicates that the bias to thin convex regions of the atria is

reduced as edges are progressively removed in each spatial network. Framed in terms of fibro-

sis densities, this result illustrates that regions with low OVF are susceptible to micro-reentry

at a lower fibrosis density than regions with larger OVF. These results are supported by statisti-

cal analysis in SM section 2.3.

4.4 Comparing fibre and fibre-less micro-reentrant substrates

Fig 9 shows an example of the micro-reentrant substrate for the fibre and fibre-less models

alongside their corresponding OVF and LCF values in the superior right atrium. The figure is

for the human atria at high global risk (right column in Figs 5 and 6) where the bias to thin

atrial regions is small but non-zero.

In the superior right atrium, the micro-reentrant substrate at high global risk is concen-

trated along a strip between two small structural holes (region 1) for the fibre model, Fig 9(A).

This region exhibits moderate risk in the fibre-less null model, Fig 9(B), with additional risk

along the spatially isolated PM (region 2), the junction of the CT and a second PM ridge

(region 3), and around the opening of the TV (region 4).

Region 2 exhibits low local risk in the fibre model, despite being a low OVF region, but is

the dominant risk region for the fibre-less null model when the rate of micro-reentry is low or

medium, see Fig 6(E) left and centre columns. This is because the strong longitudinal coupling

in region 2 suppresses micro-reentry in the fibre model. This effect is absent in the null model

where fibre structure is omitted. Region 2 is most susceptible to micro-reentry in the fibre-less

null model at a low and moderate fibrosis densities, with the local risk reducing at higher den-

sities. Regions 3 and 4 show very low or zero local risk in the fibre model.

Comparing the identified risk regions to the OVF values shown in Fig 9(C), we note that

regions 1–4 all exhibit low OVF values (blue on the colour scale). Of the four regions identi-

fied, we observe that the LCF values, Fig 9(D), in region 1 are low (blue), indicating fibre mis-

alignment, whereas strong longitudinal coupling is observed in regions 2–4. This suggests that

the local risk of micro-reentry is suppressed in the fibre model in regions with high LCF, but

can be enhanced in regions with low LCF.

Fig 8. The occupied voxel fraction averaged over voxels where micro-reentry is detected. Data for the fibre model (blue points)

and the fibre-less null model (orange crosses) for (A) the human atria, (B) the healthy sheep atria, and (C) the HF sheep atria, as a

function of the global risk parameter, λ. The dashed line in each subfigure is the average value of the occupied voxel fraction for all

the voxels in the atrial geometry.

https://doi.org/10.1371/journal.pone.0267166.g008
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These patterns can be quantified by plotting the distribution of LCF and OVF values across

all the voxels in the human atria. Fig 10(A) & 10(D) show the distribution where all voxels are

equally weighted (i.e., we count the number of voxels in the whole geometry with a specific

value of the OVF and LCF) at (A) low and (D) high global risk. In Fig 10(B) & 10(E) these dis-

tributions are weighted by the local risk (i.e., we sum the local risk, ~Rv, over all voxels with

fixed OVF and LCF) of micro-reentry observed in each voxel for the fibre model. The equiva-

lent is shown in Fig 10(C) & 10(F) where voxels are weighted by their local risk in the fibre-less

null model. Although the LCF is not defined for the fibre-less null model, it is illustrative to

label null model voxels according to the corresponding fibre model LCF values.

Recall that the OVF is a geometric property of the atrial structure which is unaffected by the

choice of coupling parameter, c, used to initialise the spatial networks. Hence, the distributions

in Fig 10(A) & 10(D) align along the OVF axis. However, the LCF is not independent of the

coupling parameter c used to initialise each network, and, consequently, is not independent of

the global risk, λ. Therefore, the distributions in Fig 10(A) & 10(D) do not align along the LCF

axis since an increase in global risk is associated with a decrease in transverse coupling, c. This

is equivalent to an increase in the LCF.

Fig 9. A view of the human superior right atrium illustrating factors influencing the spatial distribution of local risk. Risk regions for

(A) the fibre model, and (B) the fibre-less null model. (C) The occupied voxel fraction (OVF). (D) The longitudinal connection fraction in

the fibre model (LCF). Regions (1–4) are referenced in the main text. Colourbar limits: OVF 2 [0.3, 0.9], LCF 2 [0.4, 0.8].

https://doi.org/10.1371/journal.pone.0267166.g009

PLOS ONE Identifying atrial micro-reentry using spatial networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0267166 June 23, 2022 14 / 24

https://doi.org/10.1371/journal.pone.0267166.g009
https://doi.org/10.1371/journal.pone.0267166


If the distribution of local risk is unbiased by OVF or LCF, the distributions in Fig 10(B), 10

(C), 10(E) & 10(F) should follow the same patterns shown in Fig 10(A) & 10(D). For the fibre

model at low global risk, Fig 10(B), the voxel distribution is significantly skewed for both the

OVF and the LCF with the weighted mean falling in the first OVF decile and the first LCF

quartile. For the fibre-less null model at low global risk, Fig 10(C), the mean OVF value also

falls in the first decile, but there is a small skew to LCF values larger than the median. This is

an indirect effect and is explained by the strong longitudinal coupling along spatially isolated

regions such as the PMs.

For both the fibre and fibre-less models the local risk density lies almost exclusively in the

first OVF quartile, with negligible density at higher OVF values. In contrast, LCF values are

clearly skewed in the fibre model, although some local risk density remains at larger LCF val-

ues. This implies that at low global risk, the OVF is the dominant factor in determining the

local risk substrate, with fibre structure playing an important secondary role.

As the global risk of micro-reentry increases, we observe that the bias to low OVF values

remains, but is slightly reduced, see Fig 10(C) & 10(F). However, the local risk of micro-reen-

try is still completely suppressed at the largest OVF values. For the fibre model, a small bias

towards reduced LCF is observed. In contrast, the fibre-less null model shows minimal bias in

the distribution of LCF values. Statistical arguments supporting the above discussion are pro-

vided in SM section 2.3.

Before proceeding, it is important to address what appears to be a contradiction. Compar-

ing either Fig 10(B) to 10(C), or Fig 10(E) to 10(F), reveals how longitudinal coupling (high

Fig 10. The distribution of LCF and OVF values in the human atria at low (A-C) and high (D-F) global risk. (A) & (D)

The distribution across all the voxels in the human atria. (B) & (E) The distribution weighted by the local risk of reentry in

each voxel for the fibre model. (C) & (F) The equivalent for the fibre-less null model. Note, the LCF is not defined for the

fibre-less null model, but for illustrative purposes we include the LCF for the equivalent fibre model. Dashed lines: median.

Dotted lines: 10th, 25th, 75th and 90th percentiles. Colourbar indicates voxel density relative to distribution maximum; regions

in grey correspond to a relative density of zero. Red crosses: weighted mean of distribution.

https://doi.org/10.1371/journal.pone.0267166.g010
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LCF) has a protective effect, reducing the local risk of micro-reentry, relative to regions with

lower LCF. However, if we compare the case of low global risk in Fig 10(A)–10(C), to the case

of high global risk, Fig 10(D)–10(F), it appears the the increase in global risk is associated with

a shift in the voxel distributions from low LCF to higher LCF. This would would seem to

imply, incorrectly, that longitudinal connections enhance the local risk of micro-reentry.

To understand this, note that there are two ways in which the LCF may increase: Firstly, if

we fix the number longitudinal connections in the atrial geometry and progressively remove

transverse connections, this will result in the average LCF increasing since the relative abun-

dance of longitudinal connections increases. Conversely, if we fix the number of transverse

connections and increase the number of longitudinal connections, this will result in an

increase in the LCF. The former is the mechanism relevant when comparing the low global

risk case to the high global risk case, and is not associated with an increase in the number of

longitudinal connections. However, the latter is the mechanism relevant in a given atrial

geometry where transverse coupling is effectively fixed, but regions with higher LCF have

more longitudinal connections than regions with lower LCF. It is this second mechanism that

is associated with the protective effect of longitudinal connections.

5 Discussion

In this paper, we introduce a novel computational approach for analysing how the structural

substrate for micro-anatomical reentry may develop as the atria accumulate diffuse interstitial

fibrosis. The technique combines spatial networks with fibre tractography, and assumes that

interstitial fibrosis accumulation can be modelled as the decoupling of a spatial network, a con-

cept closely related to spatial percolation [12]. Although our work focuses on micro-anatomi-

cal reentry, we believe our approach is of general interest, offering new methods for modelling

atrial fibre structures, as well as metrics for quantifying longitudinal coupling and structural

curvature.

Many studies investigate the electro-anatomical basis for micro-reentry as a potential mech-

anism of AF, although robust clinical evidence to support the mechanism is still lacking.

Broadly speaking, such studies fall into three categories. In the first, the substrate can be identi-

fied directly, given sufficiently high resolution imaging, by observing the presence of a micro-

anatomical driver. Examples include [7, 9], identifying several key factors in the formation of

the reentrant substrate. Of particular note are the orientation of muscle fibres, the structure,

thickness, and thickness gradients of the atria, and the accumulation of fibrosis, particularly

interstitial fibrosis [28].

Attempting to quantify these factors, the authors in [9] applied optical mapping to

explanted human atria to identify how specific values of wall thickness and fibrosis burden

correlate to the location of the known micro-reentrant substrate [9]. Driver regions were

found to correlate well with areas of 20–30% wall thickness and 20–30% fibrotic burden, nota-

bly the junction of the RIPV and PLA, and between the CT and fibrotically insulated PMs.

Fibre misalignment was also implicated, specifically between the CT and the PMs which also

exhibit abrupt changes in the local wall thickness. However, these studies took a largely static

view of the micro-reentrant substrate, not considering how the substrate may change under

electrical or structural remodelling. Note that these studies have also been criticised for induc-

ing drivers under physiologically unrealistic doses of pinacidil for shortening the action poten-

tial duration.

In the second category, the substrate for micro-reentry has been established in the atria, but

is hidden due to the lack of a clearly observable driver. One recent study has addressed this

problem by noting that the visible micro-reentrant substrate varies strongly with variable atrial
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refractoriness [29]. Hence, the authors were able to demonstrate that the hidden micro-reen-

trant substrate could be unmasked and stabilised by shortening atrial refractoriness with aden-

osine. Such changes, induced pharmacologically, are analogous to some of the electro-

mechanical changes that may be expected over time from atrial remodelling [4]. However, a

robust framework for predicting the future micro-reentrant substrate is still lacking.

No study is yet to address the third category which is to predict how the substrate for

micro-reentry will develop in the future on a patient-specific basis, a problem directly related

to the increasing need for arrhythmic risk stratification [30].

In this proof of concept—which we acknowledge is far from clinical applicability—we have

attempted to take a step towards addressing this and ask how the substrate for micro-reentry

may develop over time. Specifically, we ask how different parts of the atria are susceptible to

micro-reentry at different characteristic fibrosis ranges; some regions of the atria, particularly

those where the atrial walls are thin and there is significant fibre misalignment, may be suscep-

tible to micro-reentry at a low fibrotic density, whereas other regions may require higher fibro-

sis densities before micro-reentry can be induced. Such an approach is currently only possible

in-silico, primarily due to ongoing challenges with accurate in-vivo atrial imaging [31].

Our results implicate the role of wall thickness and the misalignment of fibres, suggesting

that thin atrial walls and reduced longitudinal fibre coupling both enhance the probability that

a region is susceptible to micro-reentry at lower fibrosis densities, supporting the findings in

[9]. However, our study suggests that the dependence on these factors evolves as the density of

interstitial fibrosis grows in the atria. In particular, the spatial spread of the micro-reentrant

substrate increases dramatically with small reductions in the spatial network coupling, and

indicates that the bias to thin atrial regions with complex fibre morphology is reduced as the

micro-reentrant substrate becomes more spatially diverse. Many of the specific regions

highlighted as local risk substrates for micro-reentry in [9, 29], such as PM ridges and the

superior right atrium, naturally emerge as local risk substrates using our method, most likely

due to their position in thin atrial regions.

One explanation for the importance of wall thickness, fibrosis density, and local wall curva-

ture is that driver regions emerge from percolation-like dynamics where the critical fibrosis

density is dependent on the thickness of the structure studied [32, 33]. This in turn may result

in micro-anatomical circuits anchoring to the atrial surfaces in paroxysmal AF but distributing

across the atrial wall in persistent AF [34]. Aside from micro-reentry, modelling fibrosis using

percolation-style distributions is known to perform particularly well when simulating patterns

of AF maintenance [35], and has been used to explain complex fractionated electrograms and

reentries in fibrotic border zones [36, 37].

In the wider AF literature, a number of computational studies consider the role of atrial

structure on AF dynamics. In most cases, these studies investigate how structural factors affect

electrical wavefront dynamics by solving the mono- or bidomain equation coupled with a suit-

able atrial cell model [33, 38–43]. However, even the most advanced patient-specific modelling

methodologies suffer from the continued struggle to extract precise fibre orientation data and

high resolution fibrosis profiles (particularly diffuse interstitial fibrosis) in-vivo [6].

Until these issues are resolved, computational modelling must continue to be used as a plat-

form for hypothesis testing, studying the dynamics of AF initiation and maintenance with a

variety of methods and across scales. In particular, the clearest insights may be found from

models which contrast the role of a specific electro-anatomical feature with null models in the

absence of that feature. Examples include models with and without realistic tissue geometries

[38], with and without patient-specific fibrosis [44], isotropic vs. anisotropic fibre structures

[41], and continuous vs. discrete modelling choices [25]. We hope that the techniques
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introduced in this paper can add to the range of techniques employed for hypothesis testing in

cardiac electrophysiology.

5.1 Micro-anatomical reentry in the wider context

The role of local drivers, and specifically micro-anatomical reentrant circuits, in initiating and

maintaining AF is controversial. After initial findings showed promise in 2015 [7], some sug-

gested that the mechanism may have “the potential to unify some of the previous discrepant

observations” [8] on AF mechanisms. However, although research is ongoing, reproducible

clinical evidence identifying micro-anatomical reentrant circuits in patients is still lacking.

Despite this, it is important to reiterate that the size of micro-reentrant circuits are postulated

to be at, or below, the spatial resolution which can be resolved with conventional multi-elec-

trode mapping [7, 9]. This may hamper attempts to acquire clinical evidence in support of the

mechanism.

Opposing the local drivers hypothesis, many believe that AF is maintained by spatio-tempo-

ral chaos in the atria, whereby wavefronts continually collide into each other producing new

fibrillatory wavefronts [45–51]; evidence for the mechanism is extensive and extends beyond

AF-specific studies to more general studies on spatio-temporal chaos in excitable systems [52–

54]. In our view, there is no reason that local drivers cannot co-exist with other non-local

mechanisms, especially given recent evidence for a spectrum of mechanisms at different levels

of organisation during fibrillation [4]. This is important because the interaction between local

drivers and spatio-temporal chaos may have a significant effect on whether the ablation of

local drivers is a feasible strategy for terminating AF.

Spatio-temporal chaos may have a non-trivial impact on local driver regions, likely result-

ing in an increased rate of circuit termination as the fibrotic substrate becomes more spread

out, but also resulting in AF becoming more turbulent and difficult to terminate. If local driv-

ers can be ablated, this may be avoided. However, local ablation in this context with numerous

drivers across a diffuse substrate may become practically impossible given that (1) circuits are

short-lived due to chaotic propagation, (2) circuits are spatially diverse, and (3) even if circuits

can be destroyed, damage to the atrial myocardium may promote turbulent electrical propaga-

tion, driving more persistent AF. Despite this, local ablation strategies may still be worth pur-

suing if they lower the probability of initiating AF from sinus rhythm, where micro-reentrant

circuits may act as a trigger.

Whether robust evidence for the micro-reentrant driver mechanism can be established is a

question for the future. However, even without this evidence, the methods introduced here

may be valuable to the wider cardiac electrophysiology community, adding to the computa-

tional toolkit for hypothesis testing. In particular, the methods introduced for constructing

spatial networks using fibre orientation data may be of general interest to the community.

Equally, structural metrics including the occupied voxel fraction and the longitudinal connec-

tion fraction may be useful for studying atrial geometries and fibre structures. Finally, although

we acknowledge the limitations of the method (see below), the discrete diffusion model used

to propagate signals across our spatial networks may be of general use, particularly in cases of

high computational complexity where more phenomenologically accurate models constrain

the number of simulations that can be run.

5.2 Limitations

The aims of this study are highly focused, discussing the structural basis for micro-anatomical

reentry only. Many other factors may affect the probability that a micro-reentrant circuit

forms in a given region of the atria, including other forms of fibrosis and ionic remodelling.

PLOS ONE Identifying atrial micro-reentry using spatial networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0267166 June 23, 2022 18 / 24

https://doi.org/10.1371/journal.pone.0267166


Our approach does not consider these factors and cannot exclude their importance to micro-

anatomical reentry.

The key technical limitations of our work come under two main categories: (1) Imaging

related limitations and (2) limitations arising from specific modelling choices in the construc-

tion of the spatial networks.

In our view, one of the most important limitations relates to the datasets used for analysis.

In particular, the human fibre dataset has undergone extensive smoothing, lacking realistic

local heterogeneity in the fibre structure; the observed heterogeneous regions are likely arte-

facts from the synthetic fibre generation method. Similarly, the atrial geometry is heavily

smoothed, lacking fine structural detail in regions such as the RAA and LAA, but with numer-

ous structural holes across the geometry. Any future work must ensure that predictions are not

simply an artefact of the data acquisition and generation process.

Although using high resolution fibre maps like those in [16, 17] may avoid these issues,

acquiring such data is not feasible in-vivo, remaining a major ongoing research challenge [55,

56].

Assuming the imaging data used is of an acceptable quality and accuracy, a number of limi-

tations arise in the fibre map modelling process. Firstly, the fibre tractography methods applied

to generate global fibre tracts from local fibre orientation data are only an approximation of

reality. Without performing precise histology to determine the position of global fibre tracts in

our model, not histology focusing solely on local fibre orientation, it is not possible for us to

explicitly validate this approach. Since the imaging data used was acquired from previous stud-

ies, such a process is not possible in the current work but may be possible in future studies. As

a simple check of the robustness of our results, the full simulation pipeline, including the

regeneration of fibres from a different set of random seed points, was carried out three times

for the healthy sheep atria, showing no evidence that this significantly affected our final results.

Once fibre tracts are generated, nodes are placed along the fibres, and are coupled to nearby

nodes based on their separation. The attachment function to connect two nodes is uniform

across the atrial structure and does not consider any possible differences in the local connectiv-

ity of cardiomyocytes. Likewise, the characteristic coupling, c, that is used in each model is

constant across the atrial structure. This can be thought of as applying a uniform density of

interstitial fibrosis across the atria. It is known that not all regions of the atria are equally sus-

ceptible to the accumulation of fibrosis [57], and likewise, different forms of fibrosis accumu-

late differently across the atria [58]. Our assumption of uniformity is a reasonable first

approximation in the absence of patient-specific information regarding the distribution of

interstitial fibrosis which may not be visible with LGE-MRI. We do not consider any macro-

scopic fibrosis in the model. Such information was not available with the datasets acquired,

but should be considered in any future work. However, how to accurately map imaging-

derived fibrosis densities to precise spatial network edge densities is so far unclear and will

likely pose a future technical challenge.

Once a spatial network has been constructed, the micro-reentrant substrate is identified by

applying a simple discrete diffusion model on the network. The approach is loosely based on

the techniques discussed in [20, 34], although we stress that its purpose here is strictly to iden-

tify locations in which isolated fibres result in micro-anatomical reentry, not to simulate AF

dynamics. Assessing the ability of these structures to initiate and maintain AF would warrant a

more detailed computational analysis with a phenomenologically accurate model which may

be challenging at the resolution of our spatial network, and may struggle to produce large scale

statistics. Despite this, the use of phenomenologically accurate propagation models may be

necessary within our spatial network framework if we are to fully gauge and weigh up the rela-

tive impact of structural factors on the probability of micro-reentry, relative to other
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considerations such as the formation of functional blocks. Future studies using either method

would benefit from a detailed comparison to experimentally acquired atrial functional data.

The regions that are identified by the discrete diffusion model are a set of isolated fibre

tracts where unidirectional conduction block at a single node is sufficient to induce a micro-

reentrant circuit. The method to apply conduction block assumes uniform risk of block, avoid-

ing the need to specify special electrical properties in key atrial locations, and ignoring the

potential impact of functional blocks from source-sink mismatch. In practice, it is known that

electrical properties of cardiomyocytes vary significantly across the atria. For instance, the

proarrhythmic conditions found in the PVs such as conduction velocity slowing and short-

ened action potential durations are not considered. However, our results do indicate that the

PVs can emerge as a key risk substrate without the inclusion of electrical proarrhythmic

effects.

Finally, before our approach can have real clinical relevance, it would benefit from further

validation. We have demonstrated that the spatial networks accurately preserve the underlying

properties of each atrial fibre map, and that our techniques ensure an even density of nodes

across the network. For clinical relevance, it is important to validate the approach directly

against experimental data, ideally with datasets with a history of micro-anatomical reentry. If

possible, raw data should be available such that fibre maps can be generated using a range of

methods at different levels of smoothing, and that the influence of small structural holes can be

tested. Data may be acquired at different levels of interstitial fibrotic density to assess the valid-

ity of our method’s longitudinal predictions.

6 Conclusion

We have introduced a simple, proof of concept framework which attempts to study how the

substrate for micro-anatomical reentry develops from the accumulation of interstitial fibrosis.

The method, which is based on the application of percolation to spatial networks, suggests that

the micro-reentrant substrate is critically dependent of local tissue geometry and areas of fibre

misalignment. We suggest that the dependence on these factors is complex, continuously

evolving with the absolute level of global micro-reentrant risk.

If robust clinical evidence can be found to support the micro-reentrant driver mechanism,

and if our methods develop sufficiently, the approach introduced here may have potential for

patient-specific risk stratification and personalised ablation strategies. However, our results

also imply that the micro-reentrant substrate may become so spatially diverse, particularly at

high fibrosis densities, that ablating these drivers may not be practically feasible.

Supporting information
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