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Abstract

Background: Recognizing the different functional parts of genes, such as promoters, translation initiation sites,
donors, acceptors and stop codons, is a fundamental task of many current studies in Bioinformatics. Currently, the
most successful methods use powerful classifiers, such as support vector machines with various string kernels.
However, with the rapid evolution of our ability to collect genomic information, it has been shown that combining
many sources of evidence is fundamental to the success of any recognition task. With the advent of next-generation
sequencing, the number of available genomes is increasing very rapidly. Thus, methods for making use of such large
amounts of information are needed.

Results: In this paper, we present a methodology for combining tens or even hundreds of different classifiers for an
improved performance. Our approach can include almost a limitless number of sources of evidence. We can use the
evidence for the prediction of sites in a certain species, such as human, or other species as needed. This approach can
be used for any of the functional recognition tasks cited above. However, to provide the necessary focus, we have
tested our approach in two functional recognition tasks: translation initiation site and stop codon recognition. We
have used the entire human genome as a target and another 20 species as sources of evidence and tested our
method on five different human chromosomes. The proposed method achieves better accuracy than the best
state-of-the-art method both in terms of the geometric mean of the specificity and sensitivity and the area under the
receiver operating characteristic and precision recall curves. Furthermore, our approach shows a more principled way
for selecting the best genomes to be combined for a given recognition task.

Conclusions: Our approach has proven to be a powerful tool for improving the performance of functional site
recognition, and it is a useful method for combining many sources of evidence for any recognition task in
Bioinformatics. The results also show that the common approach of heuristically choosing the species to be used as
source of evidence can be improved because the best combinations of genomes for recognition were those not
usually selected. Although the experiments were performed for translation initiation site and stop codon recognition,
any other recognition task may benefit from our methodology.
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Background

The recognition of functional sites within the genome
is one of the most important problems in Bioinformat-
ics research. Determining where different functional sites,
such as the promoters, translation start sites, translation
initiation sites (TISs), donors, acceptors and stop codons,
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are located provides useful information for many tasks.
For instance, the recognition of translation initiation sites,
donor, acceptors and stop codons [1] is a basic in any
program developed to perform a gene recognition task.
Most current gene structure prediction programs start
with a site recognition step [2] and, once putative sites
have been discovered, they try to combine them into
meaningful gene structures. It is evident that this site
recognition step is crucial as, in most cases, if the sites
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for a gene are not identified that gene will no longer be
considered by the program. On the other hand, if many
false positives are detected it is likely that the gene recog-
nition program performance would be seriously damaged.
State-of-the-art site recognizers use complex classifiers,
namely support vector machines (SVMs), and medium
upstream and downstream sequences from the putative
sites [1, 3—-5].

Recent approaches [2] for human gene recognition also
make use of the information available for other species
to improve the recognition of the functional sites. How-
ever, the combination is carried out in a heuristic way. The
species used for comparison are arbitrarily chosen, using
the widely assumed hypothesis that we must consider
moderately distant evolutionary relatives. Furthermore,
the classifiers used for recognition of the sites in each
species are also arbitrarily chosen. The best classifiers are
usually chosen without considering the relevant topic of
classifier diversity [6] which is crucial in any combination
of learners [7]. It is unlikely that such a process would
produce the best possible result. Due to the large num-
ber of available species and the large number of different
classifiers that can be applied to make use of such informa-
tion, a systematic method for obtaining the best possible
combination is highly desirable.

In this work, we propose a principled approach in which
we can consider as many different sources of evidence as
available and use as many different classifiers as needed.
A rapid validation process constructs a near-optimal com-
bination that achieves a better performance than any of
its members. To obtain a method that can be scaled up
to as many sources of information as needed, we use a
greedy stepwise approach. Two alternatives are designed,
one based in a constructive approach beginning with an
empty model and another based on a destructive approach
beginning with a model considering all available sources
of evidence. Then, a stepwise procedure is applied until no
further improvement is observed in the obtained model.
From the point of view of Machine Learning, these two
approaches are usually named as forward selection and
backward elimination respectively.

Methods

Our aim is to develop a methodology for combining tens
or even hundreds of classifiers for site recognition. From
a machine learning perspective, such a problem is usually
approached differently depending on the computational
cost of the available solutions. The optimum approach
is the exhaustive evaluation of all possible combinations
of classifiers. However, if we have N trained classifiers,
the number of possible combinations is 2V — 1, which
is prohibitive even for moderate values of N. Thus, we
must resort to optimization algorithms that will perform
a guided search in the space of possible solutions. For the
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problem of finding the optimal solution, any of the many
metaheuristics available in the machine learning litera-
ture, such as evolutionary computation [8], particle swarm
optimization [9], ant colonies [10] or differential evolution
[11], could be used. However, all of these methodolo-
gies require the repetitive evaluation of many solutions
to achieve their optimization goal. In the problem of site
recognition, the evaluation of a possible solution is a costly
process due to the large datasets involved. Thus, these
metaheuristics are not feasible.

To avoid the computational cost of these metaheuristics,
we developed a different approach. We used a stepwise
greedy approach in both a constructive and a destructive
way, which requires evaluating significantly fewer solu-
tions. The process for obtaining the best combination of
classifiers for different species is composed of two main
stages: training stage and validation stage. Before start-
ing the learning process, we need the training datasets,
the testing dataset and the validation dataset. Without
loss of generality and to provide the necessary focus for
our description, we will use here the same setup of the
reported experiments below. We will address the prob-
lem of site recognition in the human genome. To solve
this problem, we will use as a test set the sites of a certain
chromosome, C. The training set will be all the remaining
human chromosomes and the genomes of all the species
we want. As validation, we will chose one of the human
chromosomes in the training set, V, and remove it from
the training set.

For the training stage, we select as many species as
could be useful for our problem. We need not select
the most appropriate ones because the stepwise valida-
tion stage will discard the useless classifiers. Once we
have selected the set of species whose genomes we are
going to use, we train as many classifiers as we want from
those species. For every organism, we can train different
classifiers, such as support vector machines (SVMs), neu-
ral networks (NNs), decision trees (DTs), the k-Nearest
Neighbor (k-NN) rule or the same classifier methods with
different parameters. Because the validation stage can
consider hundreds of classifiers, any method of poten-
tial interest can be used. Again, the validation stage will
remove unneeded classifiers.

Once we have the trained classifiers, we will perform the
validation stage, whose aim is to obtain the best possible
combination of classifiers. For that purpose, we designed
two different approaches. Both of these approaches are
stepwise greedy approaches. We developed a construc-
tive incremental approach and a destructive decremen-
tal approach. In the incremental approach, we begin by
evaluating all the classifiers in the validation set V. The
best one, c1, is added to the set of selected classifiers,
which was empty. Then, the evaluation is conducted again
using ¢; together with all the remaining classifiers. The
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best combination is chosen, and a second classifier, ¢, is
added. The process is repeated until the addition of a new
classifier does not improve the validation accuracy. The
constructive method is depicted in Algorithm 1.

Algorithm 1: Outline of the constructive approach

Data: A set of trained models
M = {my,my, ..., m,}, avalidation set V, a
combination method(t), C, and a
evaluation criterion(#), E.

Result: The best combination of models By; C M
for combination method C and
evaluation criterion E.

1 m; = Best isolated model evaluated in V using

criterion E
2 By = {m1}
repeat
/+* Add best model */
3 Vpest = 0
4 finish =T
for Every model m; : m; € M A m; ¢ By do
5 Bj; = By + {m;}
6 Evaluate B, in V,v =E B}/I(V)
if v > vy, then
7 Bbest = B,
8 Vbest =V
end
end
/* If the performance is
improved add model
permanently and continue *x/
ifEB%st(V) > Ep,,(V) then
9 By = B4t
10 finish = F
end
until finish

11 Return By

tIn our experiments we used three different
combination methods: sum of outputs, maximum
output and majority voting.

+In our experiments the evaluation criteria used
are the area under de ROC curve, the area under
de PRC curve and the geometric mean between
sensibility and specificity.

For the destructive approach, we start with a model with
all the available classifiers, #, {c1,¢2,. . .,c,}. One by one,
every classifier is removed from the set, and the set is
reevaluated using the validation set. If all of the classi-
fiers have a positive effect on the validation accuracy, the
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process is stopped. Otherwise, the worst performing clas-
sifier is removed and the process is repeated until the stop
criterion is met. The destructive method is depicted in
Algorithm 2.

Algorithm 2: Outline of the destructive approach

Data: A set of trained models
M = {my,my, ..., m,}, avalidation set V; a
combination method(+), C, and a
evaluation criterion(%), E.
Result: The best combination of models By C M
for combination method C and
evaluation criterion E.

1 By=M
repeat
/* Remove worst model %/
2 Vworst = 0
3 finish = T
for Every model m; : m; € By do
s B); = By — ;)

/ : —
Evaluate B}, in V, v = EB;\,, V)
if v < vyorse then

6 Byt = B,
Vworst = V
end
end

/* If the performance is not
worsened remove model
permanently and continue x/

ifEBonrst(V) >= EBM(V) then

8 By = B}V\"/}”St
finish = F
end
until finish
10 Return By

tIn our experiments we used three different
combination methods: sum of outputs, maximum
output and majority voting.

+In our experiments the evaluation criteria used
are the area under de ROC curve, the area under
de PRC curve and the geometric mean between
sensibility and specificity.

Another issue must be considered for our approach.
We must determine how the different classifiers are com-
bined. In the machine learning literature, combining dif-
ferent sources of evidence for a classification problem is a
common task [12]. Although various sophisticated meth-
ods have been developed for combining many classifiers
[13-16], in a practical sense, none of them are able to beat
the simpler methods on a regular basis. Thus, we have
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considered three commonly used simple methods to com-
bine the classifiers: sum of outputs, majority voting and
maximum output. These methods are fairly straightfor-
ward. The combination using the sum of outputs simply
adds together the outputs of all the models. The major-
ity voting scheme counts the classification given by every
model and outputs the most common case. The maxi-
mum approach uses only the classifier whose output has
the highest absolute value.

For these three methods to be useful, we must consider
the different ranges of their outputs and the different opti-
mal decision thresholds of the five classification method
we will use. To account for the different ranges, all the out-
puts of the methods were scaled to the interval [ —1, 1]. To
account for the different thresholds, we obtain the optimal
threshold for each method, thysima, by cross-validation
and we obtain the effective output of every classifier,
which is given by y — thpimas, where y is the actual output
of the classifier.

With the three combination methods and the two step-
wise algorithms, we have for any performance measure
selected six different combinations of models. For any
recognition task and any performance measure, we will
obtain these six models and return as a final result of
our methodology the best combination in terms of cross-
validation performance.

Experimental setup

To test our model, we chose the human genome together
with other 20 species. Our aim was to test whether
any species, regardless of its closeness with the human
genome, could be useful. The following species were
considered:! Anolis carolinensis (AC), Bos primigenius
taurus (BT), Caenorhabditis elegans (CE), Callithrix jac-
chus (CJ), Canis lupus familiaris (CLF), Danio rerio (DR),
Drosophila melanogaster (DM), Equus caballus (EC),
Ficedula albicollis (FA), Gallus gallus (GG), Homo sapiens
(HS), Macaca mulatta (MaM), Monodelphis domestica
(MD), Mus musculus (MM), Ornithorhynchus anatinus
(OA), Oryctolagus cuniculus (OC), Pan troglodytes (PT),
Rattus norvegicus (RN), Schistosoma mansoni (SM), Sus
scrofa (SS) and Takifugu rubripes (TR). These genomes
were selected to have a wide variety of organisms whose
genomes are fully annotated.

We also used annotated mRNA sequences of Bos tau-
rus (BT.RNA), Danio rerio (DR.RNA), Homo sapiens
(HS.RNA), Mus musculus (MM.RNA), Rattus norvegicus
(RN.RNA), Sus scrofa (SS.RNA) and Xenopus tropicalis
(XT.RNA). Such sequences were screened from RefSeq
mRNA curated records downloaded from NCBI Ref-
Seq ftp (ftp://ftp.ncbi.nlm.nih.gov/refseq/) (Last updated:
November 17, 2014). The species-specific RefSeq directo-
ries provide a cumulative set of records for transcripts and
proteins for those species. Records with no annotation for
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start or stop codons were eliminated. For every training
set, regardless of the species, we removed the genes that
were shared with the test chromosome for all the training
datasets.

Five classifiers were trained from every dataset: the stop
codon method [17], a decision tree, a k-nearest neigh-
bor rule, a positional weight matrix and a support vector
machine with a string kernel. The parameters for every
classifier were obtained using 10-fold cross-validation.
For learning the classification models we used random-
undersampling, for validation and testing the datasets
were used unmodified. Thus, a total of 140 models were
trained for every dataset.

Another key parameter of the learning process is the
window around the functional site that is used to train the
classifiers. The value of the window for each classifier was
obtained by cross-validation. We tested the performance
of the following windows: [ —100, 0], [ —75, 25], [ =50, 0],
[—50,50], [—25,0], [—25,25], [—25,75], [—10,15],
[—10,40], [ —10,90], [ 0,25], [ 0,50] and [0, 100]. For each
trained classifier, the best window was chosen. For the
stop codon method, we used the additional window values
of [0,200], [0,300], [0,400] and [0,500] for TIS recog-
nition and the window values of [ —200,0], [ —300,0],
[ —400, 0] and [ —500, 0] for stop codon recognition.

Our approach was evaluated using human chromo-
somes 1, 3, 13, 19 and 21 for testing and human chro-
mosome 16 for validation. These datasets are shown in
Table 1. We used all TISs and stop codons of the CCDS
Update Released for Human of September 7, 2011. This
update uses Human NCBI build 37.3 and includes a total
of 26,473 CCDS IDs that correspond to 18,471 GenelDs.

As SVMs with weighted degree (WD) kernel has con-
sistently proven to be the best state-of-the-art method
for site-recognition [5, 18] we chose this method as our

Table 1 Random undersampling was used for training; thus, the
number of negative instances was equal to the number of
positive instances

Dataset Training data Testing data
Positives/Negatives Positives Negatives
Chr.1 TIS 17,638 2156 8,074,590
STOP 17,404 2154 23,573,031
Chr.3 TIS 18,631 1163 7,291,951
STOP 18,444 1114 21,522,500
Chr. 13 TIS 19,454 340 3,664,164
STOP 19,225 333 10,878,302
Chr. 19 TIS 18,383 1411 1,698,891
STOP 18,136 1422 4,665,804
Chr. 21 TIS 19,561 233 1,303,634
STOP 19,558 237 3,726,959
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baseline approach. To assure a fair comparison, we con-
sidered not only these methods but also all others used
in classifiers. Then, for every experiment, we compared
our approach to the best performing method in terms
of validation performance. In fact, SVM with WD kernel
was always the best individual classifier. Table 2 summa-
rizes the hyperparameters used to train the classification
models.

To evaluate the obtained classifiers, we used the stan-
dard measures for imbalanced data. Given the number
of true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN), we used the sensitivity,
Sn = ler%’ and the specificity, Sp = % The
geometric mean of these two measures, G — mean =
/' Sp - Sn, will be our first classification metric. As a second
measure, we used the area under the receiver operating
characteristic (ROC) curve (auROC). However, auROC is
independent of class ratios, and it can be less meaning-
ful when we have very unbalanced datasets [5]. In such
cases, area under the precision recall curve (auPRC) can
be used. This measure is especially relevant if we are
mainly interested in the positive class. However, it can be
very sensitive to subsampling. In our results, we use all
the positive and negative instances for each of the five
chromosomes tested, so no subsampling is used. This also
yields small auPRC values.

We use these three metrics because they provide two
different views of the performance of the classifiers. The
auROC and auPRC values describe the general behav-
ior of the classifier. However, when used in practice, we
must establish a threshold for the classification of a query
pattern. G-mean provides the required snapshot of the
performance of the classifier when we set the required
threshold.

Results and discussion

As stated, we performed experiments for the recognition
of TISs and stop codons to provide the necessary focus.
However, our approach is applicable to any recognition
task. The experiments had two different objectives. We
wanted to know which species were more useful for the
recognition of the two functional sites. We challenged

Table 2 Hyperparameters for the different classifiers. For all of
them random undersampling [23] was used

Classifier Inputs Hyperparameters

Decision trees Raw sequence Pruned trees

Position weight matrix Raw sequence None
None

C e{1,10,100,100},d € {12,24}

Stop codon method ~ Raw sequence

Support vector
machines

Raw sequence

k nearest neighbor Raw sequence Hamming distance, k €[ 1,100]
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the general heuristic method of selecting a species based
on biological considerations alone. We also wanted to
compare the results using our method with the standard
procedure of selecting the best performing model, which
is the common approach in the literature. In the follow-
ing two sections, we discuss the results for TIS and stop
codon recognition.

Results for TIS recognition

One of the advantages of our approach is that we can
optimize for the performance measure that we are inter-
ested in, which can be the G-mean, the auROC, the auPRC
or any other measure useful for our application. Thus,
we conducted our experiments using three performance
measures: G-mean, auROC and auPRC. The first relevant
result is that the combination of best models obtained
for each measure was different. This means that, depend-
ing on the aim of the work, different combinations of
classifiers are needed.

For each of the five studied chromosomes, we obtained
three different combinations of models, each optimized
for one of the three measures mentioned above. As a gen-
eral rule, the constructive method always outperformed
the destructive method. The latter always obtained com-
binations of many more models that exhibited over-fitting
and worse performance. It is also interesting to note
the homogeneous behavior across the different chromo-
somes. For all of the five chromosomes, the combination
that achieved the best results was the sum for auROC and
auPRC and majority for G-mean. The combination based
on the maximum output was never the best-performing
one. In this latter combination method, the effect of a bad
classifier was too harmful to obtain good performance.
In this paper, for brevity’s sake, only the best models are
reported.

Once we established the best stepwise method and the
best combination, we examined the results in terms of
the species involved in the best combinations. Table 3
shows the models selected for the best combination for
each measure and each chromosome. Regardless of the
optimized measure, there was only one species that never
appeared in the best combination: CE. This result indi-
cates that, although the contribution of certain species
is more relevant than others, the information of many
genomes was useful for the prediction of human TISs,
even those species that are very distant relatives of
humans. Another interesting result is the fact that, for
the three different measures, auROC, auPRC and G-mean,
the obtained combinations of models were quite differ-
ent. This result indicates that we must consider our aims
before designing our classifier. In most previous works,
that is not taken into account.

Regarding the classification models, PWM was never
chosen. The stop codon method was chosen for EC and
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Table 3 The table shows the models selected for all methods and the five studied chromosomes for TIS recognition

CE AC DM OA HS OoC BT
Chrom.  Obj. # SCKPWSCKPWSCKPWSCKPWSCKPWSCKPWSCKTPW
1 auROC 8
auPRC 29 X X X X X
G 2
3 auROC 8
auPRC 33 X X X X X X
G 2
13 auRoC 7 X
auPRC 28 X X X X X
G 2
19 auROC 7
auPRC 27 X X X
G 2
21 auROC 8
auPRC 31 X X X X X
G 2
a FA EC CLF GG MD SM

Chrom.  Obj. # SCKPWSCKPWSCKPWSCKPWSCKPWSCKPWSCKPW

1 auROC 8 X X
auPRC 29 X X X X X X
G 2
3 auROC 8 X X
auPRC 33 X X X X X X X
G 2
13 auRoOC 7 X
auPRC 28 X X X X X X X
G 2
19 auROC 7 X
auPRC 27 X X X X X X X X X
G 2
21 auROC 8
auPRC 31 X X X X X X X X X X X
G 2
MM DR MaM TR PT SS RN

Chrom.  Obj. # SCKPWSCKPWSCKPWSCKPWSCKPWSCKPWSCKPW

1 auROC 8 X X X
auPRC 29 X X X X X X X X X
G 2 X X

3 auRoC 8 X X
auPRC 33 X X X X X X X X X X X X
G 2 X X
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Table 3 The table shows the models selected for all methods and the five studied chromosomes for TIS recognition (Continued)

13 auROC 7 X X X
auPRC 28 X X X X X X X X
G 2 X
19 auRoOC 7 X X X X
auPRC 27 X X X X X X X X X
G 2 X
21 auROC 8
auPRC 31 X X X X X X X X
G 2 X X
BT.RNA DRRNA HS.RNA MM.RNA RN.RNA SS.RNA XT.RNA
Chrom.  Obj. # SCKPWSCKPWSCKPWSCKPW SCKPWSCKPWSCKTPW
1 auROC 8 X X
auPRC 29 X X X X X X X X
G 2
3 auROC 8 X
auPRC 33 X X X X X X
G 2
13 auROC 7 X X
auPRC 28 X X X X X X X
G 2 X
19 auROC 7 X X
auPRC 27 X X X X X X X X
G 2
21 auROC 8 X X X
auPRC 31 X X X X X X X X X
G 2

S stands for stop codon method, C for C4.5, K for k-NN, P for PWM and W for a SVM with a WD string kernel

SM. The decision tree trained with the C4.5 algorithm was
selected several times, but the k-NN rule and the SVM
with a string kernel were the most frequently selected
methods. The case of k-NN is remarkable as it is not usu-
ally used for this task [1, 17, 19, 20]. It appears that the
diversity that k~-NN introduced in the models was useful
for the overall performance of the combinations, despite
of the fact that k-NN alone showed worse performance
than an SVM alone. In classifier ensembles literature [6] is
already stated that classifier diversity is a desired feature
for improving the performance of the ensemble. Thus, the
diversity introduced by these models might be the rea-
son of their inclusion in the best combination. EC, CLF,
MaM and PT were the species most frequently chosen. It
is interesting to note that HS was seldom used.

With respect to the three different objectives, optimiz-
ing the G-mean showed the most stable results. For the
five chromosomes, the selected models were always the
SVM method for MaM and PT. For auROC, seven or
eight models were selected. The SVM method was always

chosen for MaM and PT, but the remaining methods and
species depended on the chromosome. This is another
interesting result because most TIS recognition programs
mainly rely on common models for any task. Finally, for
auPRC, significantly more models were selected, from
27 to 33, with a significant variation between the chro-
mosomes. Here, the large number of negative samples
made this task harder than optimizing the other two
criteria.

The next step was to compare the performances of
our approach and the standard method of choosing the
best performing classifier. Overall results for TIS recogni-
tion problem for the five studied human chromosomes is
shown in Table 4. A first conclusion is that the stepwise
method was able to improve the standard approach for all
three measures and all five chromosomes. The improve-
ments in auROC, auPRC and G-mean are shown in Fig. 1.
The table also shows the ability of our approach to find the
combination in a reasonably short time. In the worst case
only 3708 seconds are needed.
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Table 4 The table shows the specificity (Sp), sensitivity (Sn), true positives (TP), true negatives (TN), false negatives (FN), false positives

(FP) and area under the ROC and PRC curves (auROC/PRC) as well as the time needed for obtaining the best combination for all

methods and the five studied chromosomes for TIS recognition

Chromosome Objective Method Combination auROC auPRC G Sp Sn TP FN TN FP #models Time (s)
Chr.1 - Std - 09473 00929 08430 09528 0.7458 1608 548 7,693,177 381,413 - -
auROC Cons Sum 0.9820 0.1529 0.8893 09874 08010 1727 429 7,972,989 101,601 8 1555
auPRC Cons Sum 0.9669 0.1859 0.8326 09859 07032 1516 640 7,960,941 113,649 29 3436
G Cons Majority 09445 00074 0.9353 09599 09114 1965 191 7,750,802 323,788 2 572
Chr.3 - Std - 09334 00831 08335 09584 07248 843 320 6,988,324 303,627 - -
auROC Cons Sum 0.9761 0.1449 08458 09929 07206 838 325 7,240,060 51891 8 1807
auPRC Cons Sum 0959 0.1762 0.7891 09920 06277 730 433 7,233,286 58665 33 3708
G Cons Majority 09315 00049 0.9238 09664 0.8831 1027 136 7,046,822 245129 2 696
Chr.13 - Std - 09506 00844 08692 09479 07971 271 69 3,473,147 191,017 - -
auROC Cons Sum 0.9778 0.1347 08429 09940 07147 243 97 3642333 21831 7 1348
auPRC Cons Sum 09692 0.1608 0.7924 09929 06324 215 125 3,638,155 26,009 28 3280
G Cons Majority 0.9483 00038 0.9385 09630 09147 311 29 3528645 135519 2 476
Chr.19 - Std - 09456 0.1277 08727 09068 0.8398 1185 226 1,540,551 158,340 - -
auROC Cons Sum 0.9716 0.1726 08876 09691 08129 1147 264 1646337 52554 7 1510
auPRC Cons Sum 09575 0.2048 0.8534 09657 07541 1064 347 1,640,628 58263 27 3269
G Cons Majority 09436 00181 0.9346 09555 09142 1290 121 1623271 75620 2 473
Chr. 21 - Std - 09353 00726 08409 09415 07511 175 58 1,227429 76205 - -
auROC Cons Sum 0.9809 0.1299 08612 09875 07511 175 58 1,287,377 16257 8 1526
auPRC Cons Sum 09670 0.1635 0.8201 09857 06824 159 74 1,284,991 18643 31 3352
G Cons Majority 09362 00043 0.9271 09582 08970 209 24 1,249,122 54512 2 288
The results of our method for the three different evaluation measures are shown in boldface
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Fig. 1 Improvement for TIS recognition. The figure shows the improvement of our approach with respect to the standard approach of using the
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The differences were significant. For G-mean, in the
worst case, the improvement was 6.19 %, and in the best
case, it was 9.23 %. For auPPRC, the results were even bet-
ter, from 7.64 to 9.31 %. For auROC, the improvement was
less significant, but it still ranged from 2.60 to 4.56 %.

Table 5 shows the relative improvement of our approach
in terms of the numbers of true positive, false nega-
tives, true negatives and false positives. In the table, we
can see how our approach was able to improve the false
negative results for the case with least improvement by
46 % and for the case with largest improvement by 65 %.
Most of the programs for gene recognition used nowa-
days include a first step of TIS recognition. From that step
the corresponding methods are used to obtain the whole
gene structure prediction. A gene whose TIS is missed by
this step would be completely ignored by those program.
Thus, the proposed method as it improves the TIS recog-
nition accuracy would be able to improve the performance
of any of these gene recognition programs.

Furthermore, our method was also able to improve the
false positive rate, from 15 to 52 % depending on the chro-
mosome. This is a significant reduction in the number of
putative TIS that are fed to any gene recognition system
so a significant improvement in its accuracy might also
be expected. This would be especially true when the large
amount of false positives found by the standard approach
is an actual problem for any automatic annotation system.
We must bear in mind that any wrong putative TIS may
end in a false gene being recognized.

Figure 1 also shows the improvement of our approach
with respect to the standard method for auROC and
auPRC measures.? Figures 2, 3, 4, 5, and 6 display the ROC
and PRC curves for all the described datasets. The figures
show that our approach obtained a better shaped curve
in all cases and for both measures. This is interesting as
it means that regardless of the classification threshold set
our method would always beat the standard approach.

Results for stop codon recognition
As previously stated we also addressed the problem of stop
codon prediction. From the point of view of performance

Table 5 Relative improvement for true positives, false negatives,
true negatives and false positive of our approach over the best
method for TIS recognition

Chromosome True False True False
positive negative negative positive
Chr.1 22.20% 65.15 % 0.75% 1511 %
Chr.3 21.83% 57.50 % 0.84 % 19.27 %
Chr.13 14.76 % 5797 % 1.60 % 29.05 %
Chr.19 8.86 % 46.46 % 537 % 5224 %
Chr. 21 1943 % 58.62 % 1.77 % 2847 %
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Fig. 2 ROC/PRC curves for TIS prediction for chromosome 1. The
figure shows the ROC/PRC curves for TIS prediction for chromosome 1

considerations stop codon recognition is a harder prob-
lem than TIS prediction. For TIS prediction we have only a
codon to consider, for STOP codon three different codons
could be a stop codon, thus the number of putative stop
codons is multiplied by three, making the problem more
imbalanced and difficult. As an example, the best cur-
rent method found more than six million false positive
stop codons for the five tested human chromosomes. Any
program for gene recognition would be very negatively
affected by such huge number of wrong putative stop
codons. However, this also means that the possibilities for
improving the performance of the current methods for
this problem are higher.

As stated, one of the advantages of our approach is
that we can optimize for the performance measure we
are interested in, whether it is G-mean, auROC, auPRC
or any other useful metric. Thus, as for TIS recognition,

SVM with WD kernel (ROC) -~~~

Proposal (ROC) —— |
SVM with WD kernel (PRC) ——--
Proposal (PRC) -------
0.25 ‘*\
0 ‘ S B ‘
0 0.2 0.4 0.6 0.8 1

Fig. 3 ROC/PRC curves for TIS prediction for chromosome 3. The
figure shows the ROC/PRC curves for TIS prediction for chromosome 3
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Fig. 4 ROC/PRC curves for TIS prediction for chromosome 13. The
figure shows the ROC/PRC curves for TIS prediction for chromosome 13
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Fig. 6 ROC/PRC curves for TIS prediction for chromosome 21. The
figure shows the ROC/PRC curves for TIS prediction for chromosome 21

we carried out experiments using three performance mea-
sures: G-mean, auROC and auPRC. Again we found that
the combination of best models obtained for each mea-
sure was different. In fact, more variation was found for
stop codons than for TIS recognition.

For each of the five studied chromosomes, we obtained
three different combinations of models, each one aiming
at optimization of one of the three measures mentioned
above. Table 6 shows the models selected for the best
combination for each measure and each chromosome.
As it did for TIS recognition, the constructive method
always outperformed the destructive method. The lat-
ter always obtained combinations of more models that
yielded to over-fitting and worse performance. It is also
interesting to note the homogeneous behavior across the
different chromosomes. For all five chromosomes, the
combination that achieved the best results was the sum for
auROC and auPRC and the majority for G-mean. There

SVM with WD kernel (ROC) ———-
Proposal (ROC) ——

SVM with WD kernel (PRC) -~~~
Proposal (PRC) --------

0.25

0 ‘ ‘ — e
0 0.2 04 06 08 !

Fig. 5 ROC/PRC curves for TIS prediction for chromosome 19. The
figure shows the ROC/PRC curves for TIS prediction for chromosome 19

was only one exception, the best combination method for
G-mean for chromosome 13 was the maximum. How-
ever, the combination based on the maximum output was
the best-performing method just for this one case. In
this latter combination method, the effect of a bad clas-
sifier was too harmful to obtain good performance. In
this paper, for brevity’s sake, only the best models are
reported.

Regardless of the optimized measure, there were a few
species that never appeared in the best combination: AC,
DM, FA, GG, SM, and DR. As was the case for TIS recog-
nition, although the contributions of certain species were
more relevant than others, the information from many
genomes was useful for the prediction of human stop
codons, even those species with a large distance from the
human genome. It is interesting to note that classifiers
trained on the human genome were used just once and
for mRNA HS sequences only four times. The analysis of
the behavior showed that the information found in the
human genome was redundant after a few other species
were added and then its inclusion did not improve the
overall performance.

For the three different measures, auROC, auPRC and G-
mean, the obtained combinations of models are quite dif-
ferent. That means that we must consider which our aim
before designing our classifier. This same behavior was
observed for TIS recognition. However, here the situation
is less stable, with more variations among chromosomes.

Regarding the classification models, PWM was never
chosen. The stop codon method was chosen for sev-
eral species, specially for mRNA sequences. The decision
tree trained with the C4.5 algorithm was selected sev-
eral times, but the k-NN rule and the SVM method with
a string kernel were the most frequently selected meth-
ods. These results are similar to the ones obtained for TIS
recognition.
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Table 6 The table shows the models selected for all methods and the five studied chromosomes for stop codon recognition

Chrom.

1

Chrom.

Chrom.

Obj.
auROC
auPRC
G
auROC
auPRC
G
auROC
auPRC

auROC
auPRC

auROC
auPRC

Obj.

auROC
auPRC

auROC
auPRC

auROC
auPRC

auROC
auPRC

auROC
auPRC

Obj.

auROC
auPRC

auROC
auPRC

#
4

CE AC DM OA HS oC BT

SCKPWSCKPWSCKPWSCKPWSCKPWSCKPWSCKTPW

X X
X X X
X
X X
X

X X X X

X
a FA EC CLF GG MD SM

SCKPWSCKPWSCKPWSCKPWSCKPWSCKPWSZCKFPW

X
X X X
X
X X
X X
X X X X
X
X X
X X
X
X
MM DR MaM TR PT SS RN

SCKPWSCKPWSCKPWSCKPWSCKPWSCKPWSCKTPW

X X

X X X X X X X X X
X X
X X

X X X X
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Table 6 The table shows the models selected for all methods and the five studied chromosomes for stop codon recognition

(Continued)
13 auROC 5 X X
auPRC 20 X X X X X X X
G 6 X X
19 auROC 5 X X
auPRC 15 X X X
G 2 X
21 auRoC 4 X X
auPRC 18 X X X X X X
G 2 X X
BT.RNA DR.RNA HS.RNA MM.RNA RN.RNA SS.RNA XT.RNA
Chrom.  Obj. # SCKPWSCKPWSCKPWSCKPW SCKPWSCKPWSTCKPW
1 auROC 4 X
auPRC 22 X X X X X X X X
G 2
3 auRoC 4 X
auPRC 10 X X X
€ 4
13 auROC 5 X
auPRC 20 X X X X X
G 6 X
19 auROC 5 X
auPRC 15 X X X X X X
G 2
21 auROC 4 X
auPRC 18 X X X X X X X X X X
€ 2

S stands for stop codon method, C for C4.5, K for k-NN, P for PWM and W for a SVM with a WD string kernel

With respect to the three different objectives, optimiz-
ing the G-mean showed the most stable results. For the
five chromosomes, the SVM method for MaM and PT
was always selected, with the exception of chromosome 3.
However, additional models were selected for each chro-
mosome that varied from one to annother. Surprisingly,
CE was selected for chromosome 3, despite its large evo-
lutionary distance to human. This result supports the idea
that selecting the genomes in an intuitive way is not opti-
mal. For auROC, four or five models were always selected,
although not the same models for every chromosome.
The SVM method for MaM and PT was always chosen,
but the remaining methods depended on the chromo-
some. This is another interesting result because most stop
codon recognition programs rely on common models for
any task. Finally, for auPRC, significantly more models
were selected, from 10 to 22, with a significant variation
between the chromosomes.

The next step was to compare the performances of
our approach and the standard method of choosing the
best performing classifier. A summary of the results for
stop codon recognition of the five studies chromosomes
is shown in Table 7. The first interesting result is that
the proposed approach beat the standard approach for
all measures and all chromosomes. The improvements in
auROC, auPRC and G-mean are shown in Fig. 7. Again,
our approach was reasonably fast, in the worst case 9702
seconds were needed to obtain the best combination.

The differences were significant. For G-mean, in the
worst case, the improvement was 6.54 %, and in the best
case, it was 13.09 %. For auPPRC, the results showed
an improvement from 2.14 to 7.40 %. For auROC, the
improvement was also significant, ranging from 4.00 to
7.84 %.

Table 8 shows the relative improvement of our approach
in terms of true positives, false negatives, true negatives



Table 7 The table shows the specificity (Sp), sensitivity (Sn), true positives (TP), true negatives (TN), false negatives (FN), false positives (FP) and area under the ROC and PRC curves
(auROC/PRC) as well as the time needed for obtaining the best combination for all methods and the five studied chromosomes for stop codon recognition

Chromosome Objective Method Combination auROC auPRC G Sp Sn TP FN TN FP #models Time(s)
Chr.1 - Std - 0.9280 0.0142 0.8487 0.8942 0.8055 1735 419 21,077,932 2,495,099 - -
auROC Cons Sum 0.9705 0.0368 0.8868 0.9707 0.8101 1745 409 22,882,052 690,979 4 4818
auPRC Cons Sum 0.9522 0.0525 0.8165 0.9762 0.6829 1471 683 23,011,801 561,230 22 9702
G Cons Majority 0.9307 0.0013 0.9207 0.9426 0.8993 1937 217 22,218,892 1,354,139 2 1223
Chr.3 - Std - 0.9233 0.0083 0.8256 0.9159 0.7442 829 285 19,711,889 1,810,611 - -
auROC Cons Sum 0.9720 0.0262 0.8959 0.9676 0.8294 924 190 20,826,101 696,399 4 4,094
auPRC Cons Sum 0.9421 0.0297 0.7810 0.9735 0.6266 698 416 20,951,286 571,214 10 8019
G Cons Majority 0.9584 0.0015 0.9128 0.9462 0.8806 981 133 20,364,397 1,158,103 4 1719
Chr.13 - Std - 0.9185 0.0071 0.8150 09103 0.7297 243 90 9,902,079 976,223 - -
auROC Cons Sum 0.9585 0.0156 0.8817 09733 0.7988 266 67 10,587,495 290,807 5 4542
auPRC Cons Sum 0.9392 0.0311 0.7604 0.9824 0.5886 196 137 10,687,114 191,188 20 9136
G Cons Majority 0.9502 0.0106 0.8878 0.9545 0.8258 275 58 10,383,296 495,006 6 1619
Chr. 19 - Std - 0.9328 0.0379 0.8515 0.8664 0.8368 1190 232 4,042,574 623,230 - -
auROC Cons Sum 0.9731 0.0843 0.9160 0.9335 0.8987 1278 144 4,355,655 310,149 5 3878
auPRC Cons Sum 0.9557 0.1119 0.8787 0.9250 0.8347 1187 235 4,316,077 349,727 15 8806
G Cons Majority 0.9346 0.0026 0.9169 0.9002 0.9339 1328 94 4,199,984 465,820 2 856
Chr. 21 - Std - 0.8890 0.0083 0.7778 09191 0.6582 156 81 3,425,375 301,584 -
auROC Cons Sum 0.9674 0.0383 0.8797 0.9654 0.8017 190 47 3,597,983 128976 4 2379
auPRC Cons Sum 0.9455 0.0382 0.7970 0.9713 0.6540 155 82 3,620,079 106,880 18 8134
G Cons Majority 0.9199 0.0007 0.9087 0.9320 0.8861 210 27 3,473,463 253,496 2 507

The results of our method for the three different evaluation measures are shown in boldface
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Fig. 7 Improvement for stop codon recognition. The figure shows the improvement of our approach with respect to the standard approach of

and false positives. From the table, we can see how our
approach was able to improve the false negative results in
the worst case by 35 % and in the best case by 66 %. This
is a relevant reduction, as many of the current gene recog-
nition programs rely on the classification of stop codons;
therefore, it is very likely that the genes whose stop codon
is not correctly predicted would be missed by the gene
recognizer or at least wrongly predicted.

Furthermore, our method was also able to improve the
true negative rate, from 1 to 5 % depending on the chro-
mosome. Therefore, any annotation system that uses our
approach would have a significantly reduced set of puta-
tive TISs and better expected performance. This is espe-
cially true when a large amount of false positives is found
the by the standard approach, which is an actual problem
for any automatic annotation system.

The improvements for auROC and auPRC values are
also shown in Fig. 7. The actual ROC and PRC curves are
shown in Figs. 8, 9, 10, 11 and 12. These figures show

Table 8 Relative improvement for true positives, false negatives,
true negatives and false positive of our approach over the best
method for stop codon recognition

that our approach improved the auROC and auPRC for
all five studied chromosomes. These results demonstrate
that the overall performance of the proposed method was
better than the performance of best model. The actual
ROC and PRC curves shown in Figs. 8, 9, 10, 11 and
12 show that the curves corresponding to our proposal
are always above the curves of the best model. This indi-
cates better performance for all the possible thresholds of
classification.

Figure 7 also shows the improvement of our approach
with respect to the standard method for auROC and
auPRC measures. Figures 8, 9, 10, 11, and 12 display the
ROC and PRC curves for all the described datasets. The

/ SVM with WD kernel (ROC) -~~~
05 | Proposal (ROC) ——
= SVM with WD kernel (PRC) —-—~
i Proposal (PRC) -------

Chromosome True False True False
positive negative negative positive
Chr.1 11.64 % 48.21 % 541 % 45.73 %
Chr.3 18.34 % 5333% 331% 36.04 %
Chr.13 13.17 % 35.56 % 4.86 % 49.29 %
Chr.19 11.60 % 59.48 % 3.89% 2526 %
Chr. 21 34.62 % 66.67 % 1.40 % 15.95 %
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Fig. 8 ROC/PRC curves for stop codon prediction for chromosome 1.
The figure shows the ROC/PRC curves for stop codon prediction for
chromosome 1
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Fig. 9 ROC/PRC curves for stop codon prediction for chromosome 3.
The figure shows the ROC/PRC curves for stop codon prediction for
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Fig. 11 ROC/PRC curves for stop codon prediction for chromosome
19. The figure shows the ROC/PRC curves for stop codon prediction

for chromosome 19

figures show that our approach obtained a better shaped
curve in all cases and for both measures. This is inter-
esting as it means that regardless of the classification
threshold set our method would always beat the standard
approach and that indicates improved performance for
any given threshold.

As a final comparison, we performed a Wilcoxon test to
compare the results of our approach as the best current
method for both TIS and stop codon prediction. we used
the Wilcoxon test for comparing pairs of algorithms. We
chose this test because it assumes limited commensurabil-
ity and is safer than parametric tests, because it does not
assume normal distributions or homogeneity of variance.
Furthermore, empirical results [21] show that this test is
also stronger than other tests. The p-value of the test was
of 0.005062 for the three evaluation measures, auROC,

auPRC and G-mean. This means that our approach beat
the standard one at a confidence level of 99 %.

Conclusions
In this paper, we presented a new approach for functional

site recognition in genomic sequences. The approach con-
sists of a stepwise procedure that can combine tens or
hundreds of classifiers trained on different sequences
and using genomic information from different species.
The approach is rapid and can be used for the recogni-
tion of any type of functional site. Our method substi-
tutes the current approach of selecting the species to be
used heuristically based on biological considerations. Our
results have proven that that methodology is suboptimal
because species that are not considered in previous works
have been shown useful in our experiments.
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Fig. 12 ROC/PRC curves for stop codon prediction for chromosome

21.The figure shows the ROC/PRC curves for stop codon prediction
for chromosome 21
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Fig. 10 ROC/PRC curves for stop codon prediction for chromosome
13. The figure shows the ROC/PRC curves for stop codon prediction
for chromosome 13
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Although we have focused our experiments on the
case of the combination of multiple species, we can
also use the proposed approach for combining classifiers
trained on different sequences of the same species, or
classifiers trained using different parameters or learning
procedures.

Furthermore, with our method, we can optimize any
measure we are interested in. For instance, in the reported
experiments, we have shown how we can focus on the
optimization of G-mean, auROC or auPRC measures. The
results have shown that the combination of classifiers
that optimizes each one of these measures can be very
different, supporting our separate approach.

To provide the necessary focus, we restrict the exper-
imental study of our method to TIS and stop codon
recognition. The reported results show that the proposed
method exhibits improved sensitivity, specificity, auROC
and auPRC compared with the standard approach of using
the best available classifier. The results show a remark-
able improvement in the G-mean, auROC and auPRC
measures. Most of the best state-of-the-art gene predic-
tion systems use a first step of functional site recognition,
thus as the proposed method significantly improves this
site recognizers it has the potential for improving any
annotation system.

Availability and supporting data

The data sets supporting the results of this article are
available at http://cib.uco.es/index.php/supplementary-
material-for-stepwise-site-prediction. The source code,
in C and licensed under the GNU General Public License,
used for all methods is also available in the same link. The
code only uses GPL libraries and so it should be able to
compile in any system. SVMs were programmed using the
LIBSVM library [22].

Endnotes

1 The acronyms in parentheses will be used across the
paper to refer to the corresponding species.

2 The experiment were always carried out using all the
negative samples for evaluating the classification
performance. For the worst case the ratio
minority/majority class is almost 1:11000, thus low
auPRC values are obtained by any method. Only a few
thousands FPs among several millions of TNs would
obtain a very low precision value. The results for stop
codon recognition are worse due to a larger number of
TNs sequences.
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