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The high osmolarity glycerol (HOG) pathway in yeast serves as a prototype signalling system for
eukaryotes. We used an unprecedented amount of data to parameterise 192 models capturing
different hypotheses about molecular mechanisms underlying osmo-adaptation and selected a best
approximating model. This model implied novel mechanisms regulating osmo-adaptation in yeast.
The model suggested that (i) the main mechanism for osmo-adaptation is a fast and transient non-
transcriptional Hog1-mediated activation of glycerol production, (ii) the transcriptional response
serves to maintain an increased steady-state glycerol production with low steady-state Hog1 activity,
and (iii) fast negative feedbacks of activated Hog1 on upstream signalling branches serves to
stabilise adaptation response. The best approximating model also indicated that homoeostatic
adaptive systems with two parallel redundant signalling branches show a more robust and faster
response than single-branch systems. We corroborated this notion to a large extent by dedicated
measurements of volume recovery in single cells. Our study also demonstrates that systematically
testing a model ensemble against data has the potential to achieve a better and unbiased
understanding of molecular mechanisms.
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Introduction

The high osmolarity glycerol (HOG) pathway in the yeast
Saccharomyces cerevisiae is one of the best-studied mitogen-
activated protein kinase (MAPK) pathways and serves as a
prototype signalling system for eukaryotes. This pathway is
necessary and sufficient to adapt to high external osmolarity. A
key component of this pathway is the stress-activated protein
kinase (SAPK) Hog1, which is rapidly phosphorylated by the
SAPK kinase Pbs2 upon hyper-osmotic shock, and which is the
terminal kinase of two parallel signalling pathways, subse-
quently called the Sho1 branch and the Sln1 branch,
respectively. Either of these branches is necessary for
adaptation (Hohmann, 2002) and they converge on Pbs2. In
the Sln1 branch, Pbs2 acts in a classical three-tiered stress or
MAPK pathway, where the MAPK kinase kinases Ssk2 and
Ssk22 are activated by an upstream phospho-relay system
controlled by the sensor Sln1 (Posas et al, 1996). In the Sho1
branch, Pbs2 acts as a scaffold, involving membrane-
associated Sho1 and the MAPK kinase kinase Ste11
(Tatebayashi et al, 2003, 2007; Yamamoto et al, 2010). Why

two parallel redundant pathways have been conserved

through evolution remains elusive, even more so because

components of the Sho1 branch are also involved in two other

MAPK pathways and crosstalk seems to be actively prevented

(O’Rourke and Herskowitz, 1998; Nelson et al, 2004; Schwartz

and Madhani, 2004; Yamamoto et al, 2010).
It is generally agreed that the main mechanism of short-term

adaptation to osmotic shock in yeast is through the accumula-

tion of the osmolyte glycerol (Nevoigt and Stahl, 1997; Rep

et al, 1999; Hohmann, 2002; O’Rourke et al, 2002; Klipp et al,

2005; Muzzey et al, 2009), which balances the internal and

external water potential differences and therefore re-estab-

lishes pre-stress volume (Schaber and Klipp, 2008; Schaber

et al, 2010), effectively terminating the signal. However, it is

debated which are the main processes regulating glycerol

accumulation. Some argue in favour of glycerol production

(Rep et al, 1999; Dihazi et al, 2004; Muzzey et al, 2009),

whereas others also see an important role in glycerol retention

by closing the glyceroporin Fps1 (Luyten et al, 1994; Tamas

et al, 1999; Klipp et al, 2005; Mettetal et al, 2008). In addition,
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the important mechanisms regulating those two main pro-
cesses of glycerol accumulation remain poorly understood.
Increase in glycerol production is classically viewed to be a
function of the abundance of the glycerol-3-phosphate
dehydrogenases Gpd1 and Gpd2, which in turn are regulated
at the transcriptional level by Hog1 (Albertyn et al, 1994; Rep
et al, 1999; Hohmann, 2002). However, there is also evidence
that activated Hog1 might directly or indirectly redirect the
glycolytic flux from ethanol towards glycerol, possibly at the
post-transcriptional level (Dihazi et al, 2004). Loss of glycerol
through Fps1 is at least partly controlled by Hog1, either by
direct or indirect interaction or both (Tamas et al, 2003; Beese
et al, 2009). There is also evidence for a Hog1-independent
mechanism regulating closure of Fps1, possibly activated
directly by a reduction in the cell’s volume and/or its turgor
pressure (Tamas et al, 2000; Reiser et al, 2003; Schaber et al,
2010).

Glycerol accumulation may be viewed as an integral
feedback control mechanism, which integrates the difference
between the desired steady-state and the actual state of the
system, measured by Hog1 activation, over time (Mettetal
et al, 2008). However, it remains unclear what the feedback
acts upon. Again, it seems to be related to volume and/or
turgor pressure (Tamas et al, 2000; Reiser et al, 2003; Schaber
et al, 2010). Apart from this general integral feedback control
mechanism, which undoubtedly is the main determinant of
osmo-adaptation in yeast, other transient feedback mechan-
isms mediated by activated Hog1 have been proposed to act on
the signal transduction pathway.

In the Sho1 branch, Hao et al (2007) showed that Hog1
binds and phosphorylates the membrane protein Sho1. They
proposed that this phosphorylation acts as a rapid transient
negative feedback responsible for the rapid attenuation of the
Hog1 activity. However, a recent model discrimination
analysis suggested that the experimental data in Hao et al.
(2007) did rather support a model with an integral feedback
through glycerol accumulation, rendering the role of the
suggested transient feedback unclear (Schaber et al, 2011). It
was also shown that Hog1 phosphorylates Ste50 (Hao et al,
2008; Yamamoto et al, 2010) and thereby shortens the duration
of Hog1 activation (Yamamoto et al, 2010), which further
supports the notion of a transient negative feedback within the
Sho1 branch.

In the Sln1 branch, Macia et al (2009) proposed the
existence of a fast transient negative feedback mechanism.
They suggested that the role of this feedback regulation was to
increase efficiency and reduce response time. However, the
data in Macia et al. could also be explained by alternative
mechanisms. It also seems likely that the importance of the
various regulatory mechanisms may vary over the course of
the response (Klipp et al, 2005; Klipp and Schaber, 2008) and
probably with the intensity of the shock.

Therefore, we systematically addressed the question of
which of the many possible regulation and feedback mechan-
isms or combinations thereof are best supported by the
available data. To this end, we compiled an unprecedented
amount of published and comparable dynamic data on the
HOG pathway activation. We fitted an extensive set of
parsimonious models representing different hypotheses about
the underlying biological regulatory mechanisms to one part of

the data. Another part of the data was used to test the
predictive properties of the various models. Subsequently,
models were ranked according to both their goodness of fit and
their predictive properties. Then, the highest scoring models
were used to generate new predictions, which were partly
tested by dedicated additional experiments. In this way, we
obtained a model that was well supported by the data and that
provided new insights into the importance of several
regulatory and feedback mechanisms acting during osmo-
adaptation, which might be of general importance in adapta-
tion mechanisms.

The model suggested that (a) the main adaptation mechan-
ism is through the increase in glycerol production by fast
transient post-translational mechanisms, rather than transla-
tional mechanisms or glycerol retention as previous studies
had suggested; (b) glycerol retention is the second mechanism
in importance, which is also fast and acts through closure of
the glycerol channel; (c) the slow mechanism, via induction of
gene expression, serves predominantly to reset the steady state
of the system after adaptation to near pre-stress levels,
replacing the short transient mechanisms by a slower but less
Hog1-dependent and sustained process; and (d) we found that
transient negative feedback mechanisms acting on the
upstream signalling branches have only a minor role for
adaptation. The models rather suggested that fast transient
negative feedbacks serve to stabilise the integral feedback
response in terms of preventing oscillatory behaviour, which
may occur in systems with delayed negative feedback. The first
three mechanisms directly act upon the accumulation of
glycerol thereby modulating the integral feedback response,
which terminates the signal and re-establishes homeostasis.
Therefore, in the following, we refer to such mechanisms as
homeostatic feedbacks.

The model also provided an explanation for why there are
two redundant parallel signalling pathways. Simulation
studies suggested that the mean adaptation time for the wild-
type yeast is faster and more robust to variations in initial state
and parameters than for the single-branch mutants, especially
for weak stress. By dedicated experiments, we could corrobo-
rate the prediction that wild-type yeast adapts faster than
single-branch mutants. The notion that adaptation in wild-
type yeast is also more robust could only be corroborated for
low osmotic stress, which might be more relevant in the
natural environment.

Results

The best approximating models have excellent
explanatory as well as predictive properties

We constructed an ensemble of 192 models, their differences
reflecting uncertainties about molecular mechanisms under-
lying osmo-adaptation and representing different hypotheses
thereof (Figure 1, Supplementary Tables S1–S7 and see
Materials and methods section for details on model construc-
tion). The free kinetic parameters of the models were fitted to
an unprecedented amount of dynamic data (Figure 2),
including time series for Hog1 phosphorylation, mRNA,
protein, glycerol and volume for a range of different conditions
and mutants. In addition, the predictive properties of the
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models were tested with another data set (Figure 3A and B),
that was not used to parameterise the models. Models were
ranked according to goodness of both fit and predictive
properties using the Akaike Information Criterion (AIC) (see
Materials and methods section and Supplementary Tables S8–
S10). Both with and without taking into account predictions
(Figure 3A and B), the same model was consistently selected as
best approximating model (Model Nr. 22, Supplementary
Tables S9 and S10). However, there were three models with an
Akaike weight (AICw)40.05 (see Materials and methods
section) considering both ranking methods (Model Nr. 22, 30
and 78, Supplementary Tables S9 and S10). These three best
approximating models exhibited only marginal differences in
both fits and predictions (see SSRs in Supplementary Tables S9
and S10). These models differed in the way they modelled the
total amount of Fps1. Model Nr. 30 and Model Nr. 78 included
Fps1 production and degradation reactions (reactions v17 and
v18 in Figure 1), the latter modified by activated Hog1 and
protein, respectively. However, Fps1 degradation was negli-
gible, because the fitted degradation rates were very small.
Therefore, in the following, we show only results for the best
approximating model Nr. 22, even though most results also
hold for the other two models. Model Nr. 22 had 20 free
parameters, which constitutes to our knowledge the lowest
ratio of parameters to data points of all published HOG models.
In Figure 1, the best approximating model (Nr. 22) is indicated
by solid and dashed lines. An implementation of Model Nr. 22
in COPASI format (Hoops et al, 2006) and SBML format (Hucka
et al, 2003) together with the data used for fitting and
prediction can be found in the online Supplementary Material.
COPASI is a free and open source software available from
www.copasi.org. The SBML model can also be downloaded

from the Biomodels database (accession number
MODEL1209110001).

In general, the selected models exhibited an excellent
parsimonious data representation, especially for the fitted
single-branch Hog1 phosphorylation time series for different
conditions (Figure 2A, B and D) and wild-type Fps1D1 mutant
(Figure 2E). Also wild-type mRNA, Gpd1 and glycerol data
(Figure 2C) could be well fitted. Only the artificial volume data
(see Materials and methods) for 0.2 M NaCl shock could not be
well fitted, showing an accelerated simulated volume recovery
(Figure 2F, green line). However, the best approximating
models excelled at predicting wild-type Hog1 phosphorylation
time series for different conditions (Figure 3A and B), even
though we mostly used the single-branch mutants to
parameterise the models (Figures 2A, B and D). These
predictions were also used for the model selection procedure.

We further tested the predictive properties of the models
with three additional experiments from Macia et al. (2009)
(Figure 3C and D) that were not used for model selection. The
models were able to predict well Hog1 phosphorylation time
series when (a) Pbs2 kinase activity is inhibited, assuming that
an inhibitor concentration of 1, 3 or 5mM corresponds to a
decrease in Pbs2 phosphorylation activity (reactions v5 and v7

in Figure 1) of 0%, 75% or 99%, respectively (Figure 3C),
(b) Hog1 kinase activity is inhibited in the Fps1D1 mutant
(Figure 3D, brown line) and (c) Hog1 kinase activity is
inhibited and simultaneously transcription is blocked by
thiolutin (Figure 3D, blue line).

The HOG pathway was shown to act as a low-pass filter
regarding the frequency of salt shocks (Hersen et al, 2008). We
simulated the response of the best approximating model Nr. 22
to square-wave stimuli of 0.2 M NaCl with periods ranging

Figure 1 All components and reactions considered in the model ensemble in SBGN format. Optional reaction and modifying influences are marked with dashed and
dotted lines. Dashed black lines represent modifiers, which are present in the best approximating model (model Nr. 22, Supplementary Tables S1–S7).
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from P0¼ 2 min to P0¼ 64 min (Supplementary Figure S1).
Using Fourier analysis, we approximated the simulations by
sine wave oscillations with a period of P0¼2p/o and
calculated frequency-dependent output amplitude A(o),
which is represented in a Bode plot (Supplementary
Figure S3) as in Mettetal et al (2008). We also compared our
simulated frequency-dependent amplitude A(o) with re-
analysed data from Mettetal et al. (2008) (Supplementary
Figure S2). The model simulations show an increasing
frequency-dependent amplitude A(o) with decreasing
frequency o, like both the results from Hersen et al (2008)

and the re-analysed data from Mettetal et al (2008). Thus, the
best approximating model can well reproduce the reported
low-pass filter characteristics of the HOG pathway (for details
refer to the Supplementary Material).

A sensitivity analysis of the adaptation time (assessed as the
time to recover pre-stress volume) showed that the model is in
general robust to changes in both kinetic parameters and initial
conditions. All absolute sensitivities were o1, except for the
rate constant of reaction v13 (glycerol production) and initial
turgor pressure, both having a maximal absolute sensitivity of
2.4 (Supplementary Table S13). A sensitivity of 1 indicates a
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Figure 2 Data (dots with error bars) used for model parameterisation and corresponding model fits (lines) of the best approximating model. (A) Hog1 phosphorylation
of Sln1 branch mutant (ste50D) for different osmotic shocks. (B) Hog1 phosphorylation of Sho1 branch mutant (ssk2D ssk22D) for several osmotic shocks. (C) mRNA,
Gpd1 and glycerol time series for 0.5 M NaCl. (D) Hog1 phosphorylation of Sho1 and Sln1 branch mutants of Hog1as strain upon addition of 5 mM Hog1 inhibitor SPP86.
(E) Hog1 phosphorylation of wild-type and Fps1D1 mutant for 0.4 M NaCl, whereas only the Fps1D1 was used for fitting; the wild-type data are shown here only for
comparison. A,B,D and E from Macia et al (2009). (F) Derived volume time curves for 0.1 and 0.2 M NaCl. Shades show interquartile range of corresponding measured
single-cell volume after the indicated osmotic shock (see main text and Figures 10 and 11). Error bars indicate s.d.’s from at least three independent experiments.
C contains data from (Klipp et al, 2005). Data in F were derived by assuming that volume mirrors Hog1 profile and minimal volumes from (Schaber et al, 2010). Not all
data points used for fitting are shown. For each time series, we repeated the first data point six times for technical reasons, these are not shown. The simulations for
cellular components are corrected for volume change. All Hog1 phosphorylation data are comparable by their relative levels and are scaled to the amount of the ste50D
mutant at 10 min. Source data is available for this figure in the Supplementary Information.
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direct proportional change of adaptation time with respect to a
certain parameter (see Supplementary Material).

In the course of model analysis, reaction v13, that is, Hog1-
modified glycerol production (Figure 1), turned out to be
important for our conclusions (see below). As Hog1 modifica-
tion of glycerol production was modelled by a simple heuristic
approach owing to the lack of a detailed mechanism, we also
tested other possible kinetic rate laws for reaction v13 in the
three best approximating models Nr. 22, Nr. 78 and Nr. 30 that
had an AICw 40.05 (see Materials and methods section,
Supplementary Tables S11 and S12). The kinetic rate law for
reaction v13 used in the original model formulation was best
supported by the data and, thus, the ranking of at least the
three best approximating models was robust to changes in this
kinetic rate law. The large difference in the performance
between the original and the other tested kinetics suggests that
this result is also valid for the other models (Supplementary
Table S12).

Seven out of 20 parameters were not identifiable within the
tested range, especially concerning the upper confidence limit,
as revealed by an identifiability analysis calculating one-
dimensional likelihood profiles (Raue et al, 2009; Schaber
2012) (Supplementary Figure S4). This is due to lack of data,
especially shortly after shock, a time when the system is highly
dynamic. However, all fitted parameters were at a local

minimum and more than half of them were identifiable
(Supplementary Figure S4).

The model correctly predicts effect of wild-type
and single-branch inhibition

Hao et al (2007) proposed a transient negative feedback
mechanism in the Sho1 branch, showing that Hog1 directly
interacts with and phosphorylates Sho1, and that this phosphor-
ylation attenuates Hog1 activation. We mimicked their experi-
ments in a simulation with or without feedback, and with a Hog1-
independent constitutive feedback on the Sho1 branch. Despite
the simplistic model formulation, the best approximating model
(Nr. 22) shows the same dynamic behaviour as measured by Hao
et al (2007) (see Figure 5B therein), where blocking the feedback
increases Hog1 phosphorylation levels and a constitutive feed-
back decreases Hog1 phosphorylation levels upon osmotic shock
(Supplementary Figure S6).

Thus, the best approximating model is not only able to
recapitulate a large amount of data, but it is also able to predict
an unprecedented range of mutants and experimental condi-
tions both qualitatively and quantitatively. This gave us
confidence that the model captures the main mechanism of
osmo-adaptation in yeast and that we could use it to further
study these mechanisms.
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Direct non-transcriptional modification of glycerol
production by Hog1 is the main mechanism
responsible for Hog1 phosphorylation upon
inhibition of Hog1 activity

Macia et al (2009) observed an increase in phosphorylation of
Hog1 following chemical inhibition of its kinase activity, even
under non-stressed conditions (Figures 2D and 3B). They
attributed this behaviour to a rapid and transient negative
feedback of Hog1 on the signalling branch activated by the
Sln1 branch, as the Sho1 branch mutant did not show this
behaviour (Figure 2D, green line). They discarded two
homeostatic negative feedbacks (closure of Fps1 and induc-
tion of Gpd1 expression) by showing that a mutant with a
constitutively open Fps1 channel or with blocked transcrip-
tional activity still exhibited the same increase in Hog1
phosphorylation after its inhibition (Figure 3D). However,
we were not satisfied with their conclusions, because they
disregarded the possibility of other Hog1-mediated homeo-
static feedback mechanisms.

Thus, we decided to further investigate the importance of
the individual mechanisms responsible for the measurements
done by Macia et al using our best approximating model
(Nr. 22), which could reproduce and predict well all these data
(Figures 2D, 3B and D). To this end, we again simulated Hog1
phosphorylation time series during a Hog1 kinase inhibition

experiment as shown in Figures 2D, 3B and D. However, this
time instead of removing (setting the appropriate parameters
to zero) all modifying influences of activated Hog1, which
would mimic complete inhibition of the kinase, we removed
all but one of these modifying influences at a time. This way,
we could selectively test which of the proposed feedback
mechanisms is responsible for the observed Hog1 phosphor-
ylation upon kinase inhibition, because if the responsible
feedback would still be active despite of other feedbacks being
blocked, no Hog1 activation should be observed. Specifically,
we tested situations where all Hog1-mediated feedbacks we
deleted except one of the following four: (a) upstream
signalling branch feedback (branch FB only), (b) Hog1-
mediated induction of transcription (transcriptional FB only),
(c) direct activation of glycerol production (Hog1–glycerol FB
only) or (d) closure of Fps1 channel (Fps1 FB only). The
results are shown in Figure 4.

Sln1 branch mutant (disabled Sho1 branch)

When only the Hog1 feedback on upstream signalling remains
functional (reactions v1 and v3 in Figure 1, ‘branch FB only’),
after addition of Hog1 kinase inhibitor, Hog1 still becomes
phosphorylated, though to a lesser extent than in the
simulation with all feedbacks blocked (all FBs off)

0 5 10 15 20 30 40 50
0

10

20

30

40
Hog1 kinase inhibition 5 μM SPP86

Hog1-glycerol FBonly
Transcriptional FB only
Fps1 FB only
Branch FB only
Sho1 branch (all FBs off)

H
og

1 
ph

os
ph

or
yl

at
io

n 
(%

)
A B

C D

G
ly

ce
ro

l (
μM

)

Time (min) Time (min)

0 5 10 15 20 30 40 50
100 000

120 000

140 000

160 000

180 000

Hog1 kinase inhibition 5 μM SPP86

Hog1-glycerol FB only
Transcriptional FB only
Fps1 FB only
Branch FB only
Sln1 branch (all FBs off)

0 5 10 15 20 30 40 50
100 000

120 000

140 000

160 000

180 000
Hog1 kinase inhibition 5 μM SPP86

Hog1-glycerol FB only
Transcriptional FB only
Fps1 FB only
Branch FB only
Sho1 branch (all FBs off)

0 5 10 15 20 30 40 50
0

10

20

30

40

Hog1 kinase inhibition 5 μM SPP86

Hog1-glycerol FBonly
Transcriptional FB only
Fps1 FB only
Branch FB only
Wild type (all FBs off)

Figure 4 Simulated Hog1 phosphorylation and corresponding intracellular glycerol concentrations. Shown are simulation scenarios, where all except one Hog1-
mediated feedbacks (FBs) are blocked at time 0 by addition of 5 mM SPP86 kinase inhibitor in the absence of osmotic shock. Blue line: all FBs are blocked in the
respective branch (see also Figure 2D). Red line: only Hog1 feedback on upstream signalling is kept active. Grey line: only Hog1 feedback on Fps1 closure is kept active.
Green line: only Hog1-mediated transcription is kept active. Orange line: only Hog1-mediated glycerol production is kept active. (A) Hog1 phosphorylation time series for
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Modelling signalling pathways in yeast
J Schaber et al

6 Molecular Systems Biology 2012 & 2012 EMBO and Macmillan Publishers Limited



(Figure 4A, compare blue and red lines). A similar simulation
output is observed when Hog1 activity remains functional only
towards Fps1 closure (reaction v16 in Figure 1, Figure 4A,‘Fps1
FB only’, grey line). When only Hog1-dependent induction of
gene expression remains enabled in the model, we see initially
the same behaviour as if all feedbacks were blocked, but at
later times Hog1 phosphorylation decreases again, reflecting
increasing protein production and subsequent increased
glycerol production (Figure 4A,‘transcriptional FB only, green
line). Thus, our model indicates that the above mentioned
feedbacks can only partly explain the observed behaviour. In
contrast, there is almost no simulated Hog1 phosphorylation
when the direct Hog1-mediated modification of glycerol
production is the only remaining functional feedback upon
kinase inhibition (Figure 4A, ‘Hog1 glycerol FB only’, orange
line). This demonstrates that in our model, and for the Sln1
branch, the main mechanism leading to Hog1 phosphorylation
upon addition of inhibitor is inhibition of direct (non-trans-
criptional) Hog1-mediated glycerol production. Accordingly,
simulations of the dynamics of intracellular glycerol concen-
tration and corresponding branch activation (Figure 4C,
Supplementary Figure S7) further support this mechanism,
as inhibition of Hog1 activity leads to a rapid downregulation
of steady-state glycerol production, leading to a decrease in the
simulated internal glycerol. This reduction leads to an osmotic
stress, which in turn leads to pathway activation.

Sho1 branch mutant (disabled Sln1 branch)

For the Sho1 branch mutant, the model shows almost no Hog1
phosphorylation for the simulated scenarios (Figure 4B).
This is what Macia et al (2009) observed experimentally
(Figure 2D). They interpreted this result as evidence for a lack
of feedback of Hog1 on the Sho1 branch. Here, our model
suggests that the reason is not the lack of such feedback, which
was experimentally confirmed to exist (Hao et al, 2007;
Yamamoto et al, 2010), but the low sensitivity of the Sho1
branch to mild osmotic stresses. In this mutant, the drop in
internal glycerol caused by inhibition of Hog1 is comparable to
that in the Sln1 branch mutant (Figure 4D), but it is insufficient
to activate the Sho1 branch (Supplementary Figure S7).

Direct non-transcriptional modification of glycerol
production by Hog1 is the main adaption
mechanism to osmotic stress

Our modelling analysis of the mechanisms leading to Hog1
phosphorylation after inhibition of its kinase activity suggests
that rapid non-transcriptional modification of glycerol produc-
tion by Hog1 is the main mechanism of adaptation. This notion
is further supported by an analysis of activated Hog1 and
volume time series under osmotic stress conditions (Figure 5).

Abrogating direct non-transcriptional Hog1-mediated acti-
vation of glycerol production substantially prolongs adaption

to 0.4 M NaCl osmotic shock (Hog1-PP modification of v13 in

Figure 1, red lines in Figure 5) compared with the wild type

(blue lines in Figure 5) both in terms of Hog1 phosphorylation

and volume recovery. Disabling other mechanisms having a

direct role in glycerol accumulation (Fps1 channel closure, i.e.,

Hog1-PP and turgor modifications of reaction v15 and v16 in

Figure 1, grey lines in Figure 5) and transcription/translation

(Hog1-PP modification of v9 in Figure 1, green line in Figure 5)
do not prolong Hog1 phosphorylation and volume recovery as
strongly as disabling the non-transcriptional Hog1-glycerol
feedback. Concerning Fps1 channel closure, the effects of
activated Hog1 and turgor are additive, where turgor has a more
pronounced role in channel closure. Interestingly, the effect of
disabling transcription is an increase in the final steady-state
level of activated Hog1 rather than prolonged adaptation time
(see green lines for volume and Hog1-PP in Figure 5). Disabling
the direct feedback of Hog1 to the Sln1 and the Sho1 branch
(Hog1-PP modification reaction v1 and v3 in Figure 3, orange
lines in Figure 5) increased the maximal Hog1 phosphorylation
level and had almost no effect on the timing of volume recovery.

Taken together, the analyses of the best approximating
model suggest that the main mechanism for Hog1 and volume
adaptation is a fast and transient non-transcriptional Hog1-PP-
mediated activation of glycerol production. The transcrip-
tional response rather serves to maintain an increased steady-
state glycerol production with low steady-state Hog1 activity
after adaptation. Fps1 channel closure also has a substantial
role in adaptation, whereas the influence of the transient
feedbacks on the signalling cascade is small.

Transcriptional modification of glycerol
production by Hog1 serves to sustain adaptation
and prepares for subsequent shocks

The analysis above suggests that the role of the transcriptional
feedback is to control the steady-state level post adaptation
rather than adaptation dynamics. Indeed, when protein levels
related to glycerol production stay constant in our model
instead of being upregulated upon osmotic shock, Hog1
steady-state activation is elevated after adaptation relative to
normal conditions (Figure 5). Moreover, upon simulation of
consecutive increases of the external osmolarity the cell is less
able to adapt in terms of both volume and Hog1 activity
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(Figure 6A), whereas under normal transcriptional activity,
the response remains the same upon each consecutive shock.
For the case of three consecutive shocks, this has been
observed experimentally (Schaber et al, 2011).

We observe a similar behaviour upon simulating multiple
hyper–hypo-osmolarity shock cycles (Figure 6B). When
Hog1-mediated gene expression is functional, after each
hyper–hypo-osmolarity shock pair of the same strength, the
simulated cell needs less and less time to adapt to the following
hyper–hypo shock and the volume changes less and less, as
well. This is because of the increasing internal glycerol
production capacity. Accordingly, Hog1 phosphorylation
amplitude decreases (see also Supplementary Figure S1).
When the increase in glycerol production capacity is disabled,
cells are less able to prepare to a subsequent shock and need
correspondingly more time to adapt. Such a behaviour has
been reported before (Mettetal et al, 2008), which further
supports our model. However, this result should be taken with
care, because the hypo-shock response, which activates the
cell wall integrity pathway, might interfere with the hyper-
shock response regulated by the HOG pathway.

Rapid feedback on signalling branches stabilises
adaptation response

We observed that disabling the Hog1-PP-mediated feedback on
the upstream signalling branches did not have a marked effect
on adaptation dynamics (orange lines in Figure 5). In fact,
without these feedbacks, Hog1 activation levels returned even

faster to steady-state levels than with feedback, because of the
higher maximal Hog1 activation and the corresponding boost
of glycerol production. This prompted the question as to why
the best approximating model included these feedbacks at all
and, the related question, as to what they are good for. First, we
observed that the best approximating model without the
branch feedbacks displayed slightly damped oscillations
(orange lines in Figure 5). Second, as mentioned in the
Materials and methods section, we excluded models that
showed oscillatory behaviour after adaptation from the model
selection procedure (Supplementary Table S8). This is because
we assumed that the real system does not exhibit this
behaviour, as even careful single-cell analyses did not reveal
oscillatory behaviour (Mettetal et al, 2008; Muzzey et al,
2009). We analysed the percentage of models with oscillatory
behaviour among models with or without transient feedbacks
on the signalling branches and with or without non-transcrip-
tional Hog1-PP-mediated glycerol production. We noticed that
including either of these feedbacks reduced the percentage of
oscillating models in the respective category (Figure 7). Thus,
models including transient feedbacks had a higher chance of
being part of the discrimination procedure, because they were
less prone to oscillatory behaviour.

More than 70% of models with only transcriptional
feedback (Figure 7, Gpd1) and less than two feedbacks on
the signalling branches (Figure 7, o2 BFB) showed oscillatory
behaviour. Including both transient feedbacks on the
signalling branches (2 BFB in Figure 7) or the rapid (non-
transcriptional) Hog1-PP-mediated glycerol production (Hog1
in Figure 7) decreased the percentage of oscillating models
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(Figure 7). Finally, only 25% of models including the three fast
mechanisms (both branch feedbacks and the rapid Hog1
control on glycerol production) showed oscillatory behaviour.
Taken together, it seems that transient feedbacks stabilise the
adaptation response in terms of avoiding or making it less
prone to oscillatory behaviour, at least for our parameterised
models.

We hypothesised that this might be a more general feature of
delayed negative feedback systems, including fast transient
feedbacks. To further investigate this hypothesis, we devel-
oped a simple and more general model (Figure 8A). This
generic model consisted only of four components and included
the main features and feedback mechanisms of the complete
model, that is, a non-zero steady state, Hog1 activation,
transcription, translation, glycerol production, an integral
feedback control via glycerol accumulation, and two fast
transient Hog1-PP-mediated feedbacks: one on Hog1 activa-
tion itself and one on glycerol production. The model had only
three kinetic parameters (see Supplementary Material for a
detailed description). With arbitrary parameters and initial
conditions, the model exhibited general adaptation behaviour
upon osmotic shock (Figure 8B); however, without either of
the two transient feedbacks (dashed lines in Figure 8A), the
model showed stable oscillations after adaptation (Figure 8C).

Using this model, we systematically studied the stability of
the steady state after adaptation as a function of the base signal
T0 and the input signal NaCl (Figure 9). Assuming mass-action
kinetics and the same reaction parameters for reactions v1, v3,
v5 and v7, there were only one to three free kinetic parameters,
depending on the model, which had only minor influence on
the stability behaviour (see Supplementary Material). In
Figure 9, we plot the sign of the real part of the maximum
eigenvalue of the linearised system at steady state. If negative,
that is, white squares in Figure 9, the steady state is stable and
no sustained oscillations are possible. A computational
analysis revealed that when the real part of the maximum

eigenvalue changes from negative to positive, that is, grey
squares in Figure 9, there is a single pair of complex conjugated
eigenvalues crossing the imaginary axis and the remaining two
eigenvalues remain negative. This is the hallmark of a Hopf
bifurcation giving rise to, in our case, stable oscillations. We
illustrate this by bifurcation diagrams of Hog1PP equilibria as a
function of T0 for selected values of NaCl (see Supplementary
Figure S5). We observed that including one or both of the
transient feedbacks drastically reduced the region in the
T0-NaCl plane where the steady state was unstable and
oscillations occurred, rendering the model including both
transient feedbacks stable for the whole range of tested input
conditions (Figure 9).

In combination with our observation from the model fits of
the complete models, this provides support to the hypothesis
that a potential biological role of those proposed transient
feedbacks is the stabilisation of the adaptation response by
avoiding oscillatory behaviour, which can occur in delayed
negative feedback systems (Kholodenko, 2000).

Both branches synergistically elicit a swifter and
more robust osmo-adaptation than a single branch
alone

One of the purposes of this study was to address the question
of why yeast maintained two redundant signalling pathways in
the course of evolution. We addressed this question using our
model. Specifically, we tested a hypothesis inspired by recent
work stating that it is extremely costly for cells to increase
noise suppression in signalling networks owing to molecular
fluctuations (Lestas et al, 2010). One possible way to improve
noise suppression is to evolve parallel signalling systems,
because each signalling pathway contributes independent
information about the upstream state (Lestas et al, 2010). We
reasoned that the adaptation time is one of the main
components that cells optimised throughout evolution,
because it brings a selective advantage. Cells that are able to
adapt faster and more robustly may resume normal growth
and cell division faster and out-compete cells that recover
more slowly. Therefore, we tested robustness of the adaptation
time for single-branch mutants and the wild type by a Monte–
Carlo simulation approach. This stochastic approach mimics
the natural cell to cell variability observed in a population
(Colman-Lerner et al, 2005, Gaudet et al, 2012). We
simultaneously perturbed free parameters and initial condi-
tions within a window of 25% plus or minus of their original
value and calculated the time the system needs to regain 98%
or 95% of their original volume after an external shock.

For all simulated conditions, the wild-type model had a
significantly shorter mean and median adaptation time than
each branch alone (Po0.01, using two robust tests for
location, i.e., U-test and Kolmogoroff–Smirnov test) (Tables I
and II and Supplementary Table S14). This effect was
especially pronounced for low and intermediate osmotic
shocks (0.1 and 0.2 M NaCl), and it is a consequence of the
partly additive effects of the two branches during the response
to low stress (Supplementary Figures S8 and S9). Moreover,
the wild type was significantly more robust than the single-
branch mutants to changes in parameters and initial
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conditions (Po0.01, using two robust tests for scale, i.e.,
Siegel–Tukey test and Conover test), which was evidenced by
its smaller interquartile ranges and s.d.’s (Tables I and II and
Supplementary Table S14).

We sought to corroborate these simulations by dedicated
measurements (Figures 10 and 11, Tables I and II). In order to
do so, we needed not only to measure average volume
recovery times for wild-type and branch mutants but also
single-cell information to assess cell to cell variability in the
response. As cells are expected to be in different states at the
time of the shock, low cell to cell variation in volume recovery
time would imply high robustness of the HOG pathway to
those differences. Thus, we followed single cells of wild-type,
Sln1 branch (sho1D) or Sho1 branch (ssk1D) yeast by time-
lapse microscopy during their response to 0.1 and 0.2 M NaCl.
Then, we measured from the acquired images the volume of
individual cells over time. As predicted by our model, wild-
type cells recovered significantly faster than single-branch
mutants (Po0.01, Tables I and II).

In terms of interquartile ranges, a robust measure of
population variability, we observed that for an osmotic shock
of 0.1 M NaCl the wild-type exhibits significantly less
variability (Po0.01) than the single-branch mutants
(Table I). For an osmotic shock of 0.2 M NaCl, however, the
Sho1 branch showed least variability (Po0.01), whereas the
variability between wild type and Sln1 branch was not
significantly different (Table II).

Our Monte–Carlo analysis of adaptation times using the
parameterised model support the hypothesis that a major
consequence of maintaining two redundant signalling path-
ways is that they provide an advantage in recovery from hyper-
osmotic shock, both in terms of speed and robustness. The
advantage in speed was corroborated by our measurements,
whereas the advantage in robustness was only supported for
low osmotic shock (0.1 M NaCl).

Discussion

The HOG pathway in yeast is one of the best-studied signalling
pathways and, therefore, serves as a prototype for eukaryotic
stress response MAP kinase pathways. Nevertheless, there is
still substantial uncertainty about the relative importance of
different regulation and feedback mechanisms and their
interaction in time. Moreover, it is still unclear why yeast has
maintained two redundant signalling pathways.

In order to answer which of the many hypothesised
regulation and feedback mechanisms are best supported by
the available data, and what are two parallel redundant
signalling branches good for, we systematically tested an
extensive set of different hypotheses against an unprecedented
amount of available data that mostly have not yet been used
for modelling. By a rigorous model discrimination approach,
we identified a parsimonious model that was best supported
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by the data. To our knowledge, there was no model proposed
yet with a lower ratio of number of parameters to number of
fitted data points (20/390). Comparable models based on
biological knowledge and fitted to data had ratios of, for
example, 70/33 (Klipp et al, 2005) and 10/41 (Gennemark et al,

2006). Most of the parameters of the best approximating model
were identifiable and the model showed excellent explanatory,
as well as predictive, properties over a wide range of mutants
and conditions. Owing to the excellent interpolating as well as
extrapolating properties of the model, we are confident that we
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Figure 9 Real parts of the maximum eigenvalues of the Jacobian matrix of the simplified HOG model from Figure 8 at steady state including different feedback
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Table I Adaptation time(min) for 0.1 M NaCl

Simulated (99%) Measured (100%)

Wt Sln1 Sho1 Wt Sln1 Sho1

Mean 9.3 11.1 22.3 6.9 9.7 10.4
Median 9.0 10.3 21.1 5.6 10.1 9.6
IRQ 3.0 4.4 9.1 3.9 5.7 7.1
U-test *** *** *** — *** ***
K–S test *** *** *** *** *** ***
S–T test *** *** *** * *** ***
C test *** *** *** — *** ***
N 500 500 500 192 277 242

Abbreviations: IRQ, inter-quartile range; N, number of cells; K–S, Kolmogoroff–
Smirnov; S–T, Siegel–Tukey; C, Conover.
—, P40.1; *, Po0.1; **, Po0.05; ***, Po0.01. Significance wt, test between
Sln1 and Sho1; significance Sln1, test between Sln1 and wt; significance Sho1,
test between Sho1 and wt.

Table II Adaptation time (min) for 0.2 M NaCl

Simulated (95%) Measured (100%)

Wt Sln1 Sho1 Wt Sln1 Sho1

Mean 9.6 10.7 14.4 10.8 13.0 15.2
Median 9.4 10.2 13.5 10.9 12.9 15.0
IRQ 2.6 3.1 4.8 4.5 4.4 2.6
U-test *** *** *** *** *** ***
K–S test *** *** *** *** *** ***
S–T test *** *** *** *** — ***
C test *** *** *** *** — ***
N 500 500 500 464 279 292

Abbreviations: IRQ, inter-quartile range; N, number of cells; K–S, Kolmogoroff–
Smirnov; S–T: Siegel–Tukey; C, Conover.
—, P40.1; *, Po0.1; **, Po0.05; ***, Po0.01. Significance wt, test between
Sln1 and Sho1; significance Sln1, test between Sln1 and wt; significance Sho1,
test between Sho1 and wt.
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have captured a formal well-parameterised description of the
most important mechanisms underlying osmo-adaption in
yeast under the studied conditions.

Addressing the above questions with this model yielded
various novel insights into osmo-adaption, which might also
be important for other homeostatic adaptive systems in
eukaryotes. First, the model suggested that the main adapta-
tion mechanism is not via a feedback involving transcription
of glycerol-producing enzymes, but rather a fast, possibly post-
translational, Hog1-mediated feedback on the glycerol produc-
tion machinery. This is in contrast to previous studies, which
also proposed a fast non-transcriptional Hog1-mediated
feedback having an important role for short-term osmo-
adaptation, but speculated that it is rather mediated via fast
Fps1-channel closure and resulting glycerol retention (Klipp
et al, 2005; Mettetal et al, 2008). Such a mechanism had a less
pronounced role in our model. The feedback acting on glycerol
production proposed by our model can act by, for example,
redirecting the glycolytic flux from ethanol to glycerol (Dihazi
et al, 2004) or by increasing the glycolytic flux in general by
stopping the cell cycle progression and growth (Adrover et al,
2011). The transcriptional feedback takes over at later time and
servers to reset the basal level of Hog1 by replacing the
transient Hog1-mediated increase in glycerol production by a
more sustainable increase in Gpd1-mediated glycerol produc-
tion. Resetting a low steady state of Hog1 activity is important
in order to be able to quickly respond to possible future shocks,

which was suggested by our simulation results (Figure 6).
Given that Hog1 activation leads to cell cycle arrest (Adrover
et al, 2011), low steady-state Hog1 activity after adaptation
may also be important to allow normal cell cycle progression, a
feature that was not considered in the model.

The concept of signalling and glycerol production home-
ostasis under non-stress conditions is important in order to
come to a new understanding of osmo-adaptation. This
concept has not been sufficiently appreciated by earlier models
(Klipp et al, 2005; Macia et al, 2009). It has been noted before
that there is a constitutive signal maintaining a low Hog1
activity under non-stress conditions (Wurgler-Murphy et al,
1997; Macia et al, 2009). However, that low constant Hog1
activity may also serve to maintain a constitutive enzyme and
glycerol production was not rigorously appreciated. It is
exactly this notion that provides a new explanation for the
data from Macia et al, that is, that Hog1 activation upon
inhibition of Hog1 kinase activity is not due to releasing a
negative feedback on upstream signalling, but rather due to an
osmotic stress, induced by a drop in steady-state intracellular
glycerol levels that can no longer be maintained.

Several recent studies support the notion that there are post-
translational Hog1-mediated rapid negative feedback mechan-
isms within the signalling branches of the HOG pathway. Two
studies demonstrated experimentally that phosphorylated
Hog1 negatively regulates the Sho1 branch at different sites
(Hao et al, 2007; Yamamoto et al, 2010), and Macia et al (2009)
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proposed a rapid Hog1-mediated negative feedback within the
Sln1 branch, which was indirectly supported by experimental
data, but whose physical nature remains elusive. It should be
noted that all three cited studies used different strains, and
Macia et al (2009), whose data we used to parameterise our
models, did not propose a transient negative feedback in the
Sho1 branch. Thus, it is still unclear whether there are Hog1-
mediated post-translational feedbacks within both branches of
the HOG pathway in the strain our data refers to (W303).
Nevertheless, our model discrimination analysis shows that
the data support the existence of such feedbacks. Opposed to
Macia et al (2009), we suggest that these transient feedbacks
have only a minor role for adaptation per se, but rather serve to
stabilise the response in terms of avoiding oscillatory
behaviour, which may occur in delayed negative feedback
systems. A similar effect was described before for models
without transcriptional feedback (Tsai et al, 2008). Basically,
fast transient feedbacks decrease the delay in the systems and
thereby avoid oscillatory behaviour. The stabilisation effect in
our model, however, seems to be stronger for the transient
Hog1-mediated feedback on the glycerol production rather
than for transient feedbacks on the signalling branches.

In contrast to the perfect adaptation in Hog1 nuclear
localisation reported by Muzzey et al (2009), Macia et al
(2009) reported elevated Hog1 activity after adaptation
(Figures 2A and B, and 3A). As the model was fitted to the
Macia et al. data and could explain these data well, it also
implies a role for model components that were not observed
during adaptation response. Thereby, the model provides a
more complete picture of the system in case of imperfect

adaptation. In the model, elevated Hog1 activity leads
to higher steady-state glycerol production, which serves to
maintain an increased glycerol gradient, which has to be
actively maintained, at least in part, because Fps1 reopens
after adaptation (Supplementary Figure S10).

Having, for the first time, a well-parameterised model that
includes the two branches at hand, we pursued the hypothesis
that the two branches render the system more robust to
internal variations in cellular states and to molecular noise
(Lestas et al, 2010). Indeed, a Monte–Carlo analysis using the
best approximating model showed that the wild-type elicits a
faster and more robust response to changes in parameters and
initial conditions than the single-branch mutants. We could
confirm by dedicated experiments that the wild-type cells
indeed recover significantly faster than the single-branch
mutants for low and intermediate osmotic shocks (0.1, 0.2 M
NaCl). In addition, as evidenced by the interquartile ranges of
the adaptation times, we could show that the single-branch
mutants showed a significantly higher variability than the
wild-type for the low osmotic shock of 0.1 M NaCl. For
intermediate osmotic shock, the Sho1 branch seems to be
more robust than both wild-type and Sln1 branch mutant,
indicating other possible roles of Sho1 branch under this
condition and the existence of additional processes, which are
not considered by our model.

There are technical limitations to the precision with which
the small changes in volume that occur in mild osmotic shocks
can be measured. However, recovery of the wild type was up to
5 minutes faster than in the single-branch mutants, which
constitutes more than 5% of the cell cycle time under good
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growth conditions. This advantage might be sufficient to
evolutionary conserve two parallel redundant signalling
branches. Besides the hypothesis that parallel signalling
pathways have evolved to improve noise suppression, which
is partly supported by this study, there are, of course, other
possible explanations, which we did not investigate here. It is
known that, for example, the Sho1 branch is also involved in
the activation of the Fus3 and Kss1 MAP kinases, which
regulate the response to pheromone and starvation, respec-
tively. Therefore, it seems clear that possible noise suppression
is not the sole reason for the existence of the Sho1 branch.

There are other reports on parallel signalling pathways that
are activated by a single stimulus in eukaryotic systems. One
example is the Erk MAP kinase cascade, which is activated at
high doses of epidermal growth factor by both a phosphoinosi-
tide 3-kinase (PI3K)-dependent and a PI3K-independent path-
way (Sampaio et al, 2008). Another example is NF-kB
activation upon genotoxic stress. In this case, at least two
partially redundant parallel signalling pathways, one PIASy
dependent and another ATM dependent, converge on NEMO/
IKK activation (McCool and Miyamoto, 2012). In these
examples, stabilisation or acceleration of response time might
be important. However, as in the HOG system, parallel
signalling pathways probably serve additional purposes, for
example, crosstalk to other connected signalling pathways.

This study also demonstrates the potential of an ensemble
modelling approach in discriminating rivalling hypotheses. It
may lead to biased conclusions, when only one favourite
hypothesis is investigated. The inherent uncertainty about the
molecular mechanisms underlying biological phenomena
inevitably leads to alternative mathematical model formula-
tions, which should all be challenged with available data
(Schaber et al, 2009). In combination with a model discrimina-
tion analysis, this is a comprehensible way to find the
hypothesis that is best supported by data. A model that is
selected by this approach has more credibility than fitting and
analysing one single model.

Materials and methods

Data

We made extensive use of published data to parameterise dynamic
models of the HOG pathway. The core dataset used for model
parameterisation and discrimination was taken from Macia et al
(2009), which was kindly provided by Sergi Regot in a digital version.
This data set consists of time series of phosphorylated Hog1 under
several hyper-osmotic shock conditions, for wild-type and different
mutant yeast, for up to 2 h after hyper-osmotic shock (Figures 2A and B,
and 3A). Only the Sln1 branch data for stimulation with 0.1, 0.4 and
0.6 M NaCl have been used before to parameterise mathematical models
(Macia et al, 2009) (Figure 2A). The data in Figures 2D and E, and 3B, C
and D were also taken from Macia et al (2009), but digitised from the
original figures therein. In addition, we used time series of mRNA, Gpd1
and glycerol published in Klipp et al. (2005) (Figure 2C). These data sets,
although coming from different sources, were comparable, because they
were produced using the same genetic background and under the same
culture conditions. Initially, we did not have volume recovery data for
these strains and conditions. Therefore, we generated artificial volume
data using the observation that change in volume over time during
adaptation to a hyper-osmotic shock mirrors Hog1 activation profile in
wild-type yeast (Muzzey et al, 2009). We combined this idea with
measured minimal volumes (the minimal volume to that a cell can
shrink) for different conditions (Schaber et al, 2010) (Figure 2F).

Retrospectively, this approach is justified, because at a later stage of the
project we did measure volume recovery for single cells for the same
strain and under similar conditions (see Figures 10 and 11 and
Supplementary Material). The artificial volume data lie within the
interquartile range of the measured volumes for the initial phase of
adaptation (there was no measurement for the shrinkage phase after
shock). As the model does not include growth, the artificial and
simulated volumes level off below 100% of the initial volume, whereas
the measured volume surpasses the initial volume. Therefore, and in the
light of the excellent predictive properties, we refrained from refitting all
models including the measured volumes.

Model development and candidate models

Model development was guided by the principle of parsimony. In most
published models of the HOG pathway that we are aware of and
that have been fitted to data, the number of parameters exceeds the
number of data points used to fit those parameters (Kuhn and Klipp,
2012). This leads to over-parameterised models with non-identifiable
parameters. Over-parameterised models tend to show spurious effects
and artefacts and may lead to wrong conclusions, especially
concerning quantitative aspects (Burnham and Anderson, 2002;
Schaber et al, 2011). Therefore, we aimed at a model that had
substantially less parameters than data points for parameterisation.
Given an appropriate experimental design this increases the possibility
of obtaining at least some identifiable parameters (Raue et al, 2009;
Schaber and Klipp, 2011).

There are no data available on the dynamics of pathway components
upstream of Hog1. This part of the model was, therefore, kept as simple
as possible, basically only consisting of two different possibilities of
how the MAPK kinase Pbs2 can be activated. First, it can be activated
by direct phosphorylation through a volume-dependent signal,
representing the Sln1 branch activation (v1 in Figure 1), and, second,
by volume-dependent binding to Sho1, representing scaffolding
properties of the Sho1 branch (v3 in Figure 1). Both the phosphorylated
form of Pbs2 as well as the Sho1–Pbs2 complex are capable of double
phosphorylating Hog1 independently of each other (v5 and v7 in
Figure 1). For characterising processes downstream of Hog1, there
were data available for mRNA, Gpd1 and glycerol, which were
explicitly included in the model. The data for Gpd1 were also
considered as a proxy for other Hog1-regulated proteins. Fps1 closure
(by phosphorylation) was optionally dependent on volume, turgor or
active Hog1 (v15 and v16 in Figure 1). As there was a report on Fps1
degradation and/or internalisation (Mollapour and Piper, 2007), we
included two possible degradation mechanisms, one dependent on
activated Hog1 and one dependent on some hypothetical protein
induced by activated Hog1. A balancing reaction producing Fps1
was included as well (reactions v17 and v18 in Figure 1), because the
model was assumed to be in steady state before stimulation. Internal
and external osmotic pressures, turgor and volume dynamics were
described with an established parameterised biophysical model (Klipp
et al, 2005; Schaber and Klipp, 2008; Schaber et al, 2010).

According to our guiding principle of parsimony, not only the
structure of the model but also the kinetic rate law formulations were
kept as simple as possible, but as complex as necessary. In almost all
rate laws, the most simple rate law, that is, mass-action kinetics, was
sufficient. However, in the course of model development, we realised
that assuming simple mass-action kinetics for reactions v9 and v13

could not explain the data well, making a more complex kinetic
necessary. In these two reactions, we used a simple saturation kinetic,
which gave good results, implying that saturation seems to be an
important feature of these reactions. In the Supplementary Material,
we describe a detailed derivation of such saturation kinetics (Alon,
2007). Owing to the lack of knowledge about a mechanism of how
Hog1 may potentially modify glycerol synthesis, we used a simple
heuristic approach. As this modifying influence of Hog1 turned out to
be important for our results, we also tested several possible rate law
formulations for reactions v13 for the three best approximating models
(see Result section and Supplementary Tables S11 and S12). See
Supplementary Tables S1–S8 for a detailed list of all reactions, their
respective rationale and parameters. Figure 1 gives an overview of all
reactions considered in the candidate models.
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Several reactions and modifying influences in the model were left
optional, reflecting uncertainty about the biological processes and
representing different hypotheses. These are marked with dashed and
dotted lines in Figure 1. Specifically, there were (i) four options for the
transient feedback of Hog1-PP on the two branches (v1 and v3):
without, with both or with either one of the feedbacks; (ii) two options
for glycerol production: only protein (Gpd1, 2) dependent or with
additional stimulation by phosphorylated Hog1; (iii) two options for
Fps1 closure (v15, putative phosphorylation): stimulated by a volume-
dependent function (Fps1 activation) or inhibited by turgor; (iv) four
options for Fps1 opening (v16): without regulation (constitutive),
inhibited by Hog1, stimulated by turgor or both; and (v) three options
for degradation/internalisation of open Fps1 (v17, v18): stimulated by
phosphorylated Hog1, protein-stimulated or without. The combina-
tion of these alternative model formulations resulted in
4*2*2*4*3¼192 different models.

We used a steady-state assumption valid before osmo-stress in order
to reduce the number of free parameters. Starting point was the
observation that Hog1 shows a basal (non-zero) steady-state activa-
tion (Figures 2A and B, and 3A). Therefore, at steady state, activation
reactions (v5 and v7) have to be balanced by de-activating reactions (v6

and v8), respectively. In fact, if there is a non-zero steady state, every
reaction has to be balanced by another reaction and, thus, one rate
constant of each pair of activating–deactivating reactions may be
expressed by the remaining rate constants and non-zero steady-state
initial concentrations of the involved components (See Supplementary
Table S5 for a list of all derived rate constants). The free rate constants
were the only fitted parameters. Initial conditions were derived using
measured molecules numbers (http://yeastgfp.yeastgenome.org) and
assuming a cellular volume of 50 fl. In addition, we made extensive use
of reported values of other parameters, which were held constant. See
Supplementary Tables S5–S7 for a detailed list of all parameters, their
values and references.

Model fitting, ranking and selecting

The core data set was split into two distinct sets. The first set comprised
the Hog1 phosphorylation data of the two branches, as well as the
mRNA, Gpd1, glycerol and volume data for the wild-type and Hog1
phosphorylation levels for the Fsp1D1 mutant (Figure 2). The second
set comprised the wild-type data for Hog1 phosphorylation for several
mutants and various conditions (Figure 3A and B). The first data set
was used to parameterise the models and the second data set was used
to validate the models (test whether the models could predict correctly
the results of the experiments in the data set). The models were
implemented and fitted with the free software COPASI (Version 4.7,
Build 34) (Hoops et al, 2006). We used the Evolutionary Programming
algorithm to fit the models, where the population size was set to 10
times the number of parameters and the number of generations was
limited to 10 times the number of parameters. Subsequently, the
models were additionally fitted with the Hookes and Jeeves algorithm
with standard parameter settings from COPASI. When estimated
parameters hit parameter boundaries, the boundaries were relaxed
and the model refitted until the fit converged within defined parameter
boundaries. Model ranking was performed using modelMaGe
(Flottmann et al, 2008; Schaber et al, 2011).

We observed that several models exhibited oscillatory behaviour
after adaptation to osmotic shock (see Supplementary Table S8), either
damped or sustained. Oscillatory behaviour in the HOG pathway has
not been reported, neither in population-based measurements nor in
single-cell measurements. Therefore, we considered oscillations to be
an artefact of the model and its parameterisation. These models were
excluded from the ranking procedure. For model ranking, we
calculated the AIC corrected for small sample sizes (AICc) (Burnham
and Anderson, 2002) for each candidate model:

AICc¼ 2kþn ln
2pSSR

n

� �
þ 1

� �
þ 2kðkþ 1Þ

n� k� 1

where SSR is the sum of squared residuals of the fit, k the number of
parameters and n the number of data points. The AICc is an
information theory-based measure of parsimonious data representa-
tion that incorporates the goodness of the fit (SSR) as well as the

complexity of the model (k), thereby giving an objective measure for
model selection and discrimination.

Using the AICc, the models were ranked according their data
approximation (Supplementary Table S9). In addition, we ranked the
models using both the SSR of the fitted data (Figure 2, 390 data points,
Supplementary Table S9) as well as the predicted data (Figure 3A
and B, 515 data points, Supplementary Table S10). This way, the
models were ranked according to both their data approximation and
their predictive properties.

In order to select and compare the best approximating model(s), we
calculated the Akaike weights (AICw) (Burnham and Anderson, 2002).

AICwi¼
e�

1
2Di

�R
r¼ 1e�

1
2Di

where Di¼AICi�AICmin, with i being the model index i¼ 1, y, R
according to ranking and QUOTE the minimal AICc. The AICw’s can be
considered as the weight of evidence in favour of a model given as a
number between 0 and 1, that is, the higher the weight, the closer the
model is to the hypothetical true model (Burnham and Anderson,
2002). We considered those models as best approximating that had an
AICw40.05 (Supplementary Tables S8–S10).

Experimental methods

We performed general molecular biology procedures, yeast strain
manipulation and construction according to previously established
methods (Guthrie and Fink, 1991; Ausubel et al, 1987–2006).

Strains
Strains are detailed in Table III. We used ACL379 as the parental strain,
which is a Dbar1 strain derived from YAS245-5C (can1::HO-CAN1
ho::HO-ADE2 ura3 ade2 leu2 trp1 his3) and is a W303a derivative
(Colman-Lerner et al, 2005).

We used LD3342 strain as the parental strain to make most of the
deletion mutants in this work. These deletions were performed by
homologous recombination using PCR products amplified from the
appropriate strain from the deletion collection using primers separated
B200 base pairs from the antibiotic resistance cassette.

Culture and cell manipulation
We maintained cultures in exponential growth for at least 15 h. To this
end, we typically start two or three cultures of different dilutions in the
medium appropriate for each particular experiment, so that after 15 h,
one of the cultures has grown to an OD between 0.05–0.1.

For the volume recovery experiments, we sonicated the culture to
disperse clumps and added 100 ml of cell suspension (roughly 106 cells)
to 96-well glass bottom plates that had been precoated with conA
(concanavalin A type V, Sigma-Aldrich). To coat with conA, we added
to the well 100 ml of a 100mg/ml solution of conA in water. We
incubated the plate for 1 h at RT and then washed three times with
water. After pipetting the cells, we centrifuged the plate at 3000 r.p.m.
for 30 s. This procedure improves the attachment of the cells to the
bottom of the wells. We then removed the medium by aspiration and
added 200ml of the same fresh medium.

Image acquisition
For imaging, we used a 60X PlanApo objective (NA¼ 1.4) under oil
immersion using an Olympus IX81 microscope (Colman-Lerner et al,
2005; Gordon et al, 2007; Chernomoretz et al, 2008). We automatically
imaged multiple wells over time using MetaMorph 7.5 software
(Universal Imaging Corporation, Downingtown, PA).

Briefly, we focused cells manually (focus will slowly drift hereafter).
Then, we acquired a Z-stack of eight slices 0.4 mm thick covering 2 mm
on either side of the focal plane. First, we imaged for 10 min to quantify
the volume of the cells before the shock in each well. Then, we
stimulated the cells waited for 30 s and resumed z-stack acquisition.
We continued imaging for 60 min.
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Image processing with CellID and data analysis with
Rcell
To extract quantitative information from the images, we processed
them with VCell-ID as previously described (Gordon et al, 2007;
Chernomoretz et al, 2008) using the parameters max_dist_over_
waist¼ 4.00, max_pixels_per_cell¼ 2000, min_pixels_per_cell¼ 400,
background_reject_factor¼ 1.10 and standard parameters otherwise.

In order to select the image from the stack where cells are slightly out
of focus, we used a simple observation. We noticed that the image
corresponding to the in-focus slice had the minimum total pixel
intensity of all slices in the stack. Therefore, we selected for VCell-ID
processing the images that were three and four slices below the image
with minimum pixel intensity. We analysed single-cell data extracted
from VCell-ID using R (http://www.r-project.org) with Cell-ID-specific
analysis package Rcell (http://cran.r-project.org/web/packages/
Rcell/index.html). After quantification, we removed irregular shaped
spurious cells, outliers and cell that were present in o80% of all time
points, as described in Chernomoretz et al. For each cell and slice
volumes were normalised to the median volume of the three time
points before shock. As final volume measurement, we used the
average over the two selected slices of the normalised volumes.

Adaptation times for the measured single-cell volume time courses
was calculated from a linear interpolation of the time and volume
before and after recovery of 100% of the initial volume before the
osmotic shock.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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