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Abstract

Biodiversity is thought to prevent decline in community function in response to changing

environmental conditions through replacement of organisms with similar functional capacity

but different optimal growth characteristics. We examined how this concept translates to the

within-gene level by exploring seasonal dynamics of within-gene diversity for genes involved

in nitrogen cycling in hyporheic zone communities. Nitrification genes displayed low rich-

ness—defined as the number of unique within-gene phylotypes—across seasons. Con-

versely, denitrification genes varied in both richness and the degree to which phylotypes

were recruited or lost. These results demonstrate that there is not a universal mechanism

for maintaining community functional potential for nitrogen cycling activities, even across

seasonal environmental shifts to which communities would be expected to be well adapted.

As such, extreme environmental changes could have very different effects on the stability

of the different nitrogen cycle activities. These outcomes suggest a need to modify existing

conceptual models that link biodiversity to microbiome function to incorporate within-gene

diversity. Specifically, we suggest an expanded conceptualization that 1) recognizes com-

ponent steps (genes) with low diversity as potential bottlenecks influencing pathway-level

function, and 2) includes variation in both the number of entities (e.g. species, phylotypes)

that can contribute to a given process and the turnover of those entities in response to shift-

ing conditions. Building these concepts into process-based ecosystem models represents

an exciting opportunity to connect within-gene-scale ecological dynamics to ecosystem-

scale services.

Introduction

High microbial diversity has been observed in almost all environments that have been exam-

ined [1]. It is widely believed that this diversity provides functional stability to ecosystems

experiencing fluctuations in environmental conditions by the presence of organisms having

overlapping functional capabilities but different conditions under which they optimally
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function [2–8]. In a fluctuating environment, conditions that impair the growth of some popu-

lations will stimulate the growth of others, and overall community function is maintained.

Maintenance of higher diversity therefore allows a community to respond more rapidly to a

disturbance or environmental shift and reduces its dependence on (or susceptibility to)

recruitment of new organisms to fill vacant niches. The dynamics of diversity at the functional

gene level, however, have not been well explored.

Cooperative metabolism in natural microbial communities has long been suspected, but

only recently have metagenomic studies revealed its extent. The component steps (i.e., individ-

ual enzyme-catalyzed reactions) of complex metabolic pathways, such as denitrification, sulfur

oxidation, and organic carbon degradation, have been observed to be distributed across multi-

ple organisms more frequently than they are co-resident in a single organism [9, 10]. Distrib-

uted metabolism likely reflects efficiency gains from specialization and division of labor [11].

This partitioning, however, puts component steps of critical ecosystem processes under differ-

ent selective pressures, according to which organism encodes them. Temporal dynamics of

diversity and abundance may, therefore, vary significantly across component steps.

Nitrogen cycling is an excellent and ubiquitous example of a complex, distributed process.

A generalized model of the dominant N processes in the HZ (Fig 1) includes conversion of

NH4
+ to NO3

- (i.e., nitrification) in oxic regions, which is coupled to carbon (C) fixation, and

reduction of NO3
- coupled to the oxidation of organic carbon (OC) in anoxic regions. This lat-

ter process of denitrification yields N2 gas, removing N from the system. Nitrite (NO2
-) is an

intermediate common to both processes. While complete denitrifier organisms, such as Pseu-
domonas aeruginosa and Parcoccus denitrificans, have been isolated and described, it has long

been suspected that many organisms encode partial pathways and can act in concert to cycle

nitrogen between its reduced and oxidized forms [12]. More recently, genome sequence data

from both isolates and environmental samples has shown that many organisms encode various

subsets of denitrification activities [9, 13]. Several previous studies have investigated the abun-

dance and distribution of nitrogen cycling activities in environmental microbiomes [14–19],

none yet have specifically tracked the diversity of individual gene families that comprise nitro-

gen transformation pathways across fluctuating environmental conditions.

Here we take advantage of seasonal shifts in hydrology and aqueous geochemistry within a

hyporheic zone system that have been shown to alter microbial community structure [20, 21],

and examine the temporal dynamics of diversity within major N-cycling genes encoding steps

in nitrification and denitrification. Some component steps consistently showed very low diver-

sity, while others displayed significant temporal variation in the level of diversity and turnover

in the contributing phylotypes across divergent environmental conditions. The observed het-

erogeneity through time and across component steps indicates that predictive ecosystem

models that explicitly represent microbial communities should account for variation in and

dynamics of within-gene diversity of component steps of key processes.

Results

Seasonal environmental changes

Sediment communities from the hyporheic zone of the Columbia River along the Hanford

Reach were sampled from April 30, 2014 to November 25, 2014, using sand packs deployed at

three equivalent hyporheic zone locations approximately 100m apart along the river (T2, T3,

and T4) for six weeks at a time [22]. Water chemistry data taken in parallel at the three sites

showed similar, yet not identical temporal patterns. A mid-year shift in hydraulic regime was

observed, with higher influx of surface water in the spring resulting in higher levels of dis-

solved organic carbon (measured as non-purgeable organic carbon) (NPOC) (0.8–1.0 mg/L)
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(Fig 2A) and low levels of nitrate (10–15 μM) (Fig 2B), transitioning to a more groundwater-

influenced condition in the fall, increasing the nitrate concentrations (up to 300 μM) and

decreasing NPOC concentration (down to<0.4 mg/L). Because the groundwater in this sys-

tem is oxic, the DO concentration was fairly constant for the duration of sampling, ranging

from ~60–100% saturation (Fig 2C). The water temperature followed expected seasonal trends,

warming in the summer and cooling in the fall (Fig 2D). Sampling times were categorized as

early (Apr 30 through Jul 22) or late (Sep 2 through Nov 30), based on these observations.

Organism-level diversity

Organismal diversity was measured by 16S rRNA V4 amplicon sequence analysis and extrac-

tion and assembly of rplB gene sequences from the metagenomic data sets (Fig 3). As reported

previously [20], species richness correlated best with water temperature. Diversity, as mea-

sured by the inverse Simpson statistic, was high and mirrored species richness, suggesting high

evenness. Two late samples, October 14 and November 25, showed high richness but low

diversity, driven by a bloom of Bacteroidetes species.

Diversity of N-cycling genes

The temporal phylogenetic profile of each gene of interest was examined to elucidate the rich-

ness and diversity of genes comprising the nitrification and denitrification processes. Metage-

nomic reads containing sequence from the genes of interest were extracted from the total data

set and assembled to yield partial and full-length gene sequences (Supplementary Data 1). Phy-

logeny was determined for each assembled sequence, and phylotypes were defined at 90%

amino acid sequence identity, since that level of similarity is typical between organisms of the

same genus [23]. Richness was quantified for each gene as the number of distinct phylotypes

identified. It was expected that detectable gene diversity would be considerably lower than

organismal diversity, since 1) these activities are encoded by a subset of organisms, and 2) the

assembly protocol is less sensitive than amplicon analysis, and thus only genes from abundant

organisms are likely to be detected. The relative abundance of each phylotype was estimated

Fig 1. Major nitrogen transformations in the hyporheic zone (HZ). Upper layers (closer to the surface channel) of

the hyporheic zone contain more oxygen (O2) and organic matter (OM). Under these conditions, nitrification (orange

arrows) occurs. Ammonium (NH4
+) is released from by OM breakdown and converted to nitrate (NO3) through

hydroxylamine and nitrite (NO2
-) intermediates. This process has been linked with carbon fixation, increasing organic

carbon (OC). Aerobic respiration depletes O2, causing deeper regions of the HZ to become hypoxic or anaerobic.

Under these conditions, denitrification (blue arrows) converts nitrate to nitrogen gas (N2) through nitrite, nitric oxide

(NO) and nitrous oxide intermediates, and provides an electron acceptor for catabolism of OM.

https://doi.org/10.1371/journal.pone.0228165.g001
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from the summed assembly coverage of the member genes. Temporal diversity dynamics

(turnover) were assessed by calculating the mean variance of relative abundance for phylotypes

across time.

Distinct diversity and turnover patterns were observed for each gene. The narG and nosZ
genes (Figs 4 and 5, summarized in Table 1), encoding the first and last steps of the denitrifica-

tion process, respectively, had higher phylotype richness than the other nitrogen cycle genes

examined (for nosZ vs norB, Welch’s t-test p-value = 0.0014, df = 13.587), and their phylotype

profiles had equivalent stability (Levene test p-value = 0.1277). While the nirK/nirS (distinct

types of nitrite reductase) (Fig 6) and norB family (nitric oxide reductase) (Fig 7) had lower

richness, their phylotype profile variability was significantly higher than for narG (Levene test

p-values = 0.00003, 0.0001, respectively), and were near significance for nosZ (Levene test p-

values = 0.0113, 0.0609 for nosZI and nosZII). Both genes encoding activities involved in nitri-

fication had extremely low phylotype diversity, amoA (ammonia oxidase) with 2 phylotypes,

one bacterial and one archaeal, and nxrA (nitrite oxidase alpha subunit) having 7 observed,

but one overwhelmingly dominant phylotype (Fig 8A). The low richness for amoA (Fig 8B)

exaggerates the phylotype abundance variance values, thus we consider the low richness to be

the significant aspect of the amoA gene.

Nitrogen gene diversity was largely dependent upon a temporally consistent pool of taxa.

An examination of cumulative phylotype richness (Fig 9A) showed an increase in the number

phylotypes detected for almost all the target gene families in the spring, with limited increase

Fig 2. Water chemistry and temperature of sampled sites. Piezometer T2, light gray; piezometer T3, dark gray;

piezometer T4, black. For comparison, data for adjacent river water is presented (blue). The vertical dotted line

indicates the date at which the hyporeheic zone hydraulic regime changes from surface water intrusion to groundwater

discharge.

https://doi.org/10.1371/journal.pone.0228165.g002
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thereafter. Importantly, cumulative richness curves generated using unique sequences, rather

than phylotypes, have equivalent shape (data not shown). An analysis of cumulative diversity

(inverse Simpson) showed that the increase in the number of phylotypes had a proportional

effect on diversity except in the cases of narG, where the large increase in phylotypes only

translates to a modest increase in diversity, and nxrA where the small increase in richness had

no effect on diversity (Fig 9B). This was due to the additional phylotypes having low relative

abundance. The nirKS family showed an initial decrease in diversity despite an increase in the

number of phylotypes, and a subsequent increase in diversity with no further increase in rich-

ness. This increase in diversity is due to increasing evenness amongst the various phylotypes

present. The nosZ family was the only one to demonstrate consistent increases in diversity due

to introduction of new phylotypes.

Fig 3. Sediment microbial community continuously changes across the year. Distance-decay plot of all 16S rRNA amplicon data (“16S”),

amplicon data from only site T4 (“16S_T4”), and rplB genes (“rplB”) assembled from all metagenomes.

https://doi.org/10.1371/journal.pone.0228165.g003
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Abundance of N-cycling genes

To assess temporal changes in the overall abundances of genes involved in denitrification

and nitrification, the sets of all (i.e., unassembled) metagenomic reads containing sequence

from the genes of interest were enumerated, and the representation of each gene within the

Fig 4. NarG phylotype distributions. Heatmap indicates the relative contribution of each phylotype (clustered at 90%

AAID) to the total count; phylogenetic tree to the left of the heatmap demonstrates the diversity of phylotypes present.

Gray shading indicates no observation of the phylotype at that timepoint.

https://doi.org/10.1371/journal.pone.0228165.g004

Fig 5. NosZI and NosZII phylotype distributions. See Fig 4 for description of display.

https://doi.org/10.1371/journal.pone.0228165.g005
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community was normalized across samples using counts of the conserved, single-copy rplB
gene as a proxy for number of individuals sampled. Although gene abundances were relatively

constant over time, the average abundances differed widely between genes. The narG gene, the

first step in denitrification, was observed to be in 25–30% of the population, while the nirK/
nirS was represented in 35–45% of the population, and norB in 14–18% (Fig 10). Nitrous oxide

reductase genes were present in ~25% of the populations, however it is of note that the domi-

nant form was nosZII (also referred to in the literature as the ‘atypical nosZ’), a distinct family

of nitrous oxide reductases typically found in non-denitrifying organisms [13, 24, 25]. Nitrifi-

cation genes showed more of a seasonal shift in abundance. The amoA gene, summing both

Table 1. Observed richness and abundance variance.

Gene family Phylotype richness Mean abundance variance
narG 52 0.000183

norB 31 0.000624

nirKS 23 0.001095

nosZ 51 0.000395

nxrA 7 0.000047

amoA 2 0.089783

rplB 124 0.000112

https://doi.org/10.1371/journal.pone.0228165.t001

Fig 6. NirK and NirS phylotype distributions. See Fig 4 for description of display.

https://doi.org/10.1371/journal.pone.0228165.g006

Fig 7. NorB phylotype distributions. See Fig 4 for description of display.

https://doi.org/10.1371/journal.pone.0228165.g007
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the bacterial and archaeal versions, showed a low constant abundance of ~5% in early time

points, and increased up near 30% late in the year. Unexpectedly, nxrA showed little correla-

tion with amoA, displaying a trend of gradual increase, ranging from 5% to 18%, early, and

constancy late.

Environmental drivers

Regression analysis was performed to determine which, if any, of the environmental parame-

ters measured was associated with changes in diversity for the genes of interest. Water temper-

ature, dissolved oxygen (DO), dissolved organic carbon (measured as non-purgeable organic

carbon, NPOC), and chloride (Cl-) measurements were used. Cl- is a conservative indicator of

the ratio of surface- to groundwater content in the hyporheic zone of the study system [26].

Other measured constituents, NO3
- and SO4

- had strong positive correlations with Cl- (S1

Fig). Correlations between diversity (inverse Simpson), richness, and abundance were tested

Fig 8. A) NxrA and B) AmoA phylotype distributions. See Fig 4 for description of display.

https://doi.org/10.1371/journal.pone.0228165.g008

Fig 9. Cumulative diversity measures over time. Phylotype richness (A) and the inverse Simpson statistic (B) were calculated

cumulatively (i.e., combining data from each time point with all previous timepoints) for each gene or functional gene class (nirK and

nirS counts were combined; archaeal and bacterial amoA types were combined). The data is presented as the difference from the initial

(April 30) state. Most genes’ richness values plateau, indicating sample-to-sample changes in diversity are within a finite pool of

phylotypes. Diversity increase indicates either introduction of new phylotypes or increases in evenness across existing phylotypes. The

decreases in diversity observed for amoA and nirKS are driven by changes in relative abundance resulting in a decrease in evenness.

https://doi.org/10.1371/journal.pone.0228165.g009
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against the environmental parameters. The strongest relationships were with groundwater

content (using Cl- as a proxy), with denitrification genes narG (R2 = 0.38; p = 0.04) and nosZ
(R2 = 0.50; p = 0.02) increasing in diversity (S2 Fig), nitrification genes amoA (R2 = 0.41;

p = 0.03) and nxrA (R2 = 0.44; p = 0.03) increasing in abundance (S3 Fig), and narG (R2 =

0.47; p = 0.02) decreasing in abundance. Groundwater showed weaker correspondence with

increasing richness of nxrA (R2 = 0.29; p = 0.09), decreasing richness of nirKS (R2 = 0.27;

p = 0.10) (S4 Fig), and decreasing abundance of norB (R2 = 0.35; p = 0.06). NPOC had stron-

gest correlations with the nitrification genes, showing a negative relationship with nxrA diver-

sity (R2 = 0.31; p = 0.08), and a positive relationship with nirKS richness (R2 = 0.39; p = 0.04)

and narG abundance (R2 = 0.30; p = 0.08). Temperature had a significant negative relationship

with nxrA diversity (R2 = 0.33; p = 0.08) and richness (R2 = 0.45; p = 0.03).

Fig 10. Per-capita abundance of denitrification and nitrification genes. Reads per kilobase of gene length per million reads (RPKM) for each

gene was normalized against the RPKM for the rplB gene as a proxy for the number of individuals sampled. (A) Denitrification genes. (B)

Nitrification genes.

https://doi.org/10.1371/journal.pone.0228165.g010
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Discussion

Shade et al., in their review of microbial resistance and resilience, suggest that there is “no

‘one-size fits all’ response of microbial diversity and function to disturbance.” [8]. While this

perspective is undoubtedly true, it leaves open the possibility that there are general patterns or

rules that govern particular subsets or components of microbial communities. Here we begin

to look for such patterns at a deeper level than previously examined by exploring dynamics in

gene abundance and diversity within important biogeochemical processes in response to sea-

sonal environmental changes. Building from recent work showing that component steps in

biogeochemical processes are encoded by separate microbial taxa [9, 10], we hypothesized that

within-gene diversity varies between component steps, and further that temporal dynamics of

diversity would vary between steps. Our metagenomic data from a dynamic groundwater-sur-

face water mixing zone were consistent with this hypothesis and demonstrated that within-

gene diversity, and the dynamics of that diversity, are variable across genes. This outcome

suggests that a community’s taxonomic diversity or the abundance or diversity of any single

(proxy) gene is not be a reliable predictor of stability in functional potential for multi-step bio-

geochemical processes, and that portions of the community that encode component steps with

low within-gene diversity may be the most critical when considering potential decreases in

function. Therefore, there is a need to shift the focus of analyses from taxonomic diversity or

‘representative’ gene abundances to a comprehensive understanding of within-gene diversity

and dynamics across processes. Below we place these discoveries in context of previous work

and point toward how they can be used to improve predictive models of system function.

Diversity dynamics of nitrification genes

The nitrification process showed low diversity for both steps examined, leading to the possibil-

ity that these activities are susceptible to loss or diminished function. Nitrification was origi-

nally described as a cooperative process, requiring an ammonia oxidizing organism that

produces nitrite and a nitrite oxidizing organism that converts the nitrite to nitrate [27].

Recently, organisms have been identified that have both activities (comammox) [28]. The

range of organisms known to encode nitrification activities is narrow, although it does include

both Bacteria (Nitrosomonas and Nitrospira) and Archaea (Thaumarchchaeota). The observed

abundance of nitrifying organisms in sediment communities, both freshwater and marine,

suggests nitrification is an important activity in the subsurface environment [18, 29, 30]. The

limited taxonomic distribution of nitrification activities in the hyporheic community was

expected, however the low diversity, one phylotype for nxrA, and one sequence apiece for the

bacterial and archaeal amoAs is extreme. This lack of diversity suggests these activities could

be unstable, given observations demonstrating that community-level functional stability

increases with diversity [7, 31, 32]. However, we observed very stable abundance of these

organisms across the seasonal shift in water chemistry, suggesting that the organisms encoding

these activities are well adapted to the range of environmental conditions historically experi-

enced by this community. Any extraordinary shift in biotic (e.g., viruses, predation) or abiotic

(e.g., redox potential, temperature) conditions that selects against the small number of taxa

involved in nitrification, however, could quickly degrade the community’s nitrification poten-

tial. With no other apparent organisms available to supplement or take over this role, this fun-

damental service could be degraded or lost from this community with unknown repercussions

for the microbial community and the larger ecosystem [33, 34]. Recently, nitrifiers, and in par-

ticular Archaeal nitrifiers, have been shown to be active in carbon fixation in freshwater ben-

thic sediments [35]. Thus, loss of nitrifiers could impact coupled carbon-nitrogen cycling in

the subsurface and associated river corridors.

Gene-level diversity dynamics in microbial systems
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Diversity dynamics of denitrification genes

Denitrification genes have been identified in a broad range of taxa [36], and as such, our

expectation was that within the hyporheic zone community there would be a high diversity

across all component steps [37, 38]. While we did observe considerable overall abundance of

all genes, the levels of richness for the genes representing the individual activities varied, rang-

ing from 52 phylotypes for nitrate reduction (narG) to 23 phylotypes for nitrite reductase

(nirK and nirS). This observation supports the concept that denitrification genes are distrib-

uted among members of the community as partial pathways or individual genes [14, 15]. Fur-

ther, there was a surprising distribution of nitrous oxide reductase genes, with the type II form

(nosZII), which is typically found in non-denitrifying organisms [25], having much greater

abundance and richness (49 phylotypes) than the type I form (nosZI, 2 phylotypes).

Temporal variance of within-gene diversity for genes involved in both nitrification and

denitrification demonstrates that the organisms encoding these activities are sensitive to differ-

ent ecological selection pressures and thus different strategies are required to maintain func-

tional potential in response to perturbation. For genes with high phylotype richness, high

temporal abundance variance indicates a changing phylotype profile (nirKS, norB). These

functions may be maintained through resilient microbial taxa that recover rapidly from envi-

ronmental change. Conversely, low temporal variance (narG, nosZ) indicates a stable phylo-

type profile. These functions are maintained through resistant taxa that persist across a broad

range of environmental conditions, with the possibility that the other low abundance phylo-

types are capable of supplanting them should they fail under different conditions.

It is notable that while all genes associated with denitrification had high phylotype richness

(in contrast to nitrification genes), the genes associated with intermediate reactions had higher

temporal diversity variance than narG (Table 1), which encodes the initial step in denitrifica-

tion (i.e., nitrate reduction). One explanation for the observed differences could be that there

are different levels of competition for the substrates fueling each activity. Intermediate sub-

strates nitrite and nitric oxide may be produced slowly and/or consumed quickly, especially

considering there are multiple cellular processes for which they are intermediates and they are

both toxic to cells. Supporting this contention, nitrite is typically undetectable in samples from

this location, while nitrate is readily detectable [21]. Low availability would lead to high sub-

strate competition, which could result in the increased phylotype turnover observed in nirK,

nirS and norB genes. Modeling the redundancy provided to a process by within-gene diversity

thus requires an understanding of temporal variation in the selective pressures for each gene

involved.

Influence of seasonal changes in hydrogeochemsitry

Seasonal changes in groundwater to surface water ratios appear to be a major influence on N-

cycling functional potential in microbial communities. Increase in groundwater content corre-

sponded to increasing per-capita abundance of nitrification genes and decreasing abundance/

increasing diversity of denitrification genes. The nirKS and norB gene families, which dis-

played similar high phylotype turnover behavior, were not similar in their response to the

environmental parameters measured, with nirKS showing a decrease in richness in response to

groundwater while norB showed a decrease in abundance. The narG and nosZ gene families,

which showed more stable profiles, both increased in diversity in response to groundwater,

however, nosZ did so through increased richness, while narG likely gained evenness through

reduced abundance of dominant phylotypes. Organic carbon (NPOC) had a much weaker

association with gene-level metrics, relative to groundwater. A group of co-occurring organ-

isms with a negative correlation to groundwater has been reported in this sediment system
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[21]. The group is dominated by Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and

Planctomycetes, the same taxa that encode nearly all of the identified denitrification genes.

Strong homogenous selection was shown to be the mechanism structuring this group [20].

Taken together, these data suggest that some factor other than carbon that is within the

groundwater is the selective force driving the diversity dynamics of these organisms carrying

N-cycling genes. A likely candidate is the N content of groundwater, which is significantly

higher than that of the surface water [26].

Gene diversity and process resilience

Conceptualizing and studying diversity within individual gene families is a departure from the

contemporary perspective that largely focuses on organismal diversity or abundances of gene

families. Variation in diversity across component steps of key biogeochemical processes and

the dynamics of within-gene diversity in response to environmental change is therefore unex-

plored. This hampers our ability to predict ecosystem responses to future environmental

changes. To illustrate the importance of diversity across individual component steps of biogeo-

chemical processes, we use the analogy of an electrical circuit (Fig 11). Continuity from one

step to the next is required for the full process/circuit to function. To preserve integrity of the

circuit there is parallelization within each component step, whereby there are multiple options

for completing a given step (Condition A). In a biological context, this manifests as multiple

organisms encoding the same activity through different alleles of the same gene. Under differ-

ent environmental conditions, various options may not be available either because the condi-

tions are not favorable to the expression or operation of the gene, or the organism encoding

that gene is eliminated from the community. The function is maintained by the availability or

Fig 11. Circuit diagram of a metabolic pathway. Steps in series convert substrates (S), to various intermediates (I1, I2), to a product (P). Redundancy is

represented by parallel paths, which can be regulated individually (denoted by arrow gates). Under conditions A and B, product is produced, but by different

paths, whereas under condition C, although the blue and green steps are active, neither of the orange steps are, preventing production of I2 and P.

https://doi.org/10.1371/journal.pone.0228165.g011
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introduction of alternates that can function under the new conditions (Condition B). Condi-

tions may exist, however, under which no options for a given component step are available to

the system, for example if an anaerobic system was exposed to sufficient oxygen to inhibit

nitrous oxide reductase activity. This scenario will prevent the full biogeochemical process

(e.g., denitrification) from completing, at least temporarily, even if some component steps are

functioning (Condition C). Steps with low within-gene diversity are more likely to experience

environmental conditions that cause all options to be eliminated. Just as a chain is only as

strong as its weakest link, the ability of a metabolic pathway to continue functioning is deter-

mined by the component step with the lowest diversity.

We propose that accounting for the influence of environmental variation on realized bio-

geochemical rates in predictive models should connect environmental conditions to the

dynamics of component steps. Doing so would allow models to account for variation in the

susceptibility of each step to perturbation, based on within-gene diversity and dynamics. For

example, reaction network models could represent the combined influence of gene-level

abundance and diversity on continued function during and after perturbation. Recent

modeling developments open up such opportunities, such as Song et al.’s reaction network

model that explicitly represents control of enzyme expression at each step along a given bio-

geochemical pathway [39]. This model could be easily modified to represent different levels

of diversity and abundance of gene phylotypes across component steps. Numerical experi-

ments using the resulting model could comprehensively explore the sensitivity of biogeo-

chemical function to among-step variation in within-gene diversity and dynamics. We also

contend that there is a need to incorporate within-gene diversity into our conceptualization

of diversity and focus on understanding the ecological processes governing diversity within

individual genes. Merging such ecological knowledge with mechanistic biogeochemical

models should improve our ability to predict biogeochemical function under future environ-

mental conditions.

Experimental procedures

Sampling

Sediment communities were captured using sand packs incubated within piezometers as

described [20]. Briefly, 1.2 m, fully-screened, stainless steel piezometers (5.25 cm inner diame-

ter) (S5a Fig) were deployed along the margin of the Columbia River at approximately 46˚ 22’

15.80”N, 119˚ 16’ 31.52”W. Sand packs composed of ~80 cm3 of locally-sourced medium

grade sand (>0.425mm <1.7mm) packed into 2 x 4.5”, 18/8 mesh stainless steel infuser

plugged with Pyrex fiber glass (S5b Fig) were sterilized by combustion at 450˚C for 8hr and

then deployed in pairs for six week incubations collected at three week intervals from April 30,

2014 to November 25, 2014. Upon retrieval, paired sand packs were combined and homoge-

nized. A ~145 mL subsample was flash-frozen and transported on dry ice back to the labora-

tory for metagenomic analysis. Aqueous samples were taken as previously described [20].

Briefly, at each piezometer, peristaltic pumps and manifolds were purged for 10–15 minutes.

Following the purge, water was pumped through 0.22 μm polyethersulfone Sterivex filters for

30 minutes. Filtered water was used for water chemistry analysis.

Sampling equipment was installed after required consultations and permits were obtained

from appropriate state and federal agencies, including the Department of Energy’s Pacific

Northwest Site Office, the U.S. Fish and Wildlife Service, the National Marine Fisheries

Service, the U.S. Army Corps of Engineers, and the Washington Department of Fish and Wild-

life. All federal requirements under the National Environmental Policy Act were followed.
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Water chemistry

Water chemistry was determined as previously described [20]. Briefly, water temperature was

measured with a handheld meter (Ultrameter II, Myron L Co Carlsbad, CA). A YSI Pro ODO

handheld with an optical DO probe (YSI Inc. Yellow Springs, OH) was used to measure dis-

solved oxygen. NPOC was determined by the combustion catalytic oxidation/NDIR method

using a Shimadzu TOC-Vcsh with ASI-V auto sampler (Shimadzu Scientific Instruments,

Columbia, MD). Samples were acidified with 2 N HCl and sparged for 5 minutes to remove

DIC. The sample was then injected into the furnace set to 680˚C. Nitrate concentrations were

determined on a Dionex ICS-2000 anion chromatograph with AS40 auto sampler. A 25-min-

ute gradient method was used with a 25-μL injection volume and a 1 mL/min flow rate at 30˚C

(EPA-NERL: 300.0).

DNA extraction

Genomic DNA was prepared from piezometer T4 sediment samples as previously described

[20]. Briefly, to release biomass, thawed samples were suspended in 20mL of chilled PBS /0.1%

Na-pyrophosphate solution and vortexed for 1 min. The suspended fraction was decanted to a

fresh tube and centrifuged for 15’ at 7000 x g at 10˚C. DNA was extracted from the resulting

pellets using the MoBio PowerSoil kit in plate format (MoBio Laboratories, Inc., Carlsbad,

CA) following manufacturer’s instructions with the addition of a 2-hour proteinase-K incuba-

tion at 55˚C prior to bead-beating to facilitate cell lysis. Subsamples of each preparation were

used for 16S rRNA amplicon sequencing and shotgun metagenomic sequencing.

Sequencing

Genomic DNA purified from sandpack samples was submitted to the Joint Genome Institute

under JGI/EMSL proposal 1781 for paired-end sequencing on an Illumina HiSeq 2500

sequencer. Results from the sequencing are presented in S1 Table. Data sets are available

through the JGI Genome Portal (http://genome.jgi.doe.gov). Project identifiers are listed in S1

Table.

For the 16S rRNA amplicon analysis, the protocol developed by the Earth Microbiome

Project (http://press.igsb.anl.gov/earthmicrobiome/emp-standard-protocols/16s/) was fol-

lowed, with the exception that the twelve base barcode sequence was included in the forward

primer. Amplicons were sequenced on an Illumina MiSeq using the 300 cycle MiSeq Reagent

Kit v2 (http://www.illumina.com/) according to manufacturer’s instructions.

Metagenomic analysis

To quantitate gene families of interest, hidden Markov models (HMMs) were obtained or built

and searched against raw metagenomic reads. HMMs used in this study are listed in Table 2.

HMMs were searched against raw reads using MaxRebo (Lee Ann McCue, unpubl.), which

translates each read in six frames, and searches the translations against the target HMM(s),

using HMMer [40] on a distributed, high-performance computing framework. Output was

screened for reads with a significant score (e-value� 1e-25) against the HMM. Raw counts

were converted to RPKM (reads per kilobase of gene length per million reads) using the HMM

length x 3 as the gene length. Results from forward and reverse reads were averaged and nor-

malized against the summed RPKMs of the rplB and rplB_arch models. Individual genes of

interest were assembled from the combined metagenomic datasets using the Xander assembler

[41] and the HMMs listed in Table 2 and associated required files. Resulting contigs were clus-

tered at 90% amino acid identity (Supplementary Data 1) to define phylotypes. Phylogeny was
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assessed by aligning protein sequences with mafft v7.164b [42, 43] and constructing approxi-

mated maximum-likelihood trees using FastTree v2.1.9 [44]. Phylotype abundance profiles

were determined by searching individual metagenomic read sets against the resulting gene

contigs and calculating RPKM values and normalizing against the summed phylotype RPKM

for the gene. Bray-Curtis dissimilarity between samples for each gene was calculated using the

R package vegan [45], and resulting values were used to generate a boxplot.

Community analysis

Amplicon data used was from Graham et al., 2016b. Bray-Curtis distance was determined as

described below, and plotted using R.

Statistics

Bray-Curtis dissimilarity, as implemented in the R package vegan [45], was used to measure

beta diversity. Values were averaged for both the total dataset and the T4 dataset alone. Early

(n = 6) versus late (n = 5) gene abundance comparisons were tested for significance using the

Mann-Whitney-Wilcoxon test as implemented in R v.3.3.2 (https://www.r-project.org). For

turnover heatmaps, assembled sequences were searched against the read set to estimate indi-

vidual abundances. Sequences were then clustered into phylotypes at 90% identity, and abun-

dances summed. The relative abundance of each phylotype was then determined by dividing

its abundance by the summed abundance of all phylotypes of the gene in question. Trees were

determined from nucleic acid sequence alignments (mafft v) using the maximum-likelihood

approach implemented in FastTree. Inverse Simpson statistic for the assembled sequences was

calculated cumulatively for each gene at each time point, also using the vegan package. Linear

regressions and associated R2 and p-values were calculated in R v3.3.2.

Table 2. HMMs used in this study.

Gene HMM Source

Nitrate reductase, alpha subunit (narG) narG FunGene1

Cu-containing nitrite reductase (nirK)

Clade I nirK1 PNNL2

Clade II nirK2 PNNL

Fe-containing nitrite reductase (nirS) nirS FunGene

Nitric oxide reductase (norB)

Copper norB_cNor FunGene

quinone norB_qNor FunGene

Nitrous oxide reductase

nosZI nosZ FunGene

‘non-denitrifying’ (nosZII) nosZ_a2 FunGene

Ammonia monooxygenase

bacterial amoA_AOB FunGene

archaeal amoA_AOA FunGene

Nitrite oxidoreductase, alpha subunit nxrA-1 PNNL

Ribosomal protein RplB

bacterial rplB FunGene

archaeal rplB_arch PNNL

1 Available at https://github.com/rdpstaff/Xander_assembler
2 Available at https://github.com/wichne/Xander_files

https://doi.org/10.1371/journal.pone.0228165.t002
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Supporting information

S1 Fig. Environmental parameter correlation. Temperature (Temp), dissolved oxygen (DO),

chloride ion concentration (Cl), sulfate concentration (SO4), nitrate concentration (NO3) and

dissolved organic carbon (measured as non-purgeable organic carbon, NPOC) measurements

were taken for all samples. Pair-wise correlation of observations were performed to determine

the independence of the parameters.

(PDF)

S2 Fig. Environmental parameter vs diversity (as measured by the inverse Simpson statis-

tic) linear regression analysis. Blue borders: p< 0.10; Orange borders: p< 0.05.

(PDF)

S3 Fig. Environmental parameter vs gene abundance linear regression analysis. Blue bor-

ders: p< 0.10; Orange borders: p< 0.05.

(PDF)

S4 Fig. Environmental parameter vs richness linear regression analysis. Blue borders:

p< 0.10; Orange borders: p< 0.05.

(PDF)

S5 Fig. Sampling setup. (a) Stainless steel piezometers (5.25 cm inner diameter) that were

fully-screened for 1.2 m were driven into the river bottom sediment. (b) 4.5” stainless steel

infusers (18/8 mesh) were packed with ~80 cm3 of locally-sourced medium grade sand

(>0.425mm <1.7mm) and plugged with Pyrex fiber glass. Paired sand packs were deployed

as shown in panel a) for six week incubations collected at three week intervals from April 30,

2014 to November 25, 2014.

(PDF)

S1 Table. Metagenomic sequence data sets.

(PDF)
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