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ABSTRACT
The accumulation of RNA sequencing (RNA-Seq) gene expression data in recent

years has resulted in large and complex data sets of high dimensions. Exploratory

analysis, including data mining and visualization, reveals hidden patterns and

potential outliers in such data, but is often challenged by the high dimensional

nature of the data. The scatterplot matrix is a commonly used tool for visualizing

multivariate data, and allows us to view multiple bivariate relationships

simultaneously. However, the scatterplot matrix becomes less effective for high

dimensional data because the number of bivariate displays increases quadratically

with data dimensionality. In this study, we introduce a selection criterion for each

bivariate scatterplot and design/implement an algorithm that automatically scan

and rank all possible scatterplots, with the goal of identifying the plots in which

separation between two pre-defined groups is maximized. By applying our method

to a multi-experiment Arabidopsis RNA-Seq data set, we were able to successfully

pinpoint the visualization angles where genes from two biological pathways are the

most separated, as well as identify potential outliers.
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Keywords Scatterplot matrix, Group separation, Discriminative analysis, Phytohormone signaling
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INTRODUCTION
High throughput RNA sequencing (RNA-Seq) has been widely adopted for quantifying

relative gene expression in comparative transcriptome analysis. In recent years, the increasing

number of RNA-seq studies on themodel plantArabidopsis thaliana have resulted in an ever-

accumulating amount of data from multiple RNA-Seq experiments. In this article, we will

develop tools for the exploration and visualization of such multi-experiment data.

For examining treatment effects of individual genes under multiple conditions and

across multiple experiments, a vector summarizing the differential expression (DE) results

under different treatment conditions seems adequate. To visualize the DE profile under

different treatments, a line plot can be used. However, since genes work interactively in all

biological processes, it is of interest to examine expression patterns of groups of genes,

through which the genes’ biological context can be better understood. In light of this,

researchers often would like to both identify the general trend and pinpoint individual
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aberrations in the expression profile of genes belonging to the same biological pathway, as

well as compare the profiles between multiple pathways.

When multiple genes are being examined together, the line plots are less effective for

visualizing DE or expression profiles: The lines often cross each other, making it difficult

to identify the grouping and understand the behavior of individual genes. One common

alternative visualization method is the scatterplot, which shows expression level under

two treatment conditions at a time. Scatterplots are effective in showing clustering

patterns and outliers, greatly assisting with data exploration (Elmqvist, Dragicevic &

Fekete, 2008). For high dimensional data, one has the option of using the scatterplot

matrix, in which each panel is the scatterplot for the corresponding pair of features.

However, manual scanning of all possible pairwise scatterplots can be arduous or even

fruitless at times, because the number of possible visualization angles increases

quadratically with respect to data dimensionality ( p
2

� �
possible angles).

In this paper, we propose to automatically search for the best low dimensional

visualization angles (two-, three-, or four-dimensional) based on a context-sensitive,

numeric measure of importance, thereby reducing the amount of effort invested in

scatterplot scanning. In our study, we hope to explore the patterns and differences in gene

expression profile between two phytohormone signaling pathways, and therefore, we

would like the top ranked scatterplots to contain as much information as possible on

pathway classification. We thus define such an importance measure for the dimension

subsets such that the scatterplots will show the largest separation between different

pre-defined groups in the data set.

For this study, we will look for feature subsets upon which the pathways ethylene

(ET) and jasmonic acid (JA) are the most separated, and quantify the between-group

separation by calculating the repeated cross-validation (RCV) error of misclassification

using MclustDA (Fraley & Raftery, 2002), a model-based classification method. In Fig. 1,

we show one of the top ranked 2-subset feature combinations that give the greatest

separation between two pathways, as well as subset giving the smallest separation.

Comparing the two scatterplots, we can observe that the two pathway groups in Fig. 1A

are more visually distinguishable than those in Fig. 1B.

The rest of the paper is formatted as follows: “Data Description and Processing”

outlines the collection and processing of the data and information on the experiments and

biological pathways. The statistical methods are described in “Methods.” In “Results,” we

list the results obtained by applying our method to the collected data. Finally, we state our

conclusion and discuss limitations and possibilities for future work in “Conclusion.”

Additional proofs and graphs are included in the Appendix.

DATA DESCRIPTION AND PROCESSING
Collecting experimental data
In this study, we use a portion of the data collected and processed by Zhuo et al. (2016)

The original data were acquired from the National Center for Biotechnology Information

website (www.ncbi.nlm.nih.gov) and processed through a customized assembly pipeline

to obtain a matrix of counts for genes in samples. All datasets originate from RNA-Seq
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experiments on the model plant A. thaliana, with treatment conditions (including genetic

variants) varying between experiments. Tissue types in the original data include leaf, seed,

and multi-tissue. The number of treatments/factor levels also vary among the experiments.

For this article, we will focus on experiments conducted on the leaf tissue of

Arabidopsis, which include a total of five datasets. The Gene Expression Omnibus (GEO)

accession numbers (which can be used to directly search for the experiment/dataset

information) are available as part of the meta-data, and the assembly pipeline that

produced the read count matrix is described in detail in (Zhuo et al. 2016). We have

included some basic information on the experiments in Table 1.

Estimating log fold changes
Let cij be the raw count of RNA-Seq reads mapped to gene i in biological sample j. For each

gene i, to assess gene expression, we often consider the relative read frequencies cij/Nj where

Nj is the total number of reads mapped to sample j. Nj can vary greatly across samples. A

more subtle issue is that Nj can be significantly influenced by a few genes with extremely

high read counts. To address this issue, Anders & Huber (2010) proposed to normalize Nj’s

by multiplying them with so-called normalization factors Rj’s. Using their method, Rj’s are

estimated such that the median fold change (over all genes i) will be one between each

column of normalized relative frequencies, cij/NjRj, and a pseudo column, ci0/N0R0 (for each

gene i, ci0 is the geometric mean of cij over all samples j = 1, ..., n, N0 is the column total of

ci0, and see Zhuo et al. (2016) for a formula for R0 and other details). In Zhuo et al. (2016),

we identified a set of 104 genes that were shown to be relatively stably expressed across all

biological samples in a collection of Arabidopsis RNA-Seq experiments (including the five

experiments we use in this study). In this paper, we used these 104 genes as a reference gene

Figure 1 Scatterplots of two-dimensional feature subsets reflecting maximum (A) and minimum (B)

group separations. Dashed-line square marks ±1 range from the origin. Different classes distinguished

with color. Ellipses correspond to component mean and covariance fitted by MclustDA. Treatment i-j

represents the jth treatment-control contrast in experiment i.

Full-size DOI: 10.7717/peerj.5199/fig-1
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set to compute the normalization factors. With the normalization factors Rj estimated this

way, the median fold change in normalized relative frequencies over these 104 genes will be

one between any sample j and the pseudo sample.

With these estimated normalization factors Rj, we fit a log-linear negative binomial

regression model to each row i (one gene) of the read count matrix (separately for each

experiment) to assess DE between treatment groups (we suppressed the subscript i in the

model equation below):

cj � Negative Binomial ð�j ; �Þ;
log �j

� � ¼ log NjRj

� �þ xj0�0 þ xj1�1 þ :::þ xjp�p;

for j = 1, ..., n, where f is the overdispersion parameter capturing the commonly observed

extra-Poisson variation in the read count data, and (xjk) is the model matrix. We chose

the model matrix such that the fitted value of b0 will correspond to the log mean

relative count of the control group, and the fitted regression coefficients b1, ..., bp will
correspond to log fold changes between a treatment group and the control group. We used

our own NBPSeq package to fit such a log-linear regression model (Di, 2015). These

estimated log fold changes (converted to base 2) from the five experiments described in

“Collecting experimental data” are the feature sets used in this paper.

Finding pathway genes
For this study, we focus our attention on the signaling pathways of two phytohormones:

ethylene (ET) and jasmonic acid (JA). As a plant hormone, ET is commercially important

due to its regulation on fruit ripening (Lin, Zhong & Grierson, 2009). JA acts as a key

cellular signal involved in the activation of immune responses to most insect herbivores

and necrotrophic microorganisms (Ballaré, 2010).

For each pathway, we first use AmiGO 2 (http://amigo.geneontology.org/amigo/landing)

to search for the list of genes involved, and then identify the subset of genes in our data set

that belong to the pathway through cross-reference. Genes with a fold change of <2 under

all treatment conditions are filtered out. The name, GO accession number, and the

number of genes in each pathway are listed in Table 2.

Table 1 Experiment information.

ID GEO accession # Title Platform Sample size

1 GSE36626 Dynamic deposition of the histone H3.3 variant

accompanies developmental remodeling of Arabidopsis

transcriptome (mRNA-Seq)

GPL11221 Illumina

Genome Analyzer IIx

4

2 GSE39463 Time-course RNA-seq analysis of the barley MLA1 immune

receptor-mediated response to barley powdery mildew

fungus Bgh in Arabidopsis thaliana

GPL13222 Illumina

HiSeq 2000

48

3 GSE48235 Four distinct types of dehydration stress memory genes in

Arabidopsis thaliana

GPL9302 Illumina

Genome Analyzer II

6

4 GSE51304 Non-CG methylation patterns shape the epigenetic

landscape in Arabidopsis

GPL13222 Illumina

HiSeq 2000

18

5 GSE54677 Transcriptional gene silencing by Arabidopsis microrchidia

homologues involves the formation of heteromers

GPL13222 Illumina

HiSeq 2000

20

Zhang and Di (2018), PeerJ, DOI 10.7717/peerj.5199 4/26

http://amigo.geneontology.org/amigo/landing
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36626
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39463
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48235
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51304
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54677
http://dx.doi.org/10.7717/peerj.5199
https://peerj.com/


In Fig. 2, we display the expression profile of genes that belong to each pathway group.

Under certain individual treatment-control contrasts (e.g., 2-3, 4-3, 5-1), there exist

observable similarities between the distribution of expression levels, while it is more

difficult to tell under other treatments.

METHODS
Mixture discriminant analysis via MclustDA
In this section, we will start by introducing a classification method named MclustDA, and

then define a measure for group separation using cross-validation (CV) results with

MclustDA. Finally, we lay out our strategy for reducing data dimensionality with the

ultimate goal of simplifying navigation of scatterplots.

MclustDA model
In discriminant analysis (DA), known classifications of some observations are used to

classify others. The number of classes, G, is assumed to be known. For probabilistic DA

methods, it is assumed that observations in class k follow a class specific probability

distribution fk(·). Let �k represent the proportion of observations in class k. According to

Bayes’s theorem, it follows that

Pðy 2 class jÞ ¼ �j fjðyÞPG
k¼1 �kfkðyÞ

;

where observation y is assigned to the most probable class.

Table 2 Pathway information.

ID Pathway name GO accession # # Genes

ET Ethylene-activated signaling pathway GO:0009873 86

JA Jasmonic acid mediated signaling pathway GO:0009867 48

Figure 2 Gene expression profile plot for pathways ET (A) and JA (B). Treatments from the same

experiment are joined by orange lines. Different experiments are joined by gray dashed lines. Feature i-j

represents the jth treatment-control contrast in experiment i.

Full-size DOI: 10.7717/peerj.5199/fig-2
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Commonly used DA methods, including Fisher’s linear discriminant analysis (LDA)

and quadratic discriminant analysis (QDA), assume a multivariate normal density for

each class:

fkðyÞ ¼ �ðyj�k;�kÞ:
The method is called LDA if the covariance matrices for all classes coincide (Sk = S for

k = 1, ..., G), and is called QDA if the class covariances are allowed to vary.

MclustDA (Fraley & Raftery, 2002), an extension and generalization to LDA and QDA,

models each class density as a mixture of multivariate normals. The density for class j is as

follows:

fjðyj�kÞ ¼
XGj

k¼1

�jk�ðyj�jk;�jkÞ;

where Gj is the number of components for class j, {� jk} are mixing proportions for

components in class j, and �k is the vector of parameters for the normal mixture.

Component covariances Sjk are allowed to vary both within and between classes.

Parameters within each class are separately estimated by maximum likelihood (ML) via

the EM algorithm (Dempster, Laird & Rubin, 1977), which is equivalent to fitting a Mclust

(Fraley & Raftery, 2002) model for each class. Just like Mclust, MclustDA performs model

selection within each class for the number of mixture components as well as covariance

matrix parameterizations with Bayesian information criterion (Schwarz, 1978).

Comparison with LDA
In our study, MclustDA is chosen over LDA/QDA as the classifier due to its greater

flexibility in describing the data. In RNA-Seq analysis, we typically assume that the

majority of genes are not differentially expressed, and therefore we expect to see a cluster

of points around the origin. Since MclustDA proposes to fit more than one normal

component to each class, it readily captures the cluster of non-DE genes as well as any

abnormalities that might be of interest.

In Fig. 3, we fitted a MclustDA model and a LDA model on dimensions [3-1, 4-2] of

our data, separately. In MclustDA fit, each class is described with a mixture of two

bivariate normal components, with the ellipses representing fitted covariance matrix

estimates. For details in how the ellipses are constructed, see Appendix A.

Class JA is fitted with a component centered near the origin, representing genes with

low expression levels under both treatments, as well as a component centered at (2.276,

1.663) that encompasses relatively active genes. Class ET is represented by a single normal

component centered at (0.537, 0.406).

In comparison, due to model assumptions, LDA fitted a bivariate normal density to

each class with covariances being equal, and in this case, the estimated centers almost

coincide with each other. The fitted normal densities are only able to capture the general

shape and orientation of each class, while MclustDA provides us with a more detailed

anatomy of geometric and distributional properties in each class.
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Quantification of group separation
Our definition of group separation measure is motivated by the relationship

between visualized separation and misclassification probability (from a model-based

classifier).

Suppose we wish to separate two populations p1 and p2. Let X = [X1, ..., Xp] denote

the p-dimensional measurement vector of an observation. We assume that densities f1(x)

and f2(x) describe the variability of the two populations. Let p1 and p2 denote prior

probability of each population. Define c(1|2) and c(2|1) as costs of misclassifying an object

from class 2(1) as class 1(2). Here we let c(1|2) = c(2|1) = 1 to simplify the formulation.

Let � denote the entire sample space, and � = R1 ∪ R2, where R1 is the set of values of x

for which we classify objects into p1, and R2 = � - R1.

The probability of misclassifying an object from p1 as p2 is:

Pð2j1Þ ¼ PðX 2 R2j�1Þ ¼
Z
R2

f1ðxÞdx;

and similarly, we have

Pð1j2Þ ¼ PðX 2 R1j�2Þ ¼
Z
R1

f2ðxÞdx:

By definition, we can calculate the probability of misclassifying any object:

Pðmisclassified as�1Þ ¼ PðX 2 R1j�2ÞPð�2Þ ¼ Pð1j2Þp2;
Pðmisclassified as�2Þ ¼ PðX 2 R2j�1ÞPð�1Þ ¼ Pð2j1Þp1:
The total probability of misclassification (TPM) is defined as the probability of either

misclassifying a p1 object or misclassifying a p2 object, that is,

TPM ¼ p1Pð2j1Þ þ p2Pð1j2Þ: (1)

Figure 3 Comparison of MclustDA (A) and LDA (B) fit of the same data. Fitted components and

points from different classes are distinguished with color. Ellipses correspond to component covariances.

Full-size DOI: 10.7717/peerj.5199/fig-3
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Suppose Y = {Y1, ..., YN1} ∼ p1 and Z = {Z1, ..., ZN2} ∼ p2 are two i.i.d samples from the

two populations. Assume that a classification system has been trained and tested on this

data set, and results in the confusion matrix in Table 3.

Then the misclassification error rate (MER), that is, probability of misclassifying any

object, is given by:

MER ¼ n1j2 þ n2j1
N1 þ N2

¼ n1j2
N2

� N2

N1 þ N2

þ n2j1
N1

� N1

N1 þ N2

: (2)

Under the assumption that each object is independently classified, the number

of misclassified p1 objects, N2|1, follows a Binomial distribution with parameters

(N1, P(2|1)). Likewise, the number of misclassified p2 objects, N1|2, follows a Binomial

distribution with parameters (N2, P(1|2)). The ML estimators for P(2|1) and P(1|2)

can be easily computed:

cPð2j1Þ ¼ n2j1
N1

; cPð1j2Þ ¼ n1j2
N2

:

Now, if we set p1 = N1/(N1 + N2) and p2 = N2/(N1 + N2) as prior probabilities for

p1 and p2, then under independence assumption, it follows that

MER ¼ p1 cPð2j1Þ þ p2 cPð1j2Þ;
that is, MER is a maximum likelihood, and hence consistent, estimate of TPM.

In practice, however, the MER tends to underestimate TPM because the same data has

been used for both training and testing. In this study, we use CV to address this issue.

Table 3 Confusion matrix.

A
ct

u
al

cl
as

s

Predicted class

π1 π2 Total

π1 n1|1 n2|1 N1

π2 n1|2 n2|2 N2

Total N1 N2
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Repeated stratified cross-validation
One of the most commonly used method to estimate the expected error rate is CV. For a

K-fold CV, the original data is randomly split into K equally sized subsamples, of which

K - 1 (training set) are used to train a classifier and the remaining one (validation set) is

used to test the trained classifier. For a binary classification problem, the MER, as

defined in (2), is typically computed using the validation set as a performance measure

for the classifier. The training-validation process is iterated over all K folds, each time

using a different subsample as validation set, and the resulting K MER values are

averaged. In stratified CV, the folds are selected so that they contain approximately

the same proportion of classes as the original data. It has been shown in previous

studies that stratified CV tends to perform uniformly better than CV, in terms of both

bias and variance (Kohavi, 1995).

Due to the randomness in partitioning the sample into K folds, we have introduced

variation into the K-fold CV estimator. One way to reduce this variation is to repeat the

whole CV process multiple times using different pseudorandom allocations of instances to

training and validation folds for each repetition (Kim, 2009), and report the average of CV

estimators across all repetitions. This method is often referred to as the RCV. For

improved repeatability of results, common seeding has been recommended in earlier

studies (Powers & Atyabi, 2012). In our implementation, we set a fixed random number

seed for each repetition of CV.

Let C � K-CV denote a K-fold CV with C repetitions. There has been much

discussion on the optimal choice of C and K (Kohavi, 1995; Kim, 2009; Powers & Atyabi,

2012). Increasing C tends to decrease the variance of the RCV estimator, but at the

same time increases the computational time. The choice of K takes into account the

tradeoff between bias and variance of the CV estimator (of the expected error rate).

For small K, less data is used to train the classifier and therefore the error estimate tends

to be biased. For large K, the estimator becomes less biased due to more data being used

in training, but its variance is inflated due to higher correlation between different

training folds. Kohavi (1995) recommends using a stratified 10-fold CV with multiple

runs, and we chose C = 10 considering the amount of computation required as well as

the specs of our hardware.

Quantify group separation
We define the group separation index (GSI) as

GSI ¼ 1� �̂rcv; (3)

where �̂rcv denotes the repeated stratified CV estimator of the total misclassification

probability using MclustDA as the classifier.

Intuitively, for a chosen feature subset, a small CV error indicates that the data can be

more easily classified when projected onto these dimensions, which, in our expectation,

can be reflected in the graphical representation of the data by showing that different

classes can be more easily distinguished through simple visualization.
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Feature subset selection via GSI ranking
In this section, we describe the data in each pathway with a low dimensional

representation for easier interpretation by selecting a parsimonious subset of features

(treatment-control contrasts) that contain as much information on pathway

classification/separation as possible. In other words, we hope to find the dimensions

to project the data onto such that the separation between two pathways is as large as

possible. We use GSI, as defined in (3), to measure the separation between two

pathway groups.

In order to find the optimal feature subset in terms of group separation, we designed

and implemented the following algorithm:

Step 1: Determine the number of features M to keep. Choose M from {2, 3, 4}.

Step 2: List all M-subsets of features exhaustively. Call this collection of subsets FM.

Step 3: For each member of FM, subset the data accordingly. Calculate and record a

10 � 10 stratified CV error rate (and equivalently, GSI) with MclustDA as classifier on

each subsetted data. For each fold of CV, use MER as measure of fit.

– CV model fitting: First fit a MclustDA model to the entire subsetted data, setting

maximum number of components as Gj h G = 2. Then, use the same fitted model

(number of components, covariance parameterization) for every fold of CV.

Step 4: Rank the feature subsets in FM according to their GSI values. Feature subsets with

higher GSI values are ranked higher.

Step 5: Repeat above steps for other values of M.

Concerning the choice of maximum number of components in Step 3, we initially

attempted to use the default value G = 5 in R function MclustDA, and discovered

that in some situations the number of model parameters became too large for the

algorithm to produce a meaningful point estimate. The same problem occurred for G = 4

and G = 3, especially when we looked at three- and four-dimensional data. Therefore, we

settled on using G = 2 for our implementation.

For the purpose of finding “good” angles for data visualization, we will examine the

scatterplots and scatterplot matrices generated by top-ranked feature subsets. The results

will be discussed in “Results.”

Random number seed
To ensure reproducibility of our results, for each of 2-, 3- and 4-subset selection process,

we followed the following protocol to set random number seeds:

Step 1: Choose a list of 50 random number seeds. Partition the list into five batches of

10 seeds.

Step 2: For each feature subset, run 10-fold stratified CV for 50 times, each time using a

different seed from the list.
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Step 3: Average results within each of five batches of 10 random seeds to obtain 10 � 10

stratified CVresult. For instance, average of seeds 1–10 results serves as first run of 10� 10

RCV; average of seeds 11–20 serves as second run, etc.

GSI ranking with LDA as classifier
As discussed in “Mixture discriminant analysis via MclustDA,” LDA fits only one

multivariate normal component to observations in each class. In gene expression data

such as ours, a majority of genes are expected to be expressed at a low level, meaning we

are likely to observe a cluster of data points around the origin, regardless of the class they

belong to. Meanwhile, any aberrant patterns demonstrated by individual data points are

often not captured by fitting LDA model.

To see whether our method can still discover interesting visualization angles with LDA

as classifier, we modified and implemented the GSI calculation algorithm accordingly, and

applied it to our data. Results are presented in “Using fisher LDA as classifier.”

Dimension reduction via PCA
Principal component analysis (PCA) maps the data onto a lower dimensional space in

such a way that the variance of the data in the low-dimensional representation is

maximized. As a dimension reduction technique, usually only the first few principal

components (PCs) are used. Despite its popularity in the field of data visualization, the

formulation of PCA does not involve any class information in the data, which implies that

the projected directions corresponding to the largest variance may not contain the best

separability information.

To verify this observation, using the expression data from all five experiments, we

calculated its PCs, and treat them as the new (projected) features. Then for the first two,

three and four PCs, respectively, we calculated the GSI for each case using 10 � 10-CV

with MclustDA and compare the results with ours.

RESULTS
Repeated cross-validation with MclustDA
With the secondary purpose of testing the stability of repeated CV, we executed multiple

runs for each of the 2-, 3-, and 4-subset feature selection procedures. The top ranked

feature subsets as well as their corresponding GSI values are presented in Tables 4–6.

Stability of RCV model selection results
Although the top ranked feature subsets sometimes differ between multiple RCV runs, we

are still able to observe high degree of overlap between the results:

For 4-subset (Table 6), [1-1, 4-2, 4-4, 5-2], [3-1, 4-4, 4-5, 5-2] and [3-2, 4-5, 4-7, 5-7]

are among top ranked feature combinations in all five runs.

For 3-subset (Table 5), feature combinations [3-2, 4-7, 5-2], [3-2, 5-2, 5-6] and

[1-1, 3-1, 5-2] are ranked top for all five runs.

For 2-subset (Table 4), [4-7, 4-8], [3-1, 3-2], [4-7, 5-2] and [3-1, 5-2] are among top

ranked feature combinations for all runs.
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Top ranked scatterplot: same experiment
In Fig. 4, we show the scatterplot of the data projected onto dimensions [4-7, 4-8], one of

the top ranked 2-subset feature combinations. These two features originate from the same

experiment.

Table 4 Top ranked 2-subsets from multiple runs of 10 � 10 RCV.

(a) Run 1

Rank Subset GSI

1 [4-7, 4-8] 0.698

2 [3-1, 3-2] 0.694

3 [4-7, 5-2] 0.688

4 [3-1, 5-2] 0.681

5 [2-1, 4-7] 0.680

(b) Run 2

Rank Subset GSI

1 [4-7, 4-8] 0.703

2 [3-1, 3-2] 0.696

3 [4-7, 5-2] 0.690

4 [3-1, 5-8] 0.682

5 [3-1, 5-2] 0.681

(c) Run 3

Rank Subset GSI

1* [3-1, 3-2] 0.697

2* [4-7, 5-2] 0.697

3 [4-7, 4-8] 0.689

4 [3-1, 5-2] 0.685

5 [2-1, 4-7] 0.675

(d) Run 4

Rank Subset GSI

1 [3-1, 3-2] 0.704

2 [4-7, 4-8] 0.695

3 [3-1, 5-2] 0.687

4 [3-1, 5-8] 0.684

5 [4-7, 5-2] 0.681

(e) Run 5

Rank Subset GSI

1 [4-7, 4-8] 0.708

2 [3-1, 3-2] 0.702

3 [4-7, 5-2] 0.689

4 [4-4, 5-2] 0.688

5 [3-1, 5-2] 0.683

Note:
Ties are marked with asterisk (*). Combinations appearing in all five runs are highlighted with distinguishing colors.
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Experiment 4

Since both features originate from the same experiment, we will focus on the context of

this experiment and first present some background information. The purpose of

Experiment 4 is to characterize non-CG methylation and its interaction with histone

Table 5 Top ranked 3-subsets from multiple runs of 10 � 10 RCV.

(a) Run 1

Rank Subset GSI

1 [3-2, 4-7, 5-2] 0.724

2 [3-2, 5-2, 5-6] 0.720

3 [1-1, 3-1, 5-2] 0.718

4 [3-1, 5-2, 5-6] 0.710

5 [2-2, 2-3, 3-1] 0.707

(b) Run 2

Rank Subset GSI

1* [1-1, 3-1, 5-2] 0.717

2* [3-2, 4-7, 5-2] 0.717

3 [3-2, 5-2, 5-6] 0.713

4 [1-1, 2-2, 3-1] 0.708

5 [2-2, 2-3, 3-1] 0.708

(c) Run 3

Rank Subset GSI

1 [3-2, 5-2, 5-6] 0.725

2 [1-1, 3-1, 5-2] 0.717

3* [3-1, 5-2, 5-9] 0.715

4* [3-2, 4-7, 5-2] 0.715

5 [3-1, 4-7, 5-2] 0.714

(d) Run 4

Rank Subset GSI

1 [3-2, 5-2, 5-6] 0.736

2 [1-1, 3-1, 5-2] 0.728

3 [2-2, 2-3, 3-1] 0.713

4* [3-1, 4-7, 5-2] 0.712

5* [3-2, 4-7, 5-2] 0.712

(e) Run 5

Rank Subset GSI

1 [1-1, 3-1, 5-2] 0.726

2 [3-2, 4-7, 5-2] 0.724

3 [3-2, 5-2, 5-6] 0.720

4 [2-3, 3-1, 5-2] 0.715

5 [2-2, 2-3, 3-1] 0.710

Note:
Ties are marked with asterisk (*). Combinations appearing in all five runs are highlighted with distinguishing colors.

Zhang and Di (2018), PeerJ, DOI 10.7717/peerj.5199 13/26

http://dx.doi.org/10.7717/peerj.5199
https://peerj.com/


methylation in A. thaliana (Stroud et al., 2014). Non-CGmethylation is a category of DNA

methylation, where methyl groups are added to the DNA molecule, altering its chemical

structure and thereby changing its activity. DNA methylation is usually catalyzed by

Table 6 Top ranked 4-subsets from multiple runs of 10 � 10 RCV.

(a) Run 1

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.730

2 [4-4, 4-5, 4-7, 5-8] 0.728

3 [3-1, 4-4, 4-5, 5-2] 0.727

4 [4-1, 4-7, 4-8, 5-1] 0.725

5 [3-2, 4-5, 4-7, 5-7] 0.724

(b) Run 2

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.745

2 [3-1, 4-4, 4-5, 5-2] 0.741

3 [2-3, 3-1, 4-4, 4-5] 0.734

4 [2-3, 3-1, 4-7, 5-2] 0.725

5 [3-2, 4-5, 4-7, 5-7] 0.724

(c) Run 3

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.735

2 [4-4, 4-5, 4-7, 5-8] 0.731

3* [3-2, 4-5, 4-7, 5-7] 0.726

4* [4-1, 4-7, 4-8, 5-1] 0.726

5 [3-1, 4-4, 4-5, 5-2] 0.725

(d) Run 4

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.739

2* [3-1, 4-4, 4-5, 5-2] 0.731

3* [3-2, 4-5, 4-7, 5-7] 0.731

4 [4-4, 4-5, 4-7, 5-8] 0.723

5 [3-1, 3-2, 4-7, 5-2] 0.722

(e) Run 5

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.740

2 [3-1, 4-4, 4-5, 5-2] 0.735

3* [3-2, 4-5, 4-7, 5-7] 0.730

4* [2-2, 2-3, 3-1, 4-7] 0.730

5 [3-2, 4-6, 4-7, 5-6] 0.723

Note:
Ties are marked with asterisk (*). Combinations appearing in all five runs are highlighted with distinguishing colors.
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DNA methyltransferases (MTases), which transfer and covalently bind methyl groups to

DNA. In Arabidopsis, the principal DNA MTases include chromomethylase (CMT) and

domains rearranged MTase (DRM) proteins, in particular CMT3 and DRM2. Expression

of DRM1 is scarcely detected, while the function of CMT2 has not been studied as well as

that of CMT3.

Histone methylation is a process by which methyl groups are transferred to amino

acids of histone proteins. Histone methylation can either increase or decrease gene

transcription, depending on which amino acids are methylated and the degree of

methylation. The methylation process is most commonly observed on lysine residues (K)

of histone tails H3 and H4, among which H3K9 (lysine residue at ninth position on H3)

serves as a common site for gene inactivation. Lysine methylation requires a specific

MTase, usually containing an evolutionarily conserved SET domain. In Arabidopsis, Su

(var)3–9 homologue 4 (SUVH 4), SUVH 5 and SUVH 6 are the major H3K9 MTases.

Feature 4-7 corresponds to the drm1 drm2 cmt2 cmt3 quadruple gene knockout

mutant, created by crossing cmt2 to cmt3 and drm1 drm2 double mutants. It was found

Figure 4 Scatterplot of data projected on dimensions 4-7 and 4-8. Pathways are distinguished with

color. Ellipses represent estimated covariances fitted by MclustDA. Potential outliers highlighted and

labeled with their names. Dashed-line square is ±log(2) range from the origin.

Full-size DOI: 10.7717/peerj.5199/fig-4
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that non-CG methylation was eliminated in such mutants, indicating that DRM1, DRM2,

CMT2 and CMT3 proteins are collectively responsible for all non-CG methylation in

Arabidopsis. Feature 4-8 corresponds to the suvh4 suvh5 suvh6 triple mutant. The control

group of this experiment corresponds to wildtype Arabidopsis. Table 7 summarizes the

above information.

Outliers

Potential outliers from JA pathway, as highlighted and labeled in the scatterplot, fall into

the fourth quadrant, which implicates that these genes are up-regulated under 4–7 (DNA

methylation) but down-regulated under 4–8 (histone methylation). Information on these

genes is collected from TAIR (Berardini et al., 2015) and displayed in Table 8. One

interesting discovery we made was that one of the outliers, AT3G56400, functions as a

repressor of JA-regulated genes. In other words, its gene product inhibits the expression of

other genes related to JA regulation.

Pattern differences

The first thing we can observe from the scatterplot is that a majority of genes are expressed

at a low level (with fold change <2) under both treatment conditions, as demonstrated by

the clustered points inside ±1 square. Although most genes are expressed at a relatively

low level, we are still able to identify the difference between the two pathways. If a DE

analysis is performed and only DE genes are included in our model, it will be less

likely for us to spot the same structural difference as before because we would lose

much group level information by filtering out non-DE genes.

Secondly, not considering the outliers, genes belonging to the JA pathway are mostly

concentrated around the origin as well as in quadrant III, meaning that most JA genes are

Table 7 Feature information.

Feature ID Sample GEO accession # Description

4-0 (control) GSM1242374, GSM1242375 Wildtype

4-7 GSM1242388, GSM1242389 drm1 drm2 cmt2 cmt3 quadruple mutant

4-8 GSM1242390, GSM1242391 suvh4 suvh5 suvh6 triple mutant

Table 8 Outlier information.

Gene name Description

AT5G44210 Encodes a member of the ERF (ethylene response factor) subfamily B-1 of

ERF/AP2 transcription factor family (ATERF-9)

AT2G44840 Same function as AT5G44210; Cell-to-cell mobile mRNA

AT5G26170 WRKY Transcription Factor, Group II-c; Involved in jasmonic acid inducible

defense responses.

AT3G56400 WRKY Transcription Factor, Group III; Repressor of JA-regulated genes;

Activator of SA-dependent defense genes.

AT1G28400 GATA zinc finger protein
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down-regulated under both treatments. The expression pattern of ET pathway genes,

however, is more diverse than that of JA genes. These genes populate all four quadrants of

the coordinate system, with the highest density in quadrant I followed by quadrant II and

III. That is, a majority of ET genes are up-regulated under both treatments, while most of

the others are down-regulated under 4–7.

Top ranked scatterplot: different experiments
In Fig. 5, we show the scatterplot of another top ranked feature combination, [3-1, 5-2],

which come from two different experiments.

Experiment 3

The focus of this study is the response of Arabidopsis to multiple consecutive dehydration

stresses (Ding et al., 2013). Based on the observation that pre-exposure to abiotic

stresses (including dehydration) may alter plants’ subsequent responses by improving

resistance to future exposures, the researchers hypothesized the existence of “memory

Figure 5 Scatterplot of data projected on dimensions 3-1 and 5-2. Pathways are distinguished with

color. Ellipses represent estimated covariances fitted by MclustDA. Potential outliers highlighted and

labeled with their names. Dashed-line square is ±log(2) range from the origin.

Full-size DOI: 10.7717/peerj.5199/fig-5
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genes”: genes that provide altered response to subsequent stresses (Ding, Fromm &

Avramova, 2012).

A RNA-Seq study is performed to determine the transcriptional responses of

Arabidopsis plants that have experienced multiple exposures to dehydration stress and

compare them with the transcriptional behavior of plants encountering the stress for the

first time. The dehydration treatments are applied in the following fashion:

(1) Plants were removed from soil and air-dried for 2 h. Call this exposure Stress 1 (S1).

(2) Plants were then rehydrated for 22 h by being placed in humid chambers with their

roots in a few drops of water. Call this step Recovery 1 (R1).

(3) Air-dry R1 plants for 2 h. This is Stress 2 (S2), followed by R2, which is the same as R1.

(4) Air-dry R2 plants for 2 h. This is Stress 3 (S3).

RNA sequencing analyses were then performed on leave tissues from pre-stressed/

watered plants (control), S1 plants and S3 plants. For each treatment group, plants from

two independent biological samples were used. In our data, feature 3-1 corresponds to S1,

or first drought stress. See Table 9 for a summary.

Experiment 5

In this study, the researchers examine the functional relationship between members of the

Arabidopsis microrchidia (AtMORC) ATPase family (Moissiard et al., 2014), which have

been shown to be involved in transposon repression and gene silencing. Three of seven

MORC homologs were examined: AtMORC1, AtMORC2 and AtMORC6. RNA-Seq

experiment using single and double mutants indicates that AtMORC1 and AtMORC2 act

redundantly in gene silencing. Wildtype Arabidopsis was used as control group. Treatment

groups include both single and double mutant lines: atmorc2-1, atmorc2-4, atmorc1-2,

atmorc1-5, and atmorc1-2 atmorc2-1, in which two individual alleles were used for atmorc1

and atmorc2. In our data, feature 5-2 corresponds to the single mutant line atmorc2-1.

Table 9 includes summary information on this experiment.

Outliers

In Fig. 5, we highlighted a few observations considered as outlying, and as before, looked

up their information using TAIR. A brief description for each outlier is included in

Table 10. Gene AT3G56400 is again identified as an outlier, mainly because of its highly

negative expression level under treatment 3-1, while the near-zero expression level under

5-2 indicates its inactivity under this treatment. Gene AT5G13220 has the highest

Table 9 Feature information for experiments 3 and 5.

Feature ID Sample GEO accession # Description

3-0 (control) GSM1173202, GSM1173203 Watered condition

3-1 GSM1173204, GSM1173205 First drought stress

5-0 (control) GSM1321694, GSM1321704 Wildtype

5-2 GSM1321696, GSM1321706 atmorc2-1 mutant
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expression level under 3-1 among all JA genes, and at the same time not as active under

5-2. This gene is interesting because it functions as a repressor of JA signaling, and its high

expression level could be an implication for repression of JA signaling for Arabidopsis

plants going through first drought stress (3-1).

Pattern differences

From the scatterplot, the first thing we can observe is that quite a few genes from both

pathways are up- or down-regulated under treatment 3-1, while genes are expressed at an

overall low level under 5-2. Nevertheless, a few genes from ET group show overexpression

pattern under 5-2. JA pathway genes populate quadrants I, II and III, while ET pathway

genes are mainly located in quadrants I, II and IV. Overall, under 5-2, ET genes tends to

be more active than JA genes.

Using Fisher LDA as classifier
With Fisher’s LDA as the classifier, we found a distinct assembly of top ranked feature

pairs than when MclustDAwas used. Table 11 show which 2-subsets produced higher GSI

scores than most others.

In Figs. 6 and 7, we show the scatterplot of data projected on to dimensions [3-1, 5-5]

and [3-1, 5-9], two of the top ranked feature pairs. Visually, the two pathways groups are

not as evidently separated as seen in our previous examples (Figs. 4 and 5).

GSI for PC transformed data
In Table 12, we report the GSI for PC transformed data, as well as the maximum GSI

achieved by subsets of the original data. The proportion of total variation explained is

66.5% for first two PCs, 78.2% for first three, and 85.6% for first four. Through

comparison, we observe that using PCs as new features does not necessarily maximize the

separation between the distinct groups in the data, therefore confirming our statement in

“Dimension reduction via PCA.”

CONCLUSION
In this article, we defined a numeric measure for the separation between different groups

of data, and used said measure to perform low dimensional feature subset selection in

order to find the most interesting angles to visualize high dimensional data. By applying

our method to a multi-experiment RNA-Seq data on Arabidopsis leave tissues, we found

that the top ranked feature subsets did demonstrate some interesting differences in

Table 10 Outlier information for 3-1 and 5-2.

Gene name Description

AT3G56400 WRKY Transcription Factor, Group III; Repressor of JA-regulated genes; Activator

of SA-dependent defense genes.

AT1G19180 a.k.a. JAZ1 Nuclear-localized protein involved in JA signaling; JAZ1 transcript levels

rise in response to a jasmonate stimulus.

AT5G13220 a.k.a. JAS1, JAZ10 Repressor of JA signaling

AT2G44940 Integrase-type DNA-binding superfamily protein
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expression patterns between two biological pathways, which shows that our method can

be a potentially powerful tool in the exploratory analysis of such high dimensional

integrated/assembled data from various sources.

Table 11 Top ranked 2-subsets from multiple runs of 10 � 10 RCV.

(a) Run 1

Rank Subset GSI

1 [3-1, 5-9] 0.700

2 [3-1, 5-5] 0.688

3 [4-4, 4-5] 0.688

4 [2-3, 3-1] 0.679

5 [3-1, 5-3] 0.675

(b) Run 2

Rank Subset GSI

1 [3-1, 5-9] 0.695

2 [3-1, 5-5] 0.687

3 [4-4, 4-5] 0.687

4 [3-1, 5-3] 0.682

5 [3-1, 4-5] 0.678

(c) Run 3

Rank Subset GSI

1 [3-1, 5-9] 0.704

2 [3-1, 5-5] 0.693

3 [4-4, 4-5] 0.688

4 [3-1, 5-3] 0.683

5 [3-1, 5-1] 0.675

(d) Run 4

Rank Subset GSI

1 [3-1, 5-9] 0.700

2 [4-4, 4-5] 0.689

3 [3-1, 4-5] 0.680

4 [3-1, 5-3] 0.680

5 [3-1, 5-5] 0.680

(e) Run 5

Rank Subset GSI

1 [3-1, 5-9] 0.696

2 [3-1, 5-5] 0.693

3 [4-4, 4-5] 0.685

4 [2-3, 3-1] 0.683

5 [3-1, 4-5] 0.679

Note:
Ties are marked with asterisk (*). Combinations appearing in all five runs are highlighted with distinguishing colors.
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Significance of work
Firstly, our method yields well documented results. We enumerated the GSI for every low

dimensional feature subset, and constructed the scatterplots/scatterplot matrices for each

case. If scientists know beforehand which features are of interest, they will be able to

directly access the corresponding entry in our result. Secondly, through the application of

mixture DA, we were able to summarize the expression pattern of groups of genes using a

mixture of only a handful of normal components. Furthermore, using the fittedMclustDA

ellipses as visual aid, we were able to clearly show the geometric structure of each group

and make comparisons. Finally, as seen in Fig. 4, through visualization of the unfiltered

data, we are able to identify difference in expression patterns of non-DE genes between

two biological pathways.

Limitations and future work
A limitation of our method is the difficulty of scaling our feature selection method to data

of higher dimensions. The first concern is the heavy computational burden required for

RCV. In our implementation, although we used parallel computing to speed up

Figure 6 Scatterplot of data projected on dimensions 3-1 and 5-5.

Full-size DOI: 10.7717/peerj.5199/fig-6
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computation as much as possible, the actual running times for three- and four-dimensional

subset are not quite satisfactory (Table 13), mainly due to the large number of possible

subsets. However, in practice, the 2-subset results are usually more interpretable and visually

Figure 7 Scatterplot of data projected on dimensions 3-1 and 5-9.

Full-size DOI: 10.7717/peerj.5199/fig-7

Table 12 Separation index for PC transformed data and maximum GSI for original data.

# of PCs GSI Features Max GSI achieved

2 0.638 2 0.708

3 0.642 3 0.736

4 0.639 4 0.745

Table 13 Average running time for 10-fold cross-validation for all feature subsets, averaged over

50 runs with different random number seeds.

Subset dim. # of subsets Avg. runtime (s)

2 253 65.04

3 1,771 512.61

4 8,855 2,241.43
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appealing than its higher dimensional counterparts. Therefore, we recommend doing only

two-dimensional feature subset selection for exploratory purposes. In “Repeated cross-

validation with MclustDA,” we singled out two of the top ranked scatterplots for discussion.

Interested readers are directed to the appendix for additional scatterplots and scatterplot

matrices for top ranked 3- and 4-subsets (Figs. S1–S8).

Moreover, as pointed out by one of the reviewers, as the sample size increases, one

can hope that the bias of the error (hence GSI) estimation will reduce and the ranking

of feature subsets from each CV run will become more stable. One can then save

computational time by eliminating the repetition, or even the use of CV in the calculation

of GSI. In the Appendix, we illustrated how the bias in error estimation will change and

how the variability of GSI values from repeated CV will decrease as the sample size

increases using simulated data.

Another reason is that the scatterplot matrix becomes less informative when the

number of displayed dimensions exceeds four. Even in our study, scatterplot matrices of

dimensions 3 and 4 cannot fully reflect geometric properties of the data. For three- and

four-dimensional angles, the scatterplot matrix only shows projections to all axial

dimensions, which doesn’t precisely convey the amount of separation between two classes,

computed using all three or four dimensions. It is difficult to visualize the geometric and

topological differences by only looking at individual panels of scatterplots. To more

effectively visualize higher dimensional feature subsets, we can consider using interactive

visualization tools, such as GGobi (Swayne et al., 2003) and R Shiny (Chang et al., 2017).

Both tools allow users to identify the same point in all panels of a scatterplot matrix,

significantly increasing its visual expressiveness.

Error rate definition
In our definition of TPM in (1), we made the assumption that the cost of misclassifying an

object from either class is the same, i.e., c(1|2) = c(2|1). We can adjust the cost values if we

are more concerned about correctly classifying a certain class of observations.

Evaluating reproducibility of experiments
Currently, a typical DE analysis is conducted in a gene-wise manner, that is, genes are

treated as observations and the treatment conditions as features. In our study, we took the

same approach because our goal was to differentiate expression pattern between two

groups of genes. However, with the increase in the availability of RNA-Seq data thanks

to advances in information technology, we can also study the comparability and

reproducibility of RNA-Seq experiments. In this sense, we will be exploring the

relationship between treatment conditions or experiments, with genes acting as features/

variables. Evaluation of experiment reproducibility is usually accomplished by performing

the same experiment using the same setting, which is, unfortunately, not a common

practice in RNA-Seq studies. In light of this, one of our long-term goal is the

quantification of similarity between RNA-Seq experiments, which not only accounts

for differences in experimental designs and parameter settings, but also utilize the

information hidden in the expression of genes.
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Significance evaluation
We were advised on whether we can assign a measure of significance for the top ranked

feature set found by our method. Our interpretation of “significance” in this context is

as follows: Under the assumption that the feature pair contain no group information

on the genes, what is the probability of obtaining a GSI value as high as or higher than

the value computed by our method (i.e., a p-value)? We can use a permutation test for

this purpose, by following these steps: (1) For a particular feature pair, randomly reassign

group labels to genes, (2) Calculate GSI value using the permuted data, (3) Repeat one and

two for M (usually large) times, and establish the distribution of GSI value, and (4)

Calculate empirical p-value based on this distribution. Due to time constraint, we

found such a p-value for only one top ranked feature pair, [4-7, 4-8], by calculating

M = 2,000 GSI values from permuted data, and obtained the empirical p-value of 0.0055,

indicating the significance of this pair of features.

Handling effect and CV
As shown in “Quantification of group separation,” CV was used for the calculation of

MER. A recent study (Qin, Huang & Begg, 2016) points out that in the existence of

handling/batch effect of objects to be classified, CV will often underestimate the error rate,

mainly due to the complete or partial confounding between batches and subject classes.

In our study, the biological samples were indeed handled separately under different

circumstances, which means the treatment-control contrasts derived using these samples

are also subject to an inherent group structure. However, rather than classifying the

biological samples or contrasts, this study focuses on classifying genes to one of two pre-

specified gene pathway groups. Since a common assembly pipeline was used to process the

data, the list of genes should be considered as uniformly handled, and therefore free from

the handling/batch effect discussed in the aforementioned article. The batch effect will, on

the other hand, affect the covariance structure of the space of log fold changes that we

explore, which will be reflected when Mclust models are fitted to the lower dimensional

subspaces.
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