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SUMMARY

The substantia nigra (SN) and ventral tegmental area (VTA) are vital for the control of
movement, goal-directed behavior, and encoding reward. Here we show that the
firing of specific neuronal subtypes in these nuclei can bemodulated by physiological
changes in the partial pressure of carbon dioxide (PCO2). The resting conductance of
substantia nigra dopaminergic neurons in young animals (postnatal days 7–10) and
GABAergic neurons in the VTA is modulated by changes in the level of CO2. We pro-
vide several lines of evidence that this CO2-sensitive conductance results from con-
nexin 26 (Cx26) hemichannel expression. Since the levels of PCO2 in the blood will
vary depending on physiological activity and pathology, this suggests that changes
inPCO2couldpotentiallymodulatemotoractivity, rewardbehavior,andwakefulness.

INTRODUCTION

Carbon dioxide (CO2) is a waste product of cellular metabolismwith its concentration in blood amajor regulator

of breathing. In humans, PCO2 in blood is normally �40 mm Hg but can be increased in conditions such as

chronic obstructive pulmonary disease (COPD) and sleep apnea and can be decreased by hyperventilation

and prolonged physical exertion. According to traditional consensus, CO2 is detected via the consequent

change in pH, and pH is a sufficient stimulus for all adaptive changes in breathing in response to hypercapnia

(Loeschcke, 1982). pH-sensitive ion channels and receptors have been proposed to play a role in respiratory che-

mosensing in both the periphery (carotid body) and centrally in the medullary chemosensory areas such as the

retrotrapezoid nucleus and themedullary raphe (Trappet al., 2008; Kumar et al., 2015;Wanget al., 2013; Hosford

et al., 2018). pH sensing via ventral medullary glial cells may also contribute to the CO2-dependent regulation of

breathing (Gourine et al., 2010; Turovsky et al., 2016). However, there is considerable evidence thatCO2 can have

additional independent effects frompHon central respiratory chemosensors (Eldridgeet al., 1985; Shams, 1985).

CO2 directly binds to connexin 26 (Cx26) via a structural motif, which results in carbamylation of Lys125, thus

increasing hemichannel opening probability (Huckstepp et al., 2010a; Meigh et al., 2013). The midpoint for

the binding is�40mmHg,which, as indicated above, is the resting level in humanblood, and thus small changes

in PCO2will shift the open probability of Cx26 hemichannels. Pharmacological evidence suggests that Cx26 con-

tributes to the CO2-dependent regulation of breathing (Gourine et al., 2005; Huckstepp et al., 2010b; Wenker

et al., 2012), and this has recently gained support from genetic evidence that links binding of CO2 to Cx26 to

the adaptive change in breathing (van de Wiel et al., 2020).

Coupling between dopaminergic neurons (DNs) in the substantia nigra (SN) was first described by Grace

and Bunney (1983) who showed that the injection of lucifer yellow dye into single cells could result in the

filling of neighboring ‘‘coupled’’ cells, with the dye transferring through gap junctions. They confirmed

this using electrophysiology. Vandecasteele (2005) validated that pairs of DNs in the SNpc are coupled

by functional gap junctions and later went on to describe the connexin expression profile of SN DNs (Van-

decasteele et al., 2006). They reported that, in young rodents (postnatal day 7–10), these neurons express

mRNA for Cx26 and Cx30, which are sensitive to CO2, but by P17–21 they only express mRNA for CO2-

insensitive connexins (Vandecasteele et al., 2006). This observation led us to investigate whether the

DNs in the SN of young rodents (P7–10) express CO2-sensitive hemichannels and thus have a CO2 pheno-

type. We subsequently discovered an additional population of neurons, GABAergic, in the ventral

tegmental area (VTA), which also appear to express Cx26 hemichannels and are sensitive to CO2. Unlike

the SN DNs, these neurons appear to retain their sensitivity to CO2 throughout development. Our findings

reveal an unexpected role for CO2 in regulating the activity of these key brain regions and demonstrate a

mechanism by which autonomic state could alter complex movement-related and goal-directed behaviors.

This would also be the first documentation of connexin 26 hemichannel expression in neurons.
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RESULTS

To investigate whether dopaminergic neurons (DNs) in the SN from P7–10 mice are sensitive to levels of carbon

dioxide (CO2), as predicted from their connexin mRNA profile (Vandecasteele et al., 2006), we made whole-cell

patch clamp recordings fromDNs in acutely isolated slices. Putative DNs in the SNwere identified by their elec-

trophysiological profile. DNs were identified primarily by their position in the slice and characteristic current-

voltage relationship; most displayed a large sag in response to hyperpolarizing current steps (characteristic of

Ih), rebound and tonic firing at rest, and a hyperpolarizing response to dopamine application (Grace and

Onn, 1989; Neuhoff et al., 2002). A subset of recorded neurons were confirmed as dopaminergic when positive

for the dopaminemarker tyrosine hydroxylase using immunohistochemistry (Grace andOnn, 1989; Figure 1A). In

order to test whether the DNs were sensitive to CO2, following their identification with standard step current in-

jections and in some neurons also the injection of naturalistic current (to measure firing rates), the level of CO2

(35 mmHg, basal level) was increased to 55mmHg under isohydric conditions (compensatory changes in bicar-

bonate concentration tomaintain constant extracellular pHduring theCO2 stimulus, seeMethods). This increase

in PCO2 from 35 to 55mmHg (hypercapnia) produced a time-dependent reduction in the tonic firing rate and a

reduction in the voltage change in response to hyperpolarizing current steps (Figures 1B and 1C). Both of these

effects are characteristic of an increase in resting conductance. At steady state, the response to the hyperpola-

rizing current steps had fallen to 70G 9.6% of control (p = 0.0015, Figures 1B and 1C), the input resistance had

fallen from 380G 28.15 to 217G 27.9MU (p = 0.0027, n= 10), and the tonic firing was abolished. For a subset of

recordings, we tested whether it was possible to get recovery when PCO2 was returned from 55 to 35 mm Hg;

this was not quantified, but an example showingpartial recovery of firing rate and input resistance is illustrated in

Figure 1D.

These observations were not an artifact of the dialysis of the cell following whole-cell breakthrough as the

cells were first allowed time to equilibrate, then standard and naturalistic currents were injected to form IV

curves and to measure firing rates. In a subset of neurons, pharmacological agents such as dopamine were

applied to identify the cells (�30 min to apply and wash) prior to the alteration of CO2 and similar effects of

changing the CO2 were observed. For initial controls, the experiment was first repeated without changing

the PCO2 (although the solutions were still exchanged to eliminate any artifacts due to the mechanical pro-

cess of solution change), and under these conditions, the resting conductance and firing rate of the neurons

did not significantly change over the time course of the experiment (Figure S1). Second, the experiment

was repeated with hippocampal CA1 pyramidal neurons and there was no significant change in the elec-

trophysiological properties of these neurons with hypercapnia (voltage response was 100.3 G 1.64% of

control, p = 0.68, Figure S2, n = 6).

Evidence That the Effects of PCO2 on Cell Conductance Are due to Cx26 Hemichannel

Expression

We then took a number of approaches to investigate whether the SN DN CO2 sensitivity is the result of

Cx26 hemichannel expression. First, as DNs in the SN of older mice (P17–21) do not express mRNA for

CO2-sensitive connexins (Vandecasteele et al., 2006), they should therefore be insensitive to CO2 if it is con-

nexin hemichannel dependent. Whole-cell recordings from DN in SN from P17–21 mice showed the ex-

pected changes in electrophysiological properties that have been reported (Dufour et al., 2014) to occur

during postnatal development (Figure S3) but showed no significant response to increased PCO2 (voltage

response was 101 G 0.9% of control, p = 0.33, n = 4, Figures 1E and 1F). Second, the effects of increasing

PCO2 could be blocked by the hemichannel inhibitor carbenoxolone (Meigh et al., 2013) in P7–10 slices

(100 mM Figures 1G–1I, n = 6). Carbenoxolone incubation did alter the electrophysiological properties

of neurons (as previously reported in Tovar et al., 2009), but these changes would be expected to enhance

the effects of hemi-channel opening rather than occlude them.

The midpoint for CO2-dependent opening of Cx26 hemichannels is around the basal level of PCO2 used in

these experiments (35–40 mm Hg, Huckstepp et al., 2010a). Thus, a reduction in PCO2 should close Cx26

hemichannels leading to a decrease in resting conductance and a corresponding increase in firing rate. As

predicted, in P7–10 SN DNs, decreasing PCO2 from 35 to 20 mm Hg (hypocapnia) increased the voltage

response to hyperpolarizing current steps (104 G 1.2% of control, p = 0.0078) and increased the firing

rate (184G 28.65% of control, p = 0.015, Figure 2) consistent with a decrease in conductance. These effects

of reduced CO2 were partially reversible (Figures 2A and 2B). Thus, small changes in CO2, around normal

resting levels (40 mm Hg), are sufficient to modulate SN DN excitability consistent with Cx26 hemichannel

expression.
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Early Postnatal Substantia Nigra Dopamine Neurons Express Connexin 26 and Dye Load with

Hypercapnia

We next used a different, non-electrophysiological approach to provide further evidence that P7–10 SN

DNs express CO2-sensitive hemichannels. A characteristic of hemichannels is that, when they open, they

allow entry of membrane-impermeant fluorescent dyes into cells. Once the hemichannels close, the dye

becomes trapped inside the cells (this is termed dye loading) and can then be used as a marker for cells

Figure 1. CO2 Sensitivity of Dopaminergic Neurons in the Substantia Nigra

(A) Characteristic properties of SN DNs: voltage response to current injection, hyperpolarization in response to dopamine (30 mM) and recorded neurons

(red) are TH+ (green). Scale bar, 100 mM.

(B) Time course of changes in voltage response (P7–10, each point is a mean of six current steps, error bars are SEM) when CO2 was changed from 35 to

55 mm Hg.

(C) Associated voltage traces (40 superimposed traces) and voltage responses to step currents at indicated time points from (B).

(D) Representative voltage responses (P7–10) demonstrating input resistance and firing rate changes can be partially reversed (bottom traces are an average

of 25 sweeps).

(E) In P17–21 DNs there was no significant change in voltage response (each point is a mean of six current steps, error bars are SEM) when CO2 was changed

from 35 to 55 mm Hg.

(F) Associated voltage traces (40 superimposed traces) and voltage responses to step currents at indicated time points from (E).

(G) If slices are incubated in carbenoxolone, there is no significant change in voltage response (P7–10, each point is mean of six current steps, error bars are

SEM) when CO2 was changed from 35 to 55 mm Hg.

(H) Associated mean voltage traces (average of 40 sweeps) and voltage responses to step currents at indicated time points from (G).

(I) Quantification of voltage response changes (35–55mmHgCO2). Inset, control responses and responses in carbenoxolone (1, 35 mmHg and 2, 55 mmHg).
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that express CO2-sensitive hemichannels (Huckstepp et al., 2010a; Meigh et al., 2013). Grace and Bunney

(1983) had previously shown that lucifer yellow can demonstrate dye coupling (into neighboring neurons

from intracellular injection into a single neuron). However, Vandecasteele et al. (2006) attempted to dye

load SN DNs (extracellular bath application, as described above) with lucifer yellow by opening hemichan-

nels with low levels of Ca2+; this was unsuccessful. We decided to use the impermeant dye carboxyfluores-

cein (CBF) as we could be certain that it would pass through open Cx26 hemichannels as it has been shown

in previous studies (Huckstepp et al., 2010a; Meigh et al., 2013) and confirmed that neurons in the SN of

P7–10 mice (Figure 3A) could be loaded with the dye following hypercapnia. No dye loading occurred if

the PCO2 was not increased. Dye loading did not occur in the SN of older mice (P17–21) or in CA1 hippo-

campal pyramidal cells (Figure S2). To further confirm that early postnatal SN DNs express connexin 26, we

used a highly specific monoclonal antibody to Cx26 (Sun et al., 2009, Huckstepp et al., 2010a, 2010b). In

slices from P7–10 mice, Cx26 expression was present in tyrosine hydroxylase-positive (TH+) neurons in

the SN (Figure 3B). However, in older mice (P17–21), Cx26 appeared not to be expressed in TH+ neurons

(Figure 3C). Cx26 was still expressed in the leptomeninges of corresponding sections P17–21 providing a

Figure 2. P7–10 Dopaminergic Neurons in the Substantia Nigra Are Sensitive to Lowering CO2

(A) An example recording from a P7 SN dopaminergic neuron. Black traces represent recordings in 35 mm Hg (normal

CO2), and green traces represent recordings in 20 mm Hg (low CO2). An increase in firing rate can be observed (A) from

the membrane potential responses to step and fluctuating current injections (as in Badel et al., 2008; see Methods).

(B) The voltage response to a 50-pA hyperpolarizing step (top, traces are an average of 40 sweeps) and the membrane

potential response to the �100-pA step injection (bottom). They show a small increase in voltage response due to

increased input resistance with lowered CO2. Both the left and right panels show a partial recovery of both firing rate and

input resistance after washing back into 35 mm Hg CO2.

(C) Time course of changes in voltage response (P7–10, each point is a mean of six current steps, error bars are SEM) when

CO2 was changed from 35 to 20 mm Hg.

(D) Quantification of changes to firing rate as measured by the voltage response to fluctuating current input.

(E) Quantification of the voltage response to hyperpolarizing step input. Both (D) and (E) display data normalized to the

baseline values; raw data plots are available in Supplemental Information .

ll
OPEN ACCESS

4 iScience 23, 101343, July 24, 2020

iScience
Article



positive control for the labeling protocol (Figure 3D). At P17–21, Cx26 sensitivity appeared to shift from TH+

cells to the neighboring glial cells (co-localizing with the glial marker GFAP, Figure 3E).

Changes in CO2 Significantly Modifies the Excitability of Neurons in the VTA

During the CBF loading assay carried out in the P17–21 slices, although no dye-filled neurons were observed in

the SN, unexpectedly a population of dye-filled neurons was observed in the neighboring VTA (Figure 4A). This

region is central to circuits controlling motivation, reward, and goal-directed behaviors (Morales andMargolis,

Figure 3. Dye Loading and Cx26 Expression in Substantia Nigra

(A) Carboxyfluorescein (CBF) dye loading following hypercapnia in P7–10 slices (cell bodies are clearly labeled). No dye

loading occurred if CO2 was not changed or in P17–21 slices; scale bar, 50 mM.

(B) Immunofluorescent staining of P7–10 SN for Cx26 (red, arrows) in TH+ neurons (green).

(C) No co-localization of Cx26 (red) in TH+ neurons (green) in the SN at P17–21; scale bars, 30 mM. Staining was deemed

successful due to the positive leptomeninges staining from corresponding sections of the same brain.

(D) Scale bar, 50 mM. (E) Cx26 (red, arrows) co-localized with GFAP (green, glial cell marker) in P17–21 SN; scale bar, 50 mM.
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2017). Dye-loaded neurons in the VTA had a markedly different firing pattern and voltage response to current

injection compared with SN DNs, were not hyperpolarized by dopamine, but were hyperpolarized by the

opioid receptor agonist [Met5]Enkephalin, therefore, they could instead be GABAergic neurons (Johnson

andNorth, 1992; Figure 4B). These VTA neurons showed electrophysiological changes similar to that observed

for P7–10 SN DNs in response to changes in PCO2: increased PCO2 (55 mm Hg) decreased input resistance

(voltage response reduced to 71 G 13.2% of control p = 0.0055, 335 G 66.7 to 222 G 39.4 MU, p = 0.0446,

before the sag n = 5) and firing rate (Figures 4C–4E). Reducing PCO2 to 20 mm Hg increased input resistance

(voltage response increased to 118 G 6.1%, p = 0.0428) and firing rate (193 G 35%, p = 0.049, of control,

Figures 4F–4H). To identify the phenotype of the CO2-sensitive neurons in the VTA, we carried out

Figure 4. GABAergic Neurons in the VTA Are Sensitive to CO2

(A) CBF dye loading of VTA neurons in response to hypercapnia occurs at both P7–10 and P17–21 but does not occur

without the increase in CO2 (hypercapnia), scale bar, 50 mM.

(B) Characteristics of CO2-sensitive VTA neurons: firing pattern, hyperpolarization to the opioid receptor agonist [Met5]

Enkephalin (10 mM) but not to dopamine (30 mM).

(C) Time course of changes in voltage response (CO2 increased from 35 to 55 mm Hg, each point is a mean of six current

steps, error bars are SEM).

(D) Voltage responses to step currents at indicated time points in (C).

(E) Quantification of changes in voltage response to increased CO2.

(F) Time course of changes in voltage response (CO2 decreased from 35 to 20 mm Hg, each point is a mean of six current

steps, error bars are SEM).

(G) Voltage responses to step and fluctuating current inputs (as in Badel et al., 2008; seeMethods) at indicated time points

in (F) demonstrating increased input resistance and firing rate.

(H) Quantification of changes in voltage response to decreased CO2.

(I and J) Representative single optical planes immunohistochemistry images. (I) Immunofluorescent staining of P17–21

VTA for Cx26 (red), which is not expressed by TH+ neurons (green, no co-localization); scale bar, 50 mM. (J) Co-localization

of Cx26 (red) with the soma of three individual GAD+ neurons (green) in the VTA (scale bar, 20 mM).
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immunohistochemistry. Cx26 was not expressed in TH+ neurons in the VTA, so is not present in dopaminergic

neurons (Figure 3I). However, Cx26 immunoreactivity was present in GAD65/67+ neurons (Figure 3J), a marker

forGABAergic neurons in the VTA (Chieng et al., 2011), which fits with the electrophysiological properties of the

CO2-sensitive neurons. Thus, the CO2-sensitive neurons in the VTA are GABAergic.

DISCUSSION

Wehave demonstrated an unexpectedCO2-sensitive phenotype for neurons in the SNat P7–10 and in the VTA,

with increases in CO2 markedly increasing their resting conductance. This effect appears to occur in only

specific subtypes of neuron, as for example, it was not observed in hippocampal pyramidal cells. It is well es-

tablished that increases in PCO2 can close gap junctions and that DN neurons in young animals are coupled

(Connors et al., 1984; Bukauskas and Peracchia, 1997; Vandecasteele, 2005). However, this effect cannot ac-

count for the effects that we have observed. First, the increase in PCO2 that is required to close gap junctions

is large and is well above the range of PCO2 changes we used to elicit effects on neuron electrophysiology. In

addition, the closure of gap junctions would result in a decrease in whole-cell conductance and an increase in

excitability, which is the opposite of what we observed in our study. Here we have provided several lines of

evidence that suggest that our observations of an increase in CO2-sensitive conductance result from the open-

ing of Cx26 hemichannels, whose open probability increases through the direct CO2-mediated carbamylation

of lysine residues (Meigh et al., 2013). We have shown that the effects of CO2 in SN DNs occurs over the same

developmental period as they express Cx26 mRNA (measured in an independent study, Vandecasteele et al.,

2006). The effects of increasing PCO2 on resting conductance can be blocked by the hemichannel inhibitor car-

benoxolone. Although carbenoxolone has neuronal and synaptic effects as well as blocking hemichannels, they

would be expected to accentuate the observed increase in conductance rather than reducing it, therefore not

obscuring the observations (Tovar et al., 2009). If the effects of PCO2 on cell conductance are due to the open-

ing of Cx26 hemichannels, it would be predicted that, since the midpoint of Cx26 hemichannel opening lies

around the basal level of PCO2 in our experiments (Meigh et al., 2013, 35 mM Hg), a decrease in CO2 would

close Cx26 hemichannels leading to a decrease in the resting conductance. Such a decrease in conductance

could be observed for both SN DN and VTA GABAergic neurons when CO2 was lowered.

SN dopaminergic neurons and VTAGABAergic neurons could be filled with a membrane-impermeant fluo-

rescent dye (CBF) when PCO2 was increased (dye loading). CBF will pass through Cx26 hemichannels when

they are open and then become trapped inside cells when the hemichannels are subsequently closed

(Huckstepp et al., 2010a; Meigh et al., 2013). Unfortunately, CBF cannot be fixed with paraformaldehyde,

which prevents the dye-filled neurons from being subsequently labeled using immunohistochemistry. How-

ever, we can be confident that the dye-filled cells were either SN DNs or VTA GABAergic neurons, as patch

clamp recording was carried out before the dye loading (to confirm the identity of the cells from their elec-

trophysiological properties and pharmacology) and then the same cells were subsequently dye filled. We

have also used immunohistochemistry to show that Cx26 protein is expressed in these neurons. The expres-

sion pattern of Cx26 across development in SN DNs matched that reported for Cx26 mRNA expression

(Vandecasteele et al., 2006). This particular Cx26 antibody (13-8100) has been used extensively to study

the role of Cx26 in breathing. There are many independent papers that demonstrate the specificity of

this antibody in KO of Cx26. KO of Cx26 in the organ of Corti abolishes Cx26 immunoreactivity with this

antibody (Sun et al., 2009), and our prior publications show correspondence for Cx26 immunostaining

with a reporter driven from the endogenous Cx26 promoter (Huckstepp et al., 2010a, 2010b).

To separate the effects of CO2 from any effects of changing pH, we kept extracellular pH constant during

our experiments by using isohydric solutions (an increase in PCO2 under these conditions is termed isohy-

dric hypercapnia). However, we did not measure intracellular pH and there will probably be transient

changes in pH when the solutions are exchanged. It is well documented that intracellular pH will transiently

acidify on application of the stimulus (raised PCO2) and transiently alkalinize on its removal (Filosa et al.,

2002; Putnam, 2001). A mild intracellular acidification would be expected to result in hemichannel closure

and therefore a decrease in conductance. Therefore, we concluded that our observations were not the

result of a change in intracellular pH. In addition, these transient changes in pH cannot explain the marked

and sustained changes in conductance that only occur in these specific subtypes of neuron.

In this paper we have outlined the CO2 sensitivity of specific neurons in the SN and VTA and provided amech-

anism for this effect: Cx26 hemichannel expression. As far as we are aware this is the first documentation of

neuronal expression of Cx26, which is usually found in glia (Nagy et al., 2011). Although we have carried
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out no behavioral analysis of the effects of CO2 sensitivity, it is interesting to speculate on its possible behav-

ioral consequences. Since the mid-point of Cx26 opening lies around the resting level of CO2 in humans

(Huckstepp et al., 2010a, 2010b; Meigh et al., 2013), small increases or decreases in CO2 will modulate neuron

excitability and thus could potentially modulate behavior. This CO2 sensitivity switches from SN neurons to

glia during early postnatal development but is retained in GABAergic neurons in the VTA. The switch from

neuronal to glial expression could change the signaling direction from inhibitory to excitatory, as opening

hemichannels in glia can allow the diffusion of molecules such as ATP, which could in turn excite SN DNs

(through P2X or P2Y receptor activation). One speculated role for the CO2-mediated reduction in excitability

of SN DNs in early postnatal life is, since the nest is likely to be hypercapnic, inhibition of movement may pro-

mote suckling behavior. The maintenance of CO2 sensitivity in the VTA postnatally is particularly interesting

given its role in reward, addiction, motivation (Volkow and Morales, 2015), and sleep-wake behaviors (Eban-

Rothschild et al., 2016). Activation of GABAergic neurons in the VTA induces sleep, and their inhibition in-

creases wakefulness (Yu et al., 2018). There are several contributing mechanisms to hypercapnic arousal.

The orexinergic neurons of the lateral hypothalamus, known to promote wakefulness, can be activated by hy-

percapnia, although this is through a pH-dependent transduction mechanism (Williams et al., 2007). The his-

taminergic neurons of the tuberomamillary nucleus (TMN), which also promote wakefulness, are activated by

CO2 (Johnson et al., 2005; Anaclet et al., 2009). Neurons of the dorsal raphe, not involved in the control of

breathing are pH/CO2 sensitive and contribute to hypercapnic arousal (Smith et al., 2018). Furthermore,

the parabrachial nucleus integrates chemosensory inputs during hypercapnia from the medullary nuclei

such as the retrotrapezoid nucleus and the raphe magnus, which contain pH-sensitive neurons to mediate

arousal (Kaur et al., 2017). However, even after silencing these key relay neurons, hypercapnia still results in

arousal albeit at a longer latency showing that other parallel pathways are involved (Kaur et al., 2017). Given

that inhibition of the VTA GABAergic neurons have been demonstrated to cause wakefulness (Yu et al., 2018)

we hypothesize that inhibition of these neurons by modestly raised CO2 could potentially contribute an addi-

tional parallel pathway of hypercapnic arousal.

Limitations of the Study

This report outlines the novel observation of CO2 sensitivity in a specific subset of neurons with several lines

of evidence that it results from Cx26 hemichannel expression. There is no data on the physiological signif-

icance of this CO2 sensitivity, in particular regardingmovement and reward behavior. This will be examined

in future studies. There is no quantification of the expression pattern of Cx26 protein in either TH+ or GAD+

neurons. In the future, tools like fluorescence in situ hybridization (FISH) could be used to produce more

accurate measurements of expression.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

Mark Wall (Mark.Wall@warwick.ac.uk) or Emily Hill (E.hill.2@warwick.ac.uk).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

This study did not generate new code or structural datasets.
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All methods can be found in the accompanying Transparent Methods supplemental file.
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ACKNOWLEDGMENTS

This work was supported by a Biotechnology and Biological Sciences Research Council-funded doctoral

fellowship (E.H.) Wewould like to thank Dr. Huckstepp, Dr. Bhandare, and Dr. van deWiel for their technical

assistance.

ll
OPEN ACCESS

8 iScience 23, 101343, July 24, 2020

iScience
Article

mailto:Mark.Wall@warwick.ac.uk
mailto:E.hill.2@warwick.ac.uk
https://doi.org/10.1016/j.isci.2020.101343


AUTHOR CONTRIBUTIONS

E.H., M.J.W., and N.D. designed the experiments. E.H. conducted the experiments and performed the

analysis. E.H., M.J.W., and N.D. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 9, 2020

Revised: April 30, 2020

Accepted: July 1, 2020

Published: July 24, 2020

REFERENCES
Anaclet, C., Parmentier, R., Ouk, K., Guidon, G.,
Buda, C., Sastre, J.P., Akaoka, H., Sergeeva, O.A.,
Yanagisawa, M., Ohtsu, H., et al. (2009). Orexin/
hypocretin and histamine: distinct roles in the
control of wakefulness demonstrated using
knock-out mouse models. J. Neurosci. 29, 14423–
14438.

Badel, L., Lefort, S., Brette, Petersen, C.C.H.,
Gerstner, W., and Richardson, M.J.E. (2008).
Dynamic I-V curves are reliable predictors of
naturalistic pyramidal-neuron voltage traces.
J. Neurophysiol. 99, 656–666.

Bukauskas, F., and Peracchia, C. (1997). Two
distinct gating mechanisms in gap junction
channels: CO2-sensitive and voltage-sensitive.
Biophysical J. 72, 2137–2142.

Chieng, B., Azriel, Y., Mohammadi, S., and
Christie, M. (2011). Distinct cellular properties of
identified dopaminergic and GABAergic neurons
in the mouse ventral tegmental area. J. Physiol.
589, 3775–3787.

Connors, B., Benardo, L., and Prince, D. (1984).
Carbon dioxide sensitivity of dye coupling among
glia and neurons of the neocortex. J. Neurosci. 4,
1324–1330.

Dufour, M., Woodhouse, A., Amendola, J., and
Goaillard, J. (2014). Non-linear developmental
trajectory of electrical phenotype in rat substantia
nigra pars compacta dopaminergic neurons. Elife
3, e04059.

Eban-Rothschild, A., Rothschild, G., Giardino, W.,
Jones, J., and de Lecea, L. (2016). Neuronal
mechanisms for sleep/wake regulation and
modulatory drive. Nat. Neurosci. 19, 1356–1366.

Eldridge, F.L., Kiley, J.P., and Millhorn, D.E.
(1985). Respiratory responses to medullary
hydrogen ion changes in cats: different effects of
respiratory and metabolic acidoses. J. Physiol.
358, 285–297.

Filosa, J.A., Dean, J.B., and Putnam, R.W. (2002).
Role of intracellular and extracellular pH in the
chemosensitive response of rat locus coeruleus
neurones. J. Physiol. 541, 493–509.

Gourine, A.V., Kasymov, V., Marina, N., Tang, F.,
Figueiredo, M.F., Lane, S., Teschemacher, A.G.,
Spyer, K.M., Deisseroth, K., and Kasparov, S.
(2010). Astrocytes control breathing through pH-
dependent release of ATP. Science 329, 571–575.

Gourine, A.V., Llaudet, E., Dale, N., and Spyer,
K.M. (2005). ATP is a mediator of chemosensory
transduction in the central nervous system.
Nature 436, 108–111.

Grace, A., and Bunney, B. (1983). Intracellular and
extracellular electrophysiology of nigral
dopaminergic neurons—3. Evidence for
electrotonic coupling. Neuroscience 10, 333–348.

Grace, A., and Onn, S. (1989). Morphology and
electrophysiological properties of
immunocytochemically identified rat dopamine
neurons recorded in vitro. J. Neurosci. 9, 3463–
3481.

Hosford, P.S., Mosienko, V., Kishi, K., Jurisic, G.,
Seuwen, K., Kinzel, B., Ludwig, M.G., Wells, J.A.,
Christie, I.N., Koolen, L., et al. (2018). CNS
distribution, signalling properties and central
effects of G-protein coupled receptor 4.
Neuropharmacology 138, 381–392.

Huckstepp, R.T., Eason, R., Sachdev, A., andDale,
N. (2010a). CO2-dependent opening of connexin
26 and related beta connexins. J. Physiol. 588,
3921–3931.

Huckstepp, R.T., id Bihi, R., Eason, R., Spyer, K.M.,
Dicke, N., Willecke, K., Marina, N., Gourine, A.V.,
and Dale, N. (2010b). Connexin hemichannel-
mediated CO2-dependent release of ATP in the
medulla oblongata contributes to central
respiratory chemosensitivity. J. Physiol. 588,
3901–3920.

Johnson, P.L., Moratalla, R., Lightman, S.L., and
Lowry, C.A. (2005). Are tuberomammillary
histaminergic neurons involved in CO2-mediated
arousal? Exp. Neurol. 193, 228–233.

Johnson, S., and North, R. (1992). Two types of
neurone in the rat ventral tegmental area and
their synaptic inputs. J. Physiol. 450, 455–468.

Kaur, S., Wang, J., Ferrari, L., Thankachan, S.,
Kroeger, D., Venner, A., Lazarus, M., Wellman, A.,
Arrigoni, E., Fuller, P., and Saper, C. (2017). A
genetically defined circuit for arousal from sleep
during hypercapnia. Neuron 96, 1153–1167.e5.

kumar, N.N., Velic, A., Soliz, J., Shi, Y., Li, K.,
Wang, S., Weaver, J.L., Sen, J., Abbott, S.B.,
Lazarenko, R.M., et al. (2015). Regulation of
breathing by CO(2) requires the proton-activated
receptor GPR4 in retrotrapezoid nucleus neurons.
Science 348, 1255–1260.

Loeschcke, H. (1982). Central chemosensitivity
and the reaction theory. J. Physiol. 332, 1–24.

Meigh, L., Greenhalgh, S.A., Rodgers, T.L., Cann,
M.J., Roper, D.I., andDale, N. (2013). CO2 directly
modulates connexin 26 by formation of
carbamate bridges between subunits. Elife 2,
e01213.

Morales, M., and Margolis, E. (2017). Ventral
tegmental area: cellular heterogeneity,
connectivity and behaviour. Nat. Rev. Neurosci.
18, 73–85.

Nagy, J., Lynn, B., Tress, O., Willecke, K., and
Rash, J. (2011). Connexin26 expression in brain
parenchymal cells demonstrated by targeted
connexin ablation in transgenic mice. Eur. J.
Neurosci. 34, 263–271.

Neuhoff, H., Neu, A., Liss, B., and Roeper, J.
(2002). Ih channels contribute to the different
functional properties of identified dopaminergic
subpopulations in the midbrain. J. Neurosci. 22,
1290–1302.

Putnam, R.W. (2001). Intracellular pH regulation
of neurons in chemosensitive and
nonchemosensitive areas of brain slices. Respir.
Physiol. 129, 37–56.

Shams, H. (1985). Differential effects of CO2 and
H+ as central stimuli of respiration in the cat.
J. Appl. Physiol. 58, 357–364.

Smith, H.R., Leibold, N.K., Rappoport, D.A.,
Ginapp, C.M., Purnell, B.S., Bode, N.M., Alberico,
S.L., Kim, Y.C., Audero, E., Gross, C.T., and
Buchanan, G.F. (2018). Dorsal raphe serotonin
neurons mediate CO2-induced arousal from
sleep. J. Neurosci. 38, 1915–1925.

Sun, Y., Tang, W., Chang, Q., Wang, Y., Kong, W.,
and Lin, X. (2009). Connexin30 null and
conditional connexin26 null mice display distinct
pattern and time course of cellular degeneration
in the cochlea. J. Comp. Neurol. 516, 569–579.

Tovar, K., Maher, B., and Westbrook, G. (2009).
Direct actions of carbenoxolone on synaptic
transmission and neuronal membrane properties.
J. Neurophysiol. 102, 974–978.

Trapp, S., Aller, M.I., Wisden, W., and Gourine,
A.V. (2008). A role for TASK-1 (KCNK3) channels in
the chemosensory control of breathing.
J. Neurosci. 28, 8844–8850.

ll
OPEN ACCESS

iScience 23, 101343, July 24, 2020 9

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)30530-7/sref1
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref1
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref1
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref1
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref1
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref1
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref1
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref2
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref2
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref2
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref2
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref2
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref3
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref3
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref3
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref3
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref4
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref4
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref4
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref4
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref4
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref5
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref5
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref5
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref5
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref6
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref6
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref6
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref6
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref6
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref7
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref7
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref7
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref7
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref8
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref8
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref8
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref8
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref8
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref9
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref9
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref9
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref9
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref10
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref10
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref10
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref10
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref10
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref11
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref11
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref11
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref11
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref12
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref12
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref12
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref12
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref13
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref13
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref13
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref13
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref13
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref14
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref14
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref14
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref14
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref14
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref14
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref15
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref15
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref15
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref15
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref16
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref16
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref16
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref16
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref16
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref16
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref16
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref17
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref17
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref17
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref17
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref18
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref19
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref19
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref19
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref19
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref19
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref20
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref21
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref21
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref22
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref23
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref23
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref23
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref23
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref24
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref25
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref26
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref26
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref26
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref26
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref27
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref27
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref27
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref28
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref29
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref30
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref31
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref31
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref31
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref31


Turovsky, E., Theparambil, S.M., Kasymov, V.,
Deitmer, J.W., Del Arroyo, A.G., Ackland, G.L.,
Corneveaux, J.J., Allen, A.N., Huentelman, M.J.,
Kasparov, S., et al. (2016). Mechanisms of CO2/
H+ sensitivity of astrocytes. J. Neurosci. 36,
10750–10758.

van de Wiel, J., Meigh, L., Bhandare, A., Cook, J.,
Huckstepp, R.T., and Dale, N. (2020). Connexin26
mediates CO2-dependent regulation of breathing
via glial cells of the medulla oblongata. bioRxiv.
https://doi.org/10.1101/2020.04.16.042440.

Vandecasteele, M. (2005). Electrical synapses
between dopaminergic neurons of the substantia
nigra pars compacta. J. Neurosci. 25, 291–298.

Vandecasteele, M., Glowinski, J., and
Venance, L. (2006). Connexin mRNA
expression in single dopaminergic neurons of
substantia nigra pars compacta. Neurosci.
Res. 56, 419–426.

Volkow, N., and Morales, M. (2015). the brain on
drugs: from reward to addiction. Cell 162,
712–725.

Wang, S., Benamer, N., Zanella, S., Kumar, N.N.,
Shi, Y., Bevengut, M., Penton, D., Guyenet, P.G.,
Lesage, F., Gestreau, C., et al. (2013). TASK-2
channels contribute to pH sensitivity of
retrotrapezoid nucleus chemoreceptor neurons.
J. Neurosci. 33, 16033–16044.

Wenker, I.C., Sobrinho, C.R., Takakura, A.C.,
Moreira, T.S., and Mulkey, D.K. (2012). Regulation
of ventral surface CO2/H+-sensitive neurons by
purinergic signalling. J. Physiol. 590, 2137–2150.

Williams, R.H., Jensen, L.T., Verkhratsky, A.,
Fugger, L., and Burdakov, D. (2007). Control of
hypothalamic orexin neurons by acid and CO2.
Proc. Natl. Acad. Sci. U S A 104, 10685–10690.

Yu, X., Li, W., Ma, Y., Tossell, K., Harris, J.,
Harding, E., Ba, W., Miracca, G., Wang, D., Li, L.,
et al. (2018). GABA and glutamate neurons in the
VTA regulate sleep and wakefulness. Nat.
Neurosci. 22, 106–119.

ll
OPEN ACCESS

10 iScience 23, 101343, July 24, 2020

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)30530-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref32
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref32
https://doi.org/10.1101/2020.04.16.042440
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref34
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref35
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref36
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref36
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref36
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref37
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref37
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref37
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref37
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref37
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref37
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref38
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref38
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref38
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref38
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref39
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref39
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref39
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref39
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref40
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref40
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref40
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref40
http://refhub.elsevier.com/S2589-0042(20)30530-7/sref40


iScience, Volume 23

Supplemental Information

Moderate Changes in CO2 Modulate the Firing

of Neurons in the VTA and Substantia Nigra

Emily Hill, Nicholas Dale, and Mark J. Wall



1 

 

Supplementary Data  

 

Figure S1. Control for stability of recordings and for changing solution but maintaining constant 

PCO2, related to figure 1. (A) Graph plotting the voltage response to 50 pA hyperpolarising current 

steps from a P10 SN DN with each point the mean of 15 sweeps. The CO2 was maintained at 35 mm 

Hg but solutions were exchanged (arrow) to ensure that the observations are not an artefact of the 

solution switching process.  This also illustrates the stability of voltage responses throughout the 

recording. (B) Associated voltage traces (50 superimposed traces) in response to step currents at the 

indicated time points from A. (C) Quantification of the voltage response changes when the solution was 

exchanged, relative to the amplitude of the response at whole cell breakthrough, data is presented as 

mean ± SEM (points are from individual experiments). Red dashed line represents the decrease in 

response for cells which were exposed to high CO2 (55 mm Hg) after an equal amount of time. There 

is no effect of changing solution and the voltage response is stable over the duration of the recording.  
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Figure S2:  CA1 pyramidal cells show no dye loading or electrophysiological changes in 

response to high CO2, related to figure 1 (A) Localisation of CA1 region of the hippocampus in a 

sagittal slice (Adapted from Allen Mouse Brain Atlas, 2004). (B), (left) Bright-field image of the CA1 

region demonstrating the location of a recorded pyramidal cell (scale bar = 30 µM). The slice was then 

subjected to carboxy-fluorescein (CBF) dye-loading (see methods) as used for the SN and VTA. There 

was no visible dye loading of the neurons (right). (C), (Top) Membrane potential traces recorded from 

a CA1 pyramidal neuron in response to current steps (3 s steps starting at -200 pA, increasing by 50 

pA until there is a regular firing pattern) in 35 mmHg CO2. (Inset) Single membrane potential trace in 

response to the injection of -200 pA (3 s) in 35 mmHg CO2. (Bottom) Membrane potential traces 

recorded from the same CA1 pyramidal neuron in response to current steps in 55 mmHg CO2. Single 

membrane potential trace in response to a -200 pA (3 s) current step in 55 mmHg CO2.  
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Table S1: Comparison of the electrophysiological parameters of P7-10 and P17-21 SN 

dopaminergic neurons, related to figure 1.  

 

 

Rin Steady: Mann-Whitney non parametric test p = 0.3037 ns 

Rin Pre Sag: Mann-Whitney non parametric test: p = 0.0977 ns 

RMP: Mann- Whitney non parametric test p = 0.8352 ns 
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Figure S3: Comparison of the electrophysiological parameters of P7-10 and P17-21 SN neurons, 

related to figure 1.  

Input resistance measurements ‘both before the sag’ (A) and at ‘steady state’ (B) decreased during 

development in line with published studies (4). We saw no difference in the stability of recordings and 

there was no change to resting membrane potential (C). 

 

 

 

 

 

 

 Rin (pre-sag) MΩ Rin Steady MΩ RMP 

 Mean SEM 95% CI Mean SEM 95% CI Mean SEM 95% CI 

P7-
10  

380.4 ± 28.16 ± 55.2 246.9 ± 24.63 ± 48.3 -59.3 ± 1.33 ± 2.6 

P17-
21 

289.8 ± 22.45 ± 44 193.9 ± 42.85 ± 84 -60 ± 2.08 ± 4.07 

A B C 
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Figure S4: Example raw data traces for the full timeframe of raised CO2 exposure, related to figure 1. A representative example from a P7-10 substantia 

nigra dopaminergic neuron. Membrane potential traces in response to -50 pA current steps in 35 mmHg CO2 (black), then switched over to 55 mmHg CO2 (red). 

Each plot represents a timepoint from the graph in Figure 1B and displays 9 overlaid sweeps within each 15 second time interval. A clear reduction in voltage 

response can be observed over time, as is summarised in Figure 1B-C.  
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Raw data plots 

 

 

Figure S5: Raw data plots for raising CO2 in the substantia nigra, related to figure 1  Quantification 

of voltage response changes (35 to 55 mm Hg CO2), replicated from 1I. B-D represent the amplitude of 

the voltage response to a 50-pA hyperpolarising step current injection, in 35 mm Hg CO2 and 55 mm 

Hg CO2. Data points from each experiment is joined up by a line to represent that they are paired. It 

can be clearly observed in (B) that there is a decrease in the amplitude of the voltage response for P7-

10 mice, which is not replicated in the presence of carbenoxolone (C) or in older mice (P17-21, D).   

 

Table S2: Statistical analysis of data on raising CO2 in the substantia nigra, related to figure 1 

 

 

 

 

 

 

 

 

 

  
SN P7-10, 35 mm Hg vs 55 mm Hg p=0.0020 
SN P7-10 (carbenoxolone), 35 mm Hg vs 55 mm Hg p=0.0938 
SN P17-21, 35 mm Hg vs 55 mm Hg p=0.3302 
  
Kruskal-Wallis ANOVA: 
SN P7-10 vs P7-10 (carbenoxolone) vs P17-21 
 
Dunn’s multiple comparisons: 
P7-10 vs P7-10 (carbenoxolone) 
P7-10 vs P17-21 
P7-10 (carbenoxolone) vs P17-21 

p<0.0001 
 
 
p=0.0014 
p=0.0304 
p>0.9999 

B C D 

A 
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Figure 6: Raw data plots for lowering CO2 in the substantia nigra, related to figure 2. A. 

Quantification of the firing rate changes (35 mm Hg to 20 mm Hg CO2), replicated from 2D. B. Raw 

firing rate data, in 35 mm Hg CO2 and 20 mm Hg CO2. C. Quantification of voltage response changes 

(35 to 20 mm Hg CO2), replicated from 2E. D. The amplitude of the voltage response to a 50-pA 

hyperpolarising step current injection, in 35 mm Hg CO2 and 20 mm Hg CO2. In B and D, data points 

from each experiment is joined up by a line to represent that they are paired. An increase in firing rate 

and voltage response are observed.  

 

Table S3: Statistical analysis of data on lowering CO2 in the substantia nigra, related to figure 2 

  
SN Firing rate, 35 mm Hg vs 20 mm Hg p=0.0039 
SN Voltage response 35 mm Hg vs 20 mm Hg  p=0.0098 
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Figure S7: Raw data plots for raising CO2 in the ventral tegmental area, related to figure 4. A. 

Quantification of voltage response changes (35 to 55 mm Hg CO2), replicated from 3E. B. The amplitude 

of the voltage response to a 50-pA hyperpolarising step current injection, in 35 mm Hg CO2 and 55 mm 

Hg CO2. Data points from each experiment is joined up by a line to represent that they are paired. A 

decrease in voltage response can be observed.  

 

Table S4: Statistical analysis of the data on raising CO2 in the ventral tegmental area, related to 

figure 4 

  
VTA Voltage response 35 mm Hg vs 55 mm Hg  p=0.0055 
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Figure S8: Raw data plots for lowering CO2 in the ventral tegmental area, related to figure 4 A. 

Quantification of the firing rate changes (35 mm Hg to 20 mm Hg CO2). B. Raw firing rate data, in 35 

mm Hg CO2 and 20 mm Hg CO2. C. Quantification of voltage response changes (35 to 20 mm Hg CO2), 

replicated from 3H. D. The amplitude of the voltage response to a 50-pA hyperpolarising step current 

injection, in 35 mm Hg CO2 and 20 mm Hg CO2. In B and D, data points from each experiment is joined 

up by a line to represent that they are paired. An increase in firing rate and voltage response are 

observed. Increases to both firing rate and voltage response can be observed.  

 

Table S5: Statistical analysis of the data on lowering CO2 in the ventral tegmental area, related 

to figure 4 

 
VTA Voltage response 35 mm Hg vs 55 mm Hg  

p=0.0428 

VTA Firing Rate 35 mm Hg vs 55 mm Hg p=0.0490 
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Transparent methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Sheep polyclonal Anti-Tyrosine hydroxylase Merck AB1542 

Mouse monoclonal anti-Connexin 26 Invitrogen 138100 

Chicken polyclonal anti-GFAP Abcam ab4674 

Rabbit polyclonal anti-GAD65 + GAD67 Abcam ab49832 

Donkey anti-sheep 594 Invitrogen A11016 

Donkey anti-mouse 594 Invitrogen A21203 

Donkey anti-sheep 488 Invitrogen A11015 

Goat anti-chicken 488 Invitrogen A11039 
Goat anti-Rabbit 488 Invitrogen A11008 

Chemicals, Peptides, and Recombinant Proteins 

Met5[enkephalin] Merck M6638 

Carbenoxolone disodium salt Sigma Aldrich C4790-1G 

Dopamine Hydrochloride Sigma Aldrich H8502-5G 

(6)-Carboxy-fluorescein (CBF) Novabiochem 8.51082.001 

Alexa Fluor 594 hydrazide Molecular Probes 10072752 

Software and Algorithms 

pClamp  http://www.moleculardevices.com/prod
ucts/software/pclamp.html 

RRID:SCR_0
11323 

Zen Black http://www.zeiss.com/microscopy/en_u
s/products/microscope-
software/zen.html#introduction 

RRID:SCR_0
13672 

Origin http://www.originlab.com/index.aspx?g
o=PRODUCTS/Origin 

RRID:SCR_0
14212 

 

 

Methods  

Preparation of acute brain slices  

All experiments were approved by the local Animals Welfare and Ethics Board (AWERB) at the 

University of Warwick. C57/Bl6 mice from two age groups (P7-10 and P17-21) were killed by cervical 

dislocation and decapitated in accordance with the U.K. Animals (Scientific Procedures) Act (1986). 

The brain was rapidly dissected and kept on ice. The cerebellum was removed, and the rostral section 

of the brain was trimmed. The brain was then mounted rostral side down. Coronal slices (350 M) were 

cut with a Microm HM 650V microslicer in cold (2-4°C) high Mg2+, low Ca2+ aCSF, composed of (mM): 

127 NaCl, 1.9 KCl, 8 MgCl2, 0.5 CaCl2, 1.2 KH2PO4, 26 NaHCO3, 10 D-glucose (pH 7.4 when bubbled 

with 95% O2 and 5% CO2, 300 mOSM). Slices were stored at 34 °C in standard aCSF (1 mM Mg2+ and 

2 mM Ca2+) for 1 to 8 hours.  

 

Whole-cell patch clamp recording 

A slice was transferred to the recording chamber, submerged and perfused (2-3 ml/min-1) with aCSF at 

30 °C. Slices were visualized using IR-DIC optics with an Olympus BX151W microscope (Scientifica, 

Bedford UK) and a CCD camera (Hitachi). Whole-cell current-clamp recordings were made from 

neurons in the substantia nigra, ventral tegmental area or from CA1 pyramidal neurons in the 

hippocampus using patch pipettes (5–10 MΩ) manufactured from thick walled glass (Harvard 

Apparatus, Edenbridge, UK). Intracellular solution was filtered before use (0.2 m) and contained in 

(mM): potassium gluconate 135, NaCl 7, HEPES 10, EGTA 0.5, phosphocreatine 10, MgATP 2, NaGTP 

0.3 293 mOSM, pH 7.2). A subset of neurons were filled with AF594 dye (50 M) via the patch pipette 

for immunohistochemistry. Voltage recordings were made using an Axon Multiclamp 700B amplifier 
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(Molecular Devices, USA) and digitised at 20 KHz. Data acquisition and analysis were performed using 

pClamp 10 (Molecular Devices). Recordings from neurons that had a resting membrane potential of 

between -55 and – 75 mV at whole-cell breakthrough were accepted for analysis. The bridge balance 

was monitored throughout the experiments and any recordings where it changed by more than 20 % 

were discarded.  

 

Solutions are based on Huckstepp et al (2010) 

Control (35 mmHg CO2) aCSF contained in (mM): NaCl 124, NaHCO3 26, NaH2PO4 1.25, KCl 3, D‐

glucose 10, MgSO4 1, CaCl2 2, bubbled with 95%O2 5% CO2 with a final pH of ~7.4. 

Hypercapnic (55 mmHg CO2) aCSF contained in (mM): NaCl 100, NaHCO3 50, NaH2PO4 1.25, KCl 

3, D‐glucose 10, MgSO4 1, and CaCl2 2. Solution was saturated with 9% CO2 (with the balance being 

O2) with pH maintained to match control (35 mm Hg).  

Hypocapnic (20 mm Hg CO2) aCSF contained in (mM): NaCl 140, NaHCO3 10, NaH2PO4 1.25, KCl 

3, D-glucose 10, MgSO4 1 and CaCl2 2. Solution was saturated with 2% CO2 (with the balance being 

O2), with pH maintained to match control (35 mm Hg). 

 

Stimulation Protocols 

Standard IV protocol 

A standard current-voltage relationship was constructed by injecting step currents (3 s duration, every 

5 s) starting at -200 pA and then incrementing by either 50 or 100 pA until a regular firing pattern was 

induced. A plot of step current against voltage response around the resting potential was used to 

measure the input resistance (gradient of the fitted line). 

 

Naturalistic current injection  

The naturalistic current was generated using the summed numerical output of two Ornstein–Uhlenbeck 

processes (Uhlenbeck & Ornstein, 1930) with time constants fast = 3 ms and slow = 10 ms. This 

naturalistic current waveform (as in Badel et al, 2008), which mimics the stochastic actions of AMPA 

and GABA-receptor channel activation, was injected into cells (40 s duration) and the resulting voltage 

recorded (as a fluctuating noisy trace). This voltage trace was then used to evaluate the frequency of 

action potential firing.  

 

Current Injection to assess conductance changes  

A hyperpolarising step of 50 pA (100 ms) was injected at a frequency of 1 Hz. This allowed the time 

course of changes in input resistance/conductance to be assessed. For analysis, averages were 

constructed for 10-minute periods in 35 mm Hg and 55 mmHg CO2 (when the effects of CO2 had 

reached steady state).  

 

For each recording, once whole cell breakthrough had occurred cells were allowed to equilibrate 

for a few minutes. Following this a standard IV curve was constructed and naturalistic current 

traces were injected to enable the measurement of firing rate. After these measurements had 

been recorded (5-10 mins post- whole cell breakthrough), the hyperpolarising step current was 

initiated to look for voltage changes in response to altered levels of carbon dioxide (from 35 mm 

Hg to 55 mm Hg, isohydric).  
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Immunohistochemistry  

Mice (P7-10 and P17-20) were cardiac perfused with 4% PFA and then post-fixed overnight at 4ºC. The 

tissue was washed with PBS and then sliced coronally (350 m).  The slices were left to recover for 1 

hour and then were blocked for an hour (1% BSA, 0.4% Triton 100X in PBS, 400 l per slice) then 

washed 3 times for 5 minutes with PBS. The primary antibodies against tyrosine hydroxylase, (1:1000, 

Sheep), GFAP (1:1000, Chicken) or GAD65/67 (1:1000, Rabbit) and the primary antibody against 

connexin 26 (1:200, Mouse) were added to the slices (400 l per slice) for an hour at room temperature 

and then kept at 4-8ºC overnight. Slices were washed 5 times for 5 minutes with PBS and the 

corresponding secondary antibody (anti-sheep 488, 1:500, anti-mouse 594, anti-sheep 594, anti-

chicken 488 or anti-rabbit 488, 1:500, 400 l per slice) added for 4 hours at room temperature. The 

slices were then washed 5 times for 5 minutes with PBS, and then mounted on glass slides with 

Vectashield (Vector laboratories, Peterborough UK). All imaging was carried with confocal microscopy 

(Leica 710 and Zen Black for image acquisition and processing). Controls were carried out without the 

primary antibodies and showed no fluorescence.  

 

Dye loading  

The dye loading method is based on that described in Huckstepp et al (2010).  Briefly, a slice was 

transferred to the recording chamber, submerged and perfused (2-3 ml/min-1) with control aCSF (35 

mmHg CO2) at 30 °C. Slices were visualized using IR-DIC optics with an Olympus BX151W microscope 

(Scientifica, Bedford UK) and a CCD camera (Hitachi). To confirm the correct location for imaging, 

whole cell patch clamp recordings were used to identity DNs and GABAergic neurons in the SN and 

VTA (Fig. 1 and 4).  Slices were then allowed to equilibrate for 20 minutes. The control aCSF was then 

exchanged for 55 mmHg CO2 aCSF (hypercapnic) containing 5(6)-carboxy-fluorescein (CBF, 100 M) 

for 20 mins to allow the CO2 sensitive-hemichannels to open. The solution was then exchanged for 35 

mmHg CO2 aCSF containing CBF (100 M) for 5 minutes to allow the hemichannels to close. Finally, 

the slice was washed with 35 mmHg CO2 aCSF for 3 hours to reduce the background staining before 

imaging. Images were taken using the CCD camera (Hitachi) with 488 nm fluorescence (CoolLED). As 

CBF rapidly bleaches, images were quickly acquired from regions of interest. CBF cannot be fixed using 

PFA (as it lacks the required groups for cross-linking).  

 

Statistics  

Data is represented as mean and standard error of the mean with individual experiments represented 

by single data points. Appropriate statistical tests were chosen based on sample size, whether there 

were repeated measures and whether the populations were paired or unpaired (Wilcoxon rank sum/ 

paired t-tests and Mann Whitney tests respectively). For tests of more than two variables, Kruskal-

Wallis ANOVAs were run with Dunn’s post hoc multiple comparisons. All tests were run to find 

significance at the level p < 0.05 and were performed on raw (non-normalised) data, available in 

supplementary data (figures 5-8). 
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