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Systems, Department of Theoretical Physics, Physics Faculty, University of Havana, La Habana, Cuba, 4 Dipartimento di Fisica, Università di Parma and INFN Sezione di
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Abstract

Within a fully microscopic setting, we derive a variational principle for the non-equilibrium steady states of chemical
reaction networks, valid for time-scales over which chemical potentials can be taken to be slowly varying: at stationarity the
system minimizes a global function of the reaction fluxes with the form of a Hopfield Hamiltonian with Hebbian couplings,
that is explicitly seen to correspond to the rate of decay of entropy production over time. Guided by this analogy, we show
that reaction networks can be formally re-cast as systems of interacting reactions that optimize the use of the available
compounds by competing for substrates, akin to agents competing for a limited resource in an optimal allocation problem.
As an illustration, we analyze the scenario that emerges in two simple cases: that of toy (random) reaction networks and
that of a metabolic network model of the human red blood cell.
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Introduction

The dynamics and thermodynamics of chemical reaction

networks is a subject that goes back at least to [1–6]. Recent

years have seen considerable interest in the problem at different

levels, from the characterization of their mass-action kinetics [7]

and of their stochastic thermodynamics based on the chemical

master equation [8,9], to the analysis of their non-equilibrium

steady states (NESS) [10–13]. Besides their relevance for

fundamental understanding, these approaches provide an impor-

tant frame for the study of real biochemical systems, like genome-

scale reconstructions of cellular metabolic networks [14–16]. The

most basic information about these systems is usually encoded in

the matrix of stoichiometric coefficients, representing in essence

the (weighted) topology of the couplings between chemical species

and reactions. With uncertainties about kinetic parameters and

reaction or transport mechanisms often preventing large-scale

kinetic approaches (with exceptions like the the metabolism of

human erythrocytes [17]), the challenge at the simplest level is that

of building stoichiometry-based predictive models of metabolic

activity at genome scale. Much information on the organization of

reaction fluxes in NESS can indeed be obtained from constraint-

based models that rely on minimal mass-balance [18–20] or

stability [21,22] assumptions. Such descriptions revolve around

pre-defined (and physically motivated) sets of local constraints,

enforcing for instance mass balance at each metabolite node in the

network. It would be interesting (and instructive) to derive the

relevant local constraints as the result of a mathematical analysis of

the dynamics taking place on the network, both to further clarify

the assumptions behind the models and to highlight their

limitations.

This work revisits the joint dynamics of concentrations and

reaction fluxes in chemical networks in a statistical mechanics

frame. In specific, we obtain a variational principle that relates

fluxes (i.e. the average number of microscopic transitions per time

per volume for each process) in NESS to the minima of a global

function where stoichiometric coefficients and steady-state con-

centrations appear as parameters. This function is reminiscent of

the Hamiltonian of a Hopfield model with Hebbian couplings

[23], with stoichiometry playing the role of the patterns. An

analysis of its physical meaning explicitly shows that reaction

networks dynamically converge towards states where the use of the

available compounds is optimized and the rate of decay of entropy

production is minimized. The flux organization problem turns out

to have remarkable similarities with that of optimal resource

allocation by heterogeneous agents, as described e.g. by Minority

Games [24,25]. Systems of this type generically undergo a

transition from an ergodic phase (the NESS is independent of

the initial conditions of the dynamics) to a non-ergodic one when

the ratio between the number of reactions and that of chemical

species is changed. In our case, the two regimes are described by

different sets of local constraints. We shall first explore this

scenario in toy ‘‘random’’ reaction networks where such a

transition can be fully analyzed numerically. Then a simple real

system will be considered, namely the reduced metabolic network
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model of human erythrocytes. Finally, we shall discuss the

relevance of these results for the quantitative analysis of cellular

metabolism.

Analysis

The Variational Principle
We consider an open system enclosed in a volume V (a reactor

or ‘‘cell’’, for brevity), formed by M distinct chemical species

(labelled m) that can be processed by N distinct reactions (labelled

i,j, . . .) at fixed temperature T, pressure, ionic strength and pH.

The reaction stoichiometry is described by the coefficients jm
i , with

the convention that negative (resp. positive) coefficients identify

substrates (resp. products) in the ‘forward’ direction of reaction i.

Individual reaction events occur stochastically with rates (number

of events per unit time) proportional to the substrate concentra-

tions, which vary in time. At stationarity and for ideal systems, the

Gibbs energy (GE) change per mole associated to each reaction i,

i.e. [26]

DGi~DGi,0zRT
X

m

jm
i log (xm=x0) ð1Þ

(where R is the gas constant, xm the intracellular concentration of

species m, x0 a reference concentration and DGi,0 the GE change

in standard conditions at concentration x0) characterizes its

distance from detailed balance. Specifically, the forward (wi,z) and

reverse (wi,{) fluxes of i, i.e. the average number of transitions per

time per volume, satisfies the relation {bDGi~ log (wi,z=wi,{)

with 1=b:RT [10]. At equilibrium, wi,z~wi,{ and DGi~0 for

each i.

We focus on the time evolution of the internal composition of

such a chemical reactor. The dynamics of this system is driven

essentially by two factors: (a) the fact that molecules can

stochastically enter or leave the system, and (b) the fact that

reactions events occur (stochastically) inside the system. Reason-

ably, then, the NESS will depend (a) on the rate at which

molecules can cross the system’s boundaries per unit volume

(intake or outtake fluxes, denoted by um), and (b) on the rates of the

internal reactions (more precisely, on the average net number of

microscopic transitions per time per volume, denoted by wi ). In the

following we will show specifically that, given the boundary fluxes

um (characterizing the environment), over time scales for which the

chemical potentials can be assumed to vary slowly (so that

concentrations can be assumed to be roughly constant) the internal

fluxes in a NESS minimize the function

H~
X

m

1

x
m
?

X
i

jm
i wi{um

" #2

§0, ð2Þ

where xm
? denotes the concentration of species m.

Assume that at time t~0 the system is characterized by

molecular populations (number of molecules) nm(0). Consider a

time interval of size dt and let ni(t) denote the net number of

transitions of reaction i that take place between time t and time

tzdt. The latter is a random number governed by a probability

law (which shall depend, e.g., on the concentration of substrates)

that we leave unspecified for the moment. The corresponding

variation of nm’s is given by

nm(tzdt){nm(t):dnm(t)~
X

i

jm
i ni(t){bm(t), ð3Þ

where bm(t) stands for the net (random) number of molecules of

species m taken in (if bm
v0) or out (if bm

w0) between time t and

time tzdt. Taking V to be fixed, the time-evolution of

concentrations xm is simply

xm(tzdt){xm(t):dxm(t)~
dnm(t)

V
: ð4Þ

We now focus on the quantity

yi(t)~yi,0{
X

m

jm
i log½xm(t)=x0� (with yi,0~{bDG i,0), ð5Þ

whose change between times t and tzdt is given by

yi(tzdt){yi(t):dyi(t)~{
X

m

jm
i log

xm(tzdt)

xm(t)
, ð6Þ

with initial conditions yi(0)~yi,0{
P

m jm
i log½xm(0)=x0�. Equa-

tion (3) contains sources of stochasticity in the ni’s and the bm’s. As

a consequence, the ‘‘macroscopic’’ variables xm and yi will

fluctuate stochastically as well. Our aim is to characterize the

steady state(s) of (6). We make the following simplifying

assumptions:

A1. Molecular populations are large enough to allow us to treat

xm as a continuous variable. This is generically assumed to be the

case in real cells, although e.g. in E. coli the number of copies of

certain small molecules can be as low as a few tens (corresponding

to a concentration of the order of 10 nM [27]). The effects

induced by molecular noise can be non trivial [9] and accounting

for it might alter the emerging picture [28].

A2. The quantity dxm=xm^ _xxmdt=xm is small (i.e. the chemical

potential gm~g
m
0zRT log xm, with g

m
0 the standard chemical

potential, is roughly constant), so that dyi(t) can also be taken to be

small.

Under the above assumptions the right-hand side of (6) is easily

linearized to yield

yi(tzdt){yi(t)^
1

V

X
j

{
X

m

jm
i jm

j

xm(t)

" #
nj(t)z

1

V

X
m

jm
i bm(t)

xm(t)
: ð7Þ

This equation highlights the way in which concentrations affect

the time evolution of the system and, in principle, one would now

need to analyze the coupled system formed by (4) and (7).

However, for simplicity, we replace xm(t) with some time-

independent limit value xm
?. This approximation can only be

justified as long as one considers evolution over time scales shorter

than xm= _xxm. If however concentration changes are sufficiently slow

(in agreement with homeostasis) it is reasonable to expect that it

will hold over time scales much longer than those required to

reach a NESS. With this, (7) takes the form

yi(tzdt){yi(t)^
1

V

X
j

Jijnj(t)z
1

V

X
m

jm
i bm(t)

x
m
?

: ð8Þ

where the ‘‘couplings’’ Jij are defined as

A Variational Principle for Reaction Networks
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Jij~{
X

m

jm
i jm

j

x
m
?
: ð9Þ

The steady state of (7) can now be obtained straightforwardly by

dividing both sides by dt and averaging over time. This gives

S
dyi

dt
T~

X
j

JijS
vj(t)

Vdt
Tz

X
m

jm
i

x
m
?

S
bm(t)

Vdt
T: ð10Þ

Note that Svi(t)=VdtT:wi is the net flux of reaction i (the

average net number of microscopic transitions per time per

volume) while Sbm(t)(t)=VdtT:um represents the uptake of species

m (the average number of molecules of species m per time per

volume entering or leaving the cell). Defining

hi~
X

m

jm
i um

x
m
?

ð11Þ

we therefore have

S
dyi

dt
T~hiz

X
j

Jijwj:{
1

2

LH

Lwi

, ð12Þ

with

H~
X

m

1

x
m
?

X
i

jm
i wi{um

" #2

§0: ð13Þ

This implies that, on average, the stochastic dynamics of reactions

collectively minimizes the function H so that the NESS of (12)

correspond to the solutions of the minimization problem

min
fwig

H, ð14Þ

constrained by the uptake values and by the fact that the wi’s are

assumed to be bounded by enzyme availability, so that

wi[½wi,min,wi,max�.
Following [24,25], we can characterize the behavior of fluxes in

NESS by noting that the solutions of (12) for t?? (which are

expected to be linked to the Gibbs energy change of reaction i in a

NESS) are generically of the form SyiT*cit with

ci:hiz
P

j Jijwj , since ci is constant in NESS. In practice, the

stochastic dynamics of yi for different reactions will be character-

ized by different values of ci, depending on the asymptotic

behavior. If yi tends to a finite value as t?? then ci~0. Recalling

that the Gibbs energy change is related to the forward-to-reverse

flux ratio through the detailed balance condition, this describes the

case of a reaction whose microscopic transitions occur bidirec-

tionally even for t??, i.e. such that the forward and reverse

fluxes are both non-zero in the steady state. Specifically, its flux is

determined by the condition hi~{
P

j Jijwj . When ci=0,

instead, yi increases or decreases linearly in time (after a transient)

and diverges for t?? so that, in the corresponding NESS,

reaction i will be characterized by unidirectional microscopic

transitions for t??. Note that if ci~0 then H is indeed

minimized by solving LH=Lwi:{2ci~0, whereas for ci=0 the

minimum of H is achieved by taking wi as large (if ciw0) or as

small (if civ0) as possible, i.e. wi~wi,max (resp. wi~wi,min) if ciw0

(resp. civ0).

Physical Meaning of H
For a start, notice that the change in yi is expressed in

equation (8) as the sum of two terms. The first accounts for the

coupling of i to other reactions in the network via shared

compounds (the coupling coefficient Jij is non-zero only if i and

j have a metabolite with finite concentration in common).

Consider a species m and two reactions i and j such that jm
j w0 (

j produces m) and jm
i v0 (m is consumed by i). Then Jijw0 and

a positive net advancement of reaction j will contribute to the

increase of yi, see (8). Now looking at (6) it is reasonable to

expect that the probability of observing a forward transition for

reaction i between time t and time tzdt will be larger the

larger (and positive) is yi(t) (in agreement with the fluctuation

theorem [8]; we shall see an explicit example of this later on).

Therefore in this case a positive net advancement of reaction j

will ultimately increase the probability of a concomitant

advancement of reaction i. In other words, this situation favors

the emergence of a positive correlation between reactions i and

j. Likewise, if both i and j are either producing (jm
i w0, jm

j w0)

or consuming (jm
i v0, jm

j v0) species m, their coupling will tend

to anti-correlate ni and nj . In this case the dynamics discourages

over-production or over-consumption of a chemical species. A

similar picture holds for the coefficients hi, which are related to

the presence of sources (like nutrients) and sinks (e.g. outtakes)

in the network. A non-zero hi acts as a force of magnitude

proportional to DumD that tends to polarize in a particular

direction a reaction i that is stoichiometrically connected to a

compound m with um
=0. The favoured direction depends on

whether m is a source or a sink and on the sign of jm
i . This

effect can propagate to other nodes connected to i if DumD is

sufficiently large. The role of the concentrations xm
? appearing

in Jij and hi is in essence that of modulating the strength of the

couplings and of the forcing fields with the availability of the

intermediate metabolites. Indeed, Jij ’s get stronger when the

intermediate compounds are present in smaller amounts,

stressing the emergence of positive correlations between

processes (if Jijw0) or the limits imposed by competition for

a limited resource (if Jijv0). When the concentration of the

intermediate is large, instead, the coupling gets weaker and i

and j may become effectively independent. The impact of hi is

understood along similar lines. In this way, the original bipartite

network of reactions and metabolites can be re-cast as a system

of interacting reactions with Hebbian couplings, as shown in

Figure 1. This is strongly reminiscent of Hopfield models of

neural networks. In such a scenario, finding the steady state(s) of

(7) is equivalent to finding the ground states of a system of

reactions interacting with ‘‘energy’’ H.

From a physical standpoint, H quantifies the resource mis-usage

by the network so that, by minimizing H, the system strives to

reach states in which compounds are used as optimally as possible,

given the initial conditions yi(0) (that also account for the standard

GEs and hence, to some degree, for the a priori reversibility), the

stoichiometry, the available nutrients, the production goals, etc.

Whether for a given network the minimum of H is zero or not then

depends on several factors, including the bounds on fluxes and the

specific form of the uptakes. Note that min H~0 would imply that

at stationarity

A Variational Principle for Reaction Networks
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X
i

jm
i wi~um Vm, ð15Þ

i.e. that in the steady state a Kirchhoff-law type of scenario holds

in which strict mass-balance conditions are satisfied for each

chemical species. The network in this case organizes the fluxes so

that consumption and production exactly match for each species

and meet the nutrient availability and outtake requirements

described by the vector fumg. On the other hand, the physically

relevant states with min H§0 can more generally be thought to

have

X
i

jm
i wi§um Vm, ð16Þ

otherwise the system could e.g. consume a nutrient in excess of its

availability. Both sets of conditions have been employed for the

modeling of cellular metabolic networks. In particular equations of

the type of (15) are the basis of the highly successful flux-balance-

analysis (FBA) [19,20], where biological functionality is included as

an additional ad hoc constraint usually represented by the

maximization of a specific score function (e.g. biomass production

for E. coli in an optimal environment). The conditions (16) are

instead reminiscent of Von Neumann’s model of reaction networks

[29], where self-consistent flux states with a net positive production

of intracellular metabolites can be allowed. This type of approach

can be helpful in analyzing the metabolic capabilities of an

organism and, if statistically robust production profiles emerge, in

inferring (rather than postulating) cellular objective functions, with

the idea that chemical species that are globally produced (e.g.

amino acids) are employed in macromolecular processes (like

protein formation) that are not encoded by the reaction

stoichiometry. We remark however that within the above setting

finding the NESS of the system means minimizing H, which

obviously is a priori different from solving (15) or (16).

A broader physical insight can be obtained by studying how H

relates to standard quantities used to characterize non-equilibrium

behavior in reaction networks, such as the entropy production.

Indeed the entropy production per volume _SSint of the system

enclosed in the ‘‘cell’’ of volume V is given by

T _SSint~{
X

m

_xxmgm, ð17Þ

where xm is the concentration of species m and gm~g
m
0zRT log xm

is its chemical potential. Taking time derivatives keeping in mind

that at stationarity _xxm is constant, one easily finds that

H^
P

m ( _xxm)2=xm~{€SSint=R. Now since H§0, €SSintƒ0. In

addition, H is constant in NESS. It follows that for time scales

shorter than xm= _xxm (i.e. for time scales over which chemical

potentials are roughly constant) one has

_SSint^ _SSint(0){RHt: ð18Þ

H is thus seen to play the role of the rate at which the entropy

production changes in a NESS. If min H~0 (i.e. if the NESS is

flux-balanced), then _SSint must vanish as well (since

T _SSint~{
P

m gm(
P

i jm
i wi{um)), leading to a state with constant

entropy. If min Hw0, instead, the entropy production is non-zero

and decreases at the smallest allowed rate. Correspondingly, the

entropy ‘‘slows down’’ quadratically over the time scales for which

the theory holds. (Note that for sufficiently long times the entropy

Figure 1. Mapping of a reaction network to a system of interacting reactions. Panel (a) Toy reaction network with reactions represented as
circles and chemical species as squares. Continuous, dashed, incoming drawn and outgoing drawn arrows denote stoichiometric coefficients and
uptakes, respectively jm

i w0, jm
i v0, um

v0 and um
w0. Panel (b) Reduced reaction network with couplings and ‘‘fields’’ given by (9). Continuous,

dotted, incoming grey and outgoing grey arrows denote respectively Jijw0, Jijv0, hiw0 and hiv0. For instance, J13~{jC
1 jC

3 =xC
v0,

h1~jA
1 uA=xA

w0. Grey arrows are double-headed when the sign of h depends on the precise values of stoichiometric coefficients and uptake fluxes.

For instance, the value of h2~jD
2 uD=xDzjF

2 uF=xF depends on the choice of the j’s and u’s, since the first term in the sum is negative while the
second is positive.
doi:10.1371/journal.pone.0039849.g001
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production can become negative if Hw0, implying that this limit

may be unphysical.) In summary, the NESS that can be obtained

are either characterized by H~0, zero entropy production and

hence constant entropy, or by Hw0, positive entropy production

decreasing in time as slowly as possible and entropy increasing in

time accordingly.

It is noteworthy that this scenario essentially characterizes the

Lyapunov condition described in [30] for the stability of stationary

states (Chapter 18). The Lyapunov function in our case can be

computed explicitly, takes the form (13), its minimization bears a

further physical meaning in terms of optimal resource allocation,

and provides an equivalent description of the reactor as a system of

processes interacting via Hebbian couplings. Indeed the quantity H

appears in the Gibbs theory of thermodynamic stability for ideal

systems. Let us consider a system at equilibrium with vanishing net

fluxes and evaluate the effect of a perturbation that drives the system

away from equilibrium. Such a perturbation corresponds to a (small)

change in the turnover dzi of each reaction i, which can be achieved

e.g. by forcing a (small) non-zero flux wi through each reaction i for a

time dt, so that dzi!widt. The free energy per volume associated to

the perturbed state is easily found to be given by

G^GeqzRTHdt2
wGeq, ð19Þ

in agreement with the second law of thermodynamics. After turning

off the perturbation, the system will relax back to equilibrium by

minimizing G (i.e. H).

Results

A Toy Model: Random Reaction Networks
A simple algebraic argument allows to understand that,

generically, a qualitative change in the solutions of (14) is expected

to take place as one varies the ratio between the network

parameters N and M. Let Nrev denote the number of reactions that

remain asymptotically bidirectional, i.e. such that ci~0. The

conditions
P

j Jijwj~{hi that they must satisfy form a set of Nrev

equations, M of which at most are independent (strictly speaking,

the rank of the matrix fJijg equals that of the stoichiometric

matrix fjm
i g, see (9); it is however always possible to eliminate

dependencies in the latter so as to attain full rows rank). Neglecting

the fact that variables are bounded, we can say that when the

number of variables (Nrev) exceeds that of equations the system is

underconstrained and multiple solutions occur. So multiple steady

states exist when MvNrev. Note that Nrev is determined

dynamically by (7) with initial conditions yi(0). This suggests that

different choices of yi(0) will lead to different steady states, i.e. that

when MvNrev ergodicity (i.e. independence of the steady state on

initial conditions) won’t hold. A transition is thus expected to occur

when Nrev~M.

Such a transition can be fully investigated within the following,

simple model: the stoichiometric coefficients fjm
i g are indepen-

dent, identically distributed random numbers (such that each

reaction uses and produces a finite fraction of the possible

compounds), and the dynamics of the network advances in discrete

time steps of size dt. In specific, at each time t the ni’s take on

values stochastically in f{1,1g with

Probfni(t)~1g
Probfni(t)~{1g~eyi (t)~eyi,0 P

m
xm(t)

{j
m
i , ð20Þ

i.e. with Probfni(t)~+1g! exp½+yi(t)=2�. Note that the above

probability ratio is proportional to the ratio between the

concentration of substrates and that of products of the reaction.

Clearly, (20) does not allow to capture the temporal structure

induced by the Arrhenius law, because by forcing each reaction to

take place at every time step it neglects the fact that activation

energies (and hence characteristic timescales) can differ signifi-

cantly across reactions. It is however reasonable to think that the

steady state will be unaffected by these transients. On the other

hand (20) makes the theory considerably easier from a mathemat-

ical viewpoint and the final result for the steady state (which is the

focus of the present work) more transparent. Setting V~dt~1 for

simplicity, so that {1ƒwiƒ1 for each i, one can follow [31] to

derive the continuous-time limit of (7) for large N and M. The

result is the Langevin process

_yyi~hiz
X

j

Jij tanh (yj=2)zgi, ð21Þ

where gi is a Gaussian noise with zero mean. Clearly, time-

averaging leads back to (12) with wi~Stanh (yi=2)T. Recalling

that {bDGi~ log (wi,z=wi,{) and noting that this implies

wi:wi,z{wi,{~(wi,zzwi,{) tanh ({bDGi=2) where, by (20),

wi,zzwi,{~1, this in turn suggests the relation

DGi~{
2

b
arctanhStanh (yi=2)T:{

1

b
log

1zStanh (yi=2)T
1{Stanh (yi=2)T

,ð22Þ

which explicitly links the thermodynamic driving force of a

reaction to the (stochastic) dynamics of the quantity yi. The fact

that the final result differs from the naı̈ve intuition {bDGi~SyiT
is a direct consequence of the stochastic fluctuations encoded in

(20). Note that the dynamics (20) thus converges to NESS (minima

of H) that are thermodynamically feasible, in agreement with the

second law of thermodynamics. We can study the linear stability of

(21) by setting

yi(t)~2arctanh(w?i )zli(t) ð23Þ

where fw?i g is a NESS and li(t) is a zero-average noise

representing (small) perturbations to the trajectory. Reactions

with w?i ~+1, for which yi diverges, will be insensitive to li(t).

Hence it suffices to focus our attention on the response of reactions

for which (w?i )2
v1. To first order in li, fluctuations are easily

found to obey the condition

_lli~{
1

2

X
j

Sijlj ð24Þ

Sij~{Jij ½1{ tanh2 (y?j =2)�, ð25Þ

where y?i ~2arctanh(w?i ). Now if all eigenvalues of the matrix Sij

are positive the dynamical system will be linearly stable as small

perturbations occurred along the trajectories will die out in time.

The term 1{ tanh2 (yj=2) is clearly positive, hence it suffices to

check that the smallest eigenvalue of the matrix

{Jij~
P

m jm
i jm

j =xm
? is positive. Assuming that jm

i are indepen-

dently and identically distributed, the spectrum of Jij can be

computed, in the limit N?? with n~N=M finite, using the

results of [32]. For the smallest eigenvalue one finds

lmin~a2 1{
ffiffiffiffiffiffiffiffi
nrev
p� �

, where nrev~Nrev=M and a2 is a constant.

Hence stability (and ergodicity) requires nrevv1. When nrevw1,

A Variational Principle for Reaction Networks
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instead, the dynamics will be sensitive to small perturbations and,

reasonably, its steady state will be selected by the initial conditions

yi(0). The marginal stability condition nrev~1 coincides with the

rough algebraic estimate of the transition point made above, i.e.

Nrev~M.

To illustrate the scenario underpinned by the above theory, we

have simulated the dynamics defined by

yi(tz1){yi(t)~
X

j

Jijnj(t)zhi, ð26Þ

for an ensemble of artificial reactors formed by M species and N

reactions in order to analyze the dependence of its steady state(s)

on n~N=M. Stoichiometric coefficients were chosen randomly,

so that jm
i ~0 with probability p and jm

i ~+1 with probabilities

(1{p)=2, independently on i and m. Similarly, for the boundary

metabolites we took um~0 with probability q and um~+1 with

probability (1{q)=2, independently on m. For sakes of simplicity,

we set xm
?~1 for all m (it is clear that the choice of xm

? does not

affect the transition point where H vanishes; it only changes the

value of min H in the ergodic phase). No prior assumption on

reversibility was made, i.e. all microscopic transitions can initially

occur in both directions for each process. The coefficients Jij and

hi are defined as in (9) and (11) except for the fact that Jij is re-

scaled by
ffiffiffiffiffi
N
p

to ensure that the system is well-behaved when

N&1, while ni(t) evolves according to (20). For consistency, H for

this case is defined as

H~
1

M

X
m

1

x
m
?

1ffiffiffiffiffi
N
p

X
i

jm
i wi{um

" #2

: ð27Þ

Results for p~q~1=2 are shown in Figure 2. One sees that

initializing the dynamics from ‘‘equilibrium’’ conditions yi(0)~0
for each i one ends up in stationary states with Hw0 for nvnc^3
whereas H~0 for nwnc. Similarly, nrevv1 for nvnc while

nrevw1 for nwnc, so that the critical point is indeed marked by the

condition nrev~1. When the dynamics starts from yi(0)~5N for

each i, instead, the system ends up in a different steady state for

nwnc, as signaled by the different value of the fraction of

asymptotically unidirectional processes at stationarity,

P1~(N{Nrev)=N. In the phase characterized by Hw0, the

steady state is unchanged. These results fully confirm the

theoretical predictions derived above. We also note that (data

not shown), if um~0 for each m, i.e. if there is no exchange with the

surroundings, the corresponding networks converge to a steady

state in which wi~0 for each i, H~0 and P1~0 for each n, i.e. to

chemical equilibrium. In other words, expectedly, boundary fluxes

induce NESS.

Red Cell Metabolism
We now turn to a somewhat more realistic case in which

nevertheless a full analytic study of the scenario underlying the

minimization of H is possible, namely the standard reduced model

of the human red blood cell (hRBC) metabolism, which includes

the glycolytic and the pentose phosphate pathway only (21

reactions among 30 metabolites plus two ionic pumps, namely

ATPase and NADPHase; see Tables S1 and S2 for the numerical

details and the network structure used here). They operate by

consuming glucose (GLC) in order to, respectively, maintain the

osmotic balance through the sodium-potassium ionic pump

(ATPase), and reduce the amount of free radicals through

glutathione reductase (NADPHase). Moreover, at a simplified

level, one can think that the final products of these pathways are,

respectively, lactate (LAC) plus an exchange of K+ and Na+ ions,

and CO2. The partitioning of GLC between the two pathways

depends on the level of oxidative stress faced by the cell.

Experimental estimates based on enzyme activities range from

70% or more in favor of glycolysis in unstressed conditions to 70%

or more in favor of the pentose-phosphate pathway under

oxidative stress [27]. We want to use the theory described here

to estimate the range of variability of the fraction of glucose

consumed by each pathway as a function of the oxygen

concentration in the environment.

We start by assuming (reasonably) that the steady state of the

hRBC metabolism is compatible with min H~0 (i.e. flux balance).

A straightforward analysis of the emerging equations reveal that

only three of the 23 reactions are linearly independent: we choose

the glucose uptake uGLC , the flux through the Rapoport-

Leubering shunt (or through the enzyme 2,3-DPG mutase,

DPGM, a key step that regulates the haemoglobin’s affinity with

oxygen) wDPGM:wRLS and the flux through the pentose

phosphate pathway (or through the enzyme glucose-6-phosphate

dehydrogenase, G6PDH) wG6PDH:wPPP. All fluxes can be written

in terms of these. In particular, one finds

wATPase~2uGLC{
wPPP

3
{wRLS: ð28Þ

Now the variation of the extracellular concentrations of GLC,

LAC, K+, Na+ and CO2 due to the operation of a single hRBC is

easily seen to be given by

_xxGLC~{uGLC, _xxLAC~2uGLC{
wPPP

3
, _xxCO2~wPPP ð29Þ

_xxNa~3wATPase, _xxK~{2wATPase: ð30Þ

In turn, for the extracellular medium one has

H~
( _xxGLC)2

xGLC
z

( _xxLAC)2

xLAC
z

( _xxCO2)2

xCO2
z

( _xxNa)2

xNa
z

( _xxK)2

xK
ð31Þ

Minimizing this at fixed uGLC and wRLS one finds that

wPPP~6(1{a)uGLC{3(1{b)wRLS ð32Þ

where a and b are defined respectively as

a~
(xCO2){1

(xCO2){1z(xNa){1z(4=9)(xK){1z(1=9)(xLAC){1
ð33Þ

b~
(xCO2){1z(1=9)(xLAC){1

(xCO2){1z(xNa){1z(4=9)(xK){1z(1=9)(xLAC){1
ð34Þ

One sees that if the concentration of CO2 is much larger than

the others (implying a^0) and wRLS^0 then wPPP^6uGLC so that

the pentose phosphate pathway consumes roughly all of the
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glucose (the factor 6 is in agreement with the stoichiometry of

carbon atoms in GLC and CO2). We can therefore define the

fraction of GLC consumption through the PPP by re-scaling wPPP

by 6uGLC:

F~1{a{(1{b)
wRLS

2uGLC
ð35Þ

From this it is also immediately clear that, in general conditions

for CO2, F varies between 1{a (corresponding to wRLS^0) and

b{a (corresponding to maximal wRLS^2uGLC). Using the typical

concentration values for the above metabolites in the blood,

namely xLAC^10{3M, xCO2^210{2M, xNa^0:13M and

xK^510{3M one has a^0:194 and b^0:625 so that

0:43ƒFƒ0:8. Despite the roughness of the network reconstruc-

tion we employed, the bounds just obtained are in remarkable

agreement with experimental evidence. On the other hand, using

the empirical estimates uGLC^310{7M/s and wRLS^1:410{7M/

s we find F^0:71.

Discussion

In this paper we have derived a variational principle for the

NESS of chemical reaction networks, showing that, for time scales

over which chemical potentials can be considered constant,

stationary non-equilibrium fluxes minimize the function H, see

(13), in which stoichiometry, intakes, outtakes and concentrations

appear as parameters. The cost function is closely related to

Hopfield models of neural networks. This allows to rephrase such

networks as systems of reactions interacting via Hebb-like rules

and subject to an external forcing provided by the boundary

fluxes. Furthermore H bears two simple physical interpretations.

First, minimizing it amounts to finding the flux organizations that

keep the overall ‘‘waste’’ of chemical species to a minimum, given

the boundary conditions to be satisfied. Second, it equals (modulo

a constant) the time derivative of the entropy production per

volume: NESS thus correspond to flux configurations such that the

entropy production decreases in time at the smallest allowed rate,

in line with the ideas exposed in [30]. We have investigated the

implications of such a picture in toy (random) chemical networks –

where the dependence of the solutions on the network’s structural

parameters can be fully explored, revealing the existence of a

phase transition between flux balanced states with min H~0 and

states where unbalances emerge – and in a small real biochemical

network, namely the metabolic network of the human red blood

cell, a system that is possibly the closest to the theoretical situation

described here.

Making contact with stoichiometric models of metabolic

networks is relatively straightforward as long as boundary fluxes

are taken to be fixed and one does not include additional objective

functions that NESS are required to maximize. For instance, the

maximization of biomass flux (a frequent optimization criterion for

bacterial metabolism [33]) provides a source of entropy production

even if one focuses on states with H~0 (as in Flux-Balance-

Analysis, FBA). On the other hand the theory developed here

suggests that the set of local constraints that describes NESS is

provided by the minimization of H rather than by taking H~0 or

H§0 a priori.

An important property that NESS should possess is thermody-

namic feasibility, i.e. they should not contain infeasible loops

[34,35]. Inspired by the fluctuation theorem [8], we have proposed

here a simple dynamical rule (see (20)) that ensures that the NESS

obtained as the minima of H are indeed void of cycles. In general

(i.e. when straightforward minimization of H is carried out), it is

possible to get rid of infeasible cycles by complementing the

variational problem described here with the minimization of the

square norm of the flux vector. This is a consequence of the

Gordan theorem of alternatives [36]: assuming that the matrix

A~(A
m
i ) has full rank, only one of the following systems has a non-

trivial solution: (a)
P

m A
m
i gm

v0Vi (for fgmg real); (b)P
i A

m
i ki~0Vm (for fki§0g). For a reaction network with

stoichiometric coefficients jm
i and fluxes wi, defining A

m
i ~wij

m
i

Figure 2. Results for random reaction networks. Average stationary values of H, fraction of asymptotically unidirectional reactions (P1) and
relative number of asymptotically bidirectional reactions nrev~Nrev=M versus n~N=M obtained from (26) (with no prior assumption on reaction
reversibility for an ensemble of random reaction networks with NM~104 constructed as described in the text. Averages are taken over 200
realizations for each value of n. Unbiased i.c. (initial conditions) refers to steady states of (26) for yi(0)~0; biased i.c. instead correspond to yi(0)~5N
for each i. Note the two phases with Hw0 (nvnc) and H~0 (nwnc) as predicted. The critical point nc coincides within numerical error with the point
where Nrev~1. Finally, the phase with H~0 is non-ergodic: different initial conditions lead to different NESS, characterized by different values of P1.
doi:10.1371/journal.pone.0039849.g002
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one sees that system (a) expresses the condition of thermodynamic

stability wiDGiƒ0Vi, whereas system (b) defines thermodynami-

cally infeasible cycles, so that either a flux configuration fwig is

thermodynamically feasible or it contains at least one cycle. Now

let us consider a steady-state flux configuration satisfyingP
i jm

i wi§um and let us assume it is thermodynamically infeasible,

i.e. that system (b) has a solution fkig. We can then construct a

new flux configuration fwi’g as wi’~wizlkiwi, with l a constant.

Evidently, still
P

i jm
i wi’§um. However defining Q(fwig)~

P
i w2

i ,

it is easily seen that choosing l so that
d

dl
Q(fwi’g)~0 one gets

Q(fwi’g)vQ(fwig). In other terms, starting from a thermody-

namically infeasible steady-state flux configuration one can

construct another steady-state flux configuration whose total flux

is lower. In turn, Q has to be minimum when the flux

configuration is thermodynamically feasible. It would be interest-

ing to find a dynamical justification of this criterion. (Notice that

flux minimization is an optimality principle frequently used for

metabolic network modeling, see e.g. [37].).

Perhaps not too surprisingly, the formal aspects of this theory

present many common traits with those developed over the past

decade for the analysis of large games with heterogeneous

interacting agents, specifically with Minority Games [24,25]. For

obvious reasons, such an analogy shouldn’t be stretched and we do

not elaborate in detail on it here. In short, however, reactions (or,

more properly, enzymes) in chemical networks can be thought to

be involved in a competition for the use of a set of possibly limited

resources (the different substrates). Whether a reaction can operate

or not depends on how much substrate is available to it, i.e. on the

overall substrate concentration and on how many other enzymes

can bind the same substrates. Each reaction disposes of two

‘strategies’ (or ways to access the set of resources), corresponding to

the vectors of its input and output metabolites in the forward and

reverse direction, respectively. Such strategies are anti-correlated:

substrates in the forward direction are products in the reverse, and

vice-versa. Rules like (26) can then be read as ‘learning’ processes

through which enzymes try to anticipate at each time step whether

the substrates needed for the forward or reverse processes are most

likely to be available, in order for it to operate. This parallel

provides an elementary quantitative flavor to the idea that

enzymes in biochemical reaction networks compete for the

substrates. In absence of boundary fluxes (hi~0 for each i in

(7)), the situation is completely equivalent to the Minority Game

with anti-correlated strategies studied in [38]. In this case, the

dynamics converges to H~0 and wi~0 for each i, i.e. the system

asymptotically reaches chemical equilibrium. As it should be,

NESS are induced by non-zero boundary fluxes, i.e. by non-zero

fields hi. This additional term turns out to be the main difference

between standard anti-correlated Minority Games and the systems

discussed here.

Besides a possible theoretical interest in deepening the analogy

just described (e.g. by extending the dynamical approaches

employed for the analysis of multi-agent systems [39] to models

of chemical reaction networks), it will be interesting to see how well

the variational principle (14) describes flux states in real

biochemical networks.
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