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Dynamic control of chirality in phosphine ligands
for enantioselective catalysis
Depeng Zhao1, Thomas M. Neubauer1 & Ben L. Feringa1

Chirality plays a fundamental role in biology and chemistry and the precise control of chirality

in a catalytic conversion is a key to modern synthesis most prominently seen in the

production of pharmaceuticals. In enantioselective metal-based catalysis, access to each

product enantiomer is commonly achieved through ligand design with chiral bisphosphines

being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is

modulated through an external trigger signal, might offer attractive possibilities to change

enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand

synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on

a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity

of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes

in geometry and helicity of the switchable ligand enable excellent selectivity towards

the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization

reaction.
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R
esponsive catalytic systems in which reactivity or selectivity
can be modulated via external non-invasive signals are
highly promising to enable tuning of catalytic function,

allow spatio-temporal control in chemical transformations and
ultimately arrive at multitasking catalysts. In recent years, the
development of stimuli- responsive catalysts has attractive
considerable attention1–3 and important efforts are related to
on–off switching of catalytic activity4,5. Remarkable reversal
of enantioselectivity in asymmetric catalysis has been achieved
using solvent responsive helical polymers6, light-triggered
organocatalysts7,8 and redox sensitive metal complexes9.
These findings offer intriguing opportunities towards the
design of broadly applicable responsive catalysts realizing that
chiral transition metal catalysis centres among the most powerful
and widely used methodologies to access enantiomerically
pure compounds10. The asymmetric transformations rely on
the well-defined chirality provided by the metal-bound ligands
with a prominent role for chiral bisphosphines that encompass
huge structural diversity11. A major challenge in asymmetric
catalysis is to use a single enantiomer of a ligand or catalyst to
obtain each enantiomer of a chiral product on demand12,13.
Reported methodologies in which switching of enantioselectivity
is observed are usually serendipitous or restricted to specific
modifications, which include changing metals, solvents,
temperature or other reaction parameters14–20. To achieve
dual stereocontrol, we envision a rational and more general
approach by designing chiral phosphine ligands that can exist

in two (pseudo-)enantiomeric forms, which can be interconverted
by light.

Although it is difficult to photochemically switch the chirality
of conventional chiral ligands, artificial light-driven molecular
motors provide a unique platform to achieve this goal21–23.
Unidirectional rotary molecular motors based on overcrowded
alkenes are intrinsically multistage chiral switches as we have
recently shown in the design of three-stage organocatalysts7,8.

Herein, we demonstrate that a chiral bisphosphine with an
intrinsic molecular motor core structure can be used as a
multistage chiral switchable ligand for Pd catalysis. The
stereoselectivity in a catalytic desymmetrization reaction invol-
ving an allylic substitution can be readily modulated by switching
the helicity of the bisphosphine ligand on irradiation. This allows
access to both enantiomers as well as the racemate of a
functionalized cyclopentene using a single chiral ligand and these
findings bring responsive chiral catalysts into the vast domain of
phosphine-based transition metal catalysis10,24.

Results
Design and synthesis. As a starting point for ligand design, we
noted the advantages of C2-symmetric structures in many privi-
leged bisphosphine ligands (Fig. 1a) and reasoned that a first
generation molecular motor with two pending phosphine moi-
eties using an appropriate linker might provide an optimal choice
to achieve dynamic control over geometry and helicity of such
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Figure 1 | Chiral photoresponsive phosphine ligands. (a) Traditional C2-symmetric privileged ligands: (S)-Binap and Trost ligand. (b) Crystal structure of

the parent molecular motor25; left: (S,S)-(M,M)-trans isomer, right: (R,R)-(P,P)-cis isomer. (c) Novel three-state photoresponsive phosphine ligand based on

unidirectional molecular motor. The (P,P)-trans ligand based system might actually represent several catalytic complexes in the multi-state system, that is,

oligomeric/polymeric P-Pd-ligand-Pd-ligand-Pd species due to phosphine ligand coordination in a monodentate manner to the metal. (d) Key features of

novel chiral photoresponsive phosphine ligands. (e) Two potential photoresponsive phosphine ligands L1 and L2 incorporating amide linkers. R and S are

used to define the chirality of the stereogenic centres; P (plus) and M (minus) are used to define the helicity of right and left-handed helix, respectively.
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bidentate chiral ligands (Fig. 1b,c). The structural design for the
C2-symmetric bisphosphine ligands L1 and L2 with unique
dynamic properties is shown in Fig. 1e.

The light-driven molecular motor unit is expected to undergo
a unidirectional four-stage rotation in a 360� rotary cycle
reaching (P,P)-trans, (M,M)-cis, (P,P)-cis and (M,M)-trans
states, inducing both large geometrical and helical changes21,22.
This allows both the spatial distance of the phosphine moieties
and the chirality to be precisely controlled in each step of the
cycle. We anticipated that in the trans-isomers the two
phosphine groups are far apart from each other and unable to
achieve intramolecular metal coordination, whereas in the cis-
isomers they can effectively cooperate to form a chiral
bisphosphine–metal complex (Fig. 1c). As the (P,P)-cis ligand–
metal complex and (M,M)-cis ligand–metal complex are pseudo
enantiomers, it can be expected that chiral products with
opposite absolute configuration are obtained when these isomers
are used in a catalytic asymmetric transformation. A crucial
design feature is the nature of the linker moiety between motor
and phosphine: (i) The linker should not contain additional
chiral moieties to avoid match-mismatch effects for the cis-
isomers and be relatively short so that the chiral orientation of
the phosphines reflects the chirality of the motor; (ii) Small
dihedral angle of the two phenyl rings in the cis-states based on
the previous published crystal structure of a related first
generation motor (Fig. 1b, 48.7� for (P,P)-cis isomer)25. The
dihedral angle is closely related to the bite angle of the ligand–
metal complex (P–metal–P angle), which is known to influence
the catalytic behaviour and stereoselectivity in many asymmetric
transformations26,27. In view of these considerations, amide
linkers were chosen taking inspiration from Trost-ligands28, as
these chiral ligands feature bisphosphines, amide linkers and in
several cases show good tolerance for the chiral core units and
are effective in numerous asymmetric transformations29. L1
incorporates the amide linker in the same bond order as for the
Trost ligand as shown in Fig. 1a, whereas L2 adopts the reversed
amide connection (Fig. 1e).

The synthesis of molecular motor L1 involved coupling
of diamine 1 (ref. 8) with 2-(diphenylphosphino) benzoic
acid 2 in the presence of BOP reagent ((Benzotriazol-1-
yloxy)tris(dimethylamino)phosphonium hexafluorophosphate)
and triethylamine (TEA) to afford bisphosphine L1 in 65%
yield (Fig. 2a). The asymmetric synthesis of bisphosphine ligand
(R,R)-(P,P)-trans-L2 started from chiral ketone 3, which was
prepared according to our recently reported gold-catalysed
enantioselective protonation of the corresponding silyl enol ether
in 97% ee (refs 30,31). McMurry coupling using titanium
trichloride and zinc provided the chiral dibromo motor 4 as a
trans/cis mixture in 75% yield (trans/cis¼ 3/1; 99% ee for
both isomers). Subsequent palladium-catalysed carbonylation of
dibromo motor 4 afforded diester 5 in 79% yield (trans/cis¼ 3/1;
isolated yield for the separated isomers: 59% for (P,P)-trans-5 and
20% for (P,P)-cis-5). Hydrolysis of (P,P)-trans diester 5 with aq.
NaOH gave diacid 6 in nearly quantitative yield as a single
enantiomer. Treatment of the diacid 6 with oxalyl chloride in a
mixture of THF and CH2Cl2 with catalytic amount of DMF gave
the acid chloride intermediate, which was directly used in the
next condensation step with (2-aminophenyl)diphenylphosphane
7 to furnish the final product L2 in 44% yield over two steps.
Molecular motor-based bisphosphines L1 and L2 were
characterized by 1H, 13C and 31P NMR spectroscopy and high-
resolution mass spectrometry (see Supplementary Figs 3–16).

Photochemical and thermal isomerization. With the switchable
bisphosphines in hand, their photochemical and thermal iso-
merization properties were investigated. Surprisingly, photo-
isomerization of L1 at lmax¼ 312 nm (� 15 �C, THF) showed
that only 7% of (P,P)-trans-L1 was converted to (M,M)-cis-L1
after reaching the photostationary state (PSS), based on 1H NMR
analysis. On the contrary, ligand L2 with a reversed amide bond
linker, was functioning as an effective molecular motor, which
underwent the expected four-stage rotary cycle uncompromised
(Fig. 3). The 360� unidirectional rotation cycle of L2 includes two
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Figure 2 | Procedure for the synthesis of ligands L1 and L2. (a) Procedure for synthesis of bisphosphine ligand (P,P)-trans-L1. (b) Asymmetric synthesis of
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photoisomerization steps and two thermal isomerization steps as
characterized by ultraviolet–visible, circular dichroism (CD), 1H
NMR and 31P NMR spectroscopy. The first photoisomerization
step was performed by irradiation of enantiomerically pure
(P,P)-trans-L2 with ultraviolet light (lmax¼ 312 nm, � 15 �C) in
THF, which resulted in a significant decrease in the intensity of
the absorption band at 280 nm and the appearance of a new
absorption band at 350 nm (Fig. 4a). This red shift is typical for
the formation of the (M,M)-cis-L2 isomer7,8,21,32. 1H NMR and
31P NMR studies in CD2Cl2 also confirmed this structure as is
evident from the downfield shift of all the aliphatic ring protons
in 1H NMR and the shift of the phosphorus absorption in 31P
NMR from � 18.88 to � 19.58 p.p.m. (Fig. 5). After reaching the
PSS, a ratio of 93% (M,M)-cis-L2 and 7% (P,P)-trans-L2 was
established by 1H NMR and 31P NMR. The observed changes in
CD spectrum also confirm the P,P to M,M helix inversion during
this step (new band at 350 nm, Fig. 4e). The excellent (M,M)-cis-
L2 to (P,P)-trans-L2 ratio in the PSS state is highly beneficial in
applications of catalytic asymmetric reactions. On heating of
(M,M)-cis-L2 in THF at 65 �C for 1 h, the thermal helix inversion
from (M,M)-cis-L2 to (P,P)-cis-L2 resulted in a blue shift in the
ultraviolet–visible spectrum (Fig. 4b). The thermal helix inversion
was also confirmed by the upfield shifts of all the signals of the
aliphatic ring protons in the 1H NMR spectrum, the 31P shift
from � 19.58 to � 18.86 p.p.m. and the CD spectral changes
(Figs 4f and 5). The helix inversion step-2 resulted in a
quantitative transformation from (M,M)-cis-L2 to (P,P)-cis-L2
based on 1H NMR and 31P NMR measurements. A kinetic study

for the thermal isomerization step-2 provided the standard Gibbs
energy of activation (DzG�¼ 100.2 kJ mol� 1) and half-life of
(M,M)-cis-L2 (t½¼ 362 h at 0 �C). The long half-life is essential
for further application of this isomer in enantioselective catalysis
studies. The subsequent photoisomerization step-3, which
was carried out at � 60 �C on irradiation at 312 nm, and
the following thermal isomerization step-4 at 0 �C regenerated
the initial (P,P)-trans-L2 and completed the full four-step
rotary cycle. These two final steps were also monitored with
ultraviolet–vis, CD and 1H NMR spectroscopy (Fig. 4c,d,g,h).
(M,M)-trans-L2 is highly unstable (DzG�¼ 83.4 kJ mol� 1,
t½¼ 11 min at 0 �C) under ambient conditions and as a
consequence not suitable for further catalytic studies (see
Supplementary Figs 1 and 2).

Switchable asymmetric catalysis. Having confirmed the four-
step unidirectional rotary cycle of bisphosphine L2, we investi-
gated its performance as a chiral switchable ligand in asymmetric
catalysis. Based on the stability of three out of four isomers only,
(P,P)-trans-L2, (M,M)-cis-L2 and (P,P)-cis-L2 were used in the
palladium-catalysed desymmetrization of meso-cyclopent-2-en-
1,4-diol bis(carbamate) 8, a well-established model reaction to
determine the enantiodiscrimination abilities of chiral
ligands28,33. Initially, the desymmetrization reaction of
biscarbamate 8 was carried out with 2.5 mol% of Pd2(dba)3 and
7.5 mol% of (R,R)-(P,P)-cis-L2 in THF. To our delight, the
reaction proceeds with high selectivity affording chiral
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oxazolidinone 9 in 89% yield with an enantiomeric ratio (e.r.) of
11/89. Encouraged by this initial result, several parameters were
examined including temperature and base to further enhance the
selectivity (see the Supplementary Table 1)34. The reaction in the
presence of 2.0 equiv. TEA (pKa¼ 10.8) as the base led to a slight
increase in the enantioselectivity. Since the base involves
deprotonation of nonionized urethane (pKaE3.7; ref. 35) in the
cyclization reaction, screening of a number of other bases
revealed that N,N-diisopropylethylamine (pKa¼ 10.8) was the
best choice increasing the e.r. significantly to 6/94.

Having established the optimized conditions, the catalytic
performance of this tunable chiral ligand was investigated with
different isomers (Fig. 6). It should be noted that the in situ
switching experiment in the presence of Pd is complicated so far
due to the stability of the catalysts generated in situ under
ultraviolet irradiation and heating, leading to a significant

decrease in selectivity. When the (R,R)-(P,P)-trans-L2 isomer
was used in the Pd-catalysed asymmetric desymmetrization, as
expected, nearly racemic product 9 was obtained in 65% yield and
e.r. of 53/47 (3R,4S/3S,4R). Most probably each phosphine in
trans-L2 acts as a monodentate ligand as is supported by
precipitation of substantial amounts of oligomeric palladium
complexes during the reaction. Much to our delight, after
photoisomerization to (R,R)-(M,M)-cis-L2, the Pd-complex of
L2 was able to catalyse this reaction with excellent stereocontrol
providing (3R,4S)-product 9 (e.r.¼ 93/7, 3R,4S/3S,4R). In con-
trast, after isomerization to (R,R)-(P,P)-cis-L2, the opposite
enantiomer (3S,4R)-9 is obtained again with excellent enantios-
electivities (e.r.¼ 6/94, 3R,4S/3S,4R). From these results, it is clear
that ligand L2 shows excellent performance as a chiral responsive
bidentate phosphine ligand. The combination of photochemical
isomerization between trans and cis-isomers and the thermal
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helix inversion of (M,M)-cis to (P,P)-cis-isomers enables a single
chiral ligand to control the formation of nearly racemic, and each
enantiomer of the product of a representative Pd-catalysed
transformation. In addition, the order in which the different
chiral ligands can be formed (in this case PP—MM—PP) is
dictated by the stereogenic centres of the chiral motor core unit.

Discussion
We have successfully designed a photoresponsive chiral bispho-
sphine ligand that enables the formation of each enantiomer of a
product of a Pd-catalysed reaction with a single chiral ligand. The
unique combination of a light-driven molecular motor bridging
two phosphine moieties allows switching between multiple
stereochemical forms with distinct ligand properties. The
photochemical and thermal isomerization during unidirectional
rotation around the motor central double bond enable to achieve
stepwise control over the helicity of the bisphosphine ligand and
spatial distance between these two phosphine groups. The
stereoselectivity of the Pd-catalysed desymmetrization reaction
can be modulated from nearly racemic for (P,P)-trans-state to up
to 93/7 e.r. for (M,M)-cis-state and 6/94 e.r. for (P,P)-cis-state,
with enantioselectivities comparable to those of related conven-
tional chiral ligands. These results highlight the proof-of-
principle of multistage dynamically tunable and responsive chiral
ligands at the molecular level for transition-metal-catalysed
asymmetric synthesis. These responsive ligand systems have
considerable potential for a wide range of enantioselective
transformations based on transition metal bisphosphine catalysts.
In addition, these systems hold promise to modulate catalysts
activity and switch stereoselectivity with high spatio-temporal
control ultimately arriving at a catalyst that can perform multiple
functions controlled by light.

Methods
Procedure for Pd-catalysed intramolecular cyclization of 8. To a Schlenk tube
containing Pd2dba3 (2.3 mg, 2.5 mol%) and the specific isomer of L2 (7.0 mg, 7.5
mol%), anhydrous THF (0.4 ml) was added, and the mixture was stirred at 0 �C for
30 min under a nitrogen atmosphere. Then, N,N-diisopropylethylamine (35 ml,

0.20 mmol) and biscarbamate 8 (49.5 mg, 0.10 mmol) were added under nitrogen.
The resulting solution was stirred at 0 �C and allowed to slowly warm to room
temperature overnight. The mixture was directly submitted to flash chromato-
graphy on silica gel with pentane–EtOAc (3/1) as eluent affording product 9 (65%
yield for (P,P)-trans-L2; 90% yield for (M,M)-cis-L2; 85% yield for (P,P)-cis-L2).

3-Tosyl-3,3a,6,6a-tetrahydro-2H-cyclopenta[d]oxazol-2-one (9). 1H NMR
(400 MHz, CDCl3) d¼ 7.94 (d, J¼ 8.3 Hz, 2H), 7.35 (d, J¼ 8.1 Hz, 2H), 6.07–5.96
(m, 2H), 5.28 (d, J¼ 7.3 Hz, 1H), 5.10 (t, J¼ 6.8 Hz, 1H), 2.81 (dd, J¼ 18.7, 6.3 Hz,
1H), 2.69 (d, J¼ 18.7 Hz, 1H), 2.44 (s, 3H). 13C NMR (101 MHz, CDCl3) d¼ 151.3,
145.5, 135.0, 133.8, 129.7, 128.3, 128.0, 77.3, 77.0, 76.8, 76.7, 66.3, 39.0, 21.7. HRMS
(ESIþ , m/z) calculated for C13H13NO4SNa [MþNa]þ 302.0458; found 302.0460.
Enantiomeric excess was determined by HPLC (Chiracel OD-H), n-heptane/i-
propanol¼ 85/15, 40 �C, 254 nm, 0.5 ml min� 1, retention times: tR(3R,4S)¼ 25 min,
tR(3S,4R) 32 min.
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4. Peters, M. V., Stoll, R. S., Kühn, A. & Hecht, S. Photoswitching of basicity.
Angew. Chem. Int. Ed. 47, 5968–5972 (2008).

5. Nojiri, A., Kumagai, N. & Shibasaki, M. In situ manipulation of catalyst
performance via the photocontrolled aggregation/dissociation state of the
catalyst. Chem. Commun. 49, 4628–4630 (2013).

6. Yamamoto, T., Yamada, T., Nagata, Y. & Suginome, M. High-molecular-weight
polyquinoxaline-based helically chiral phosphine (PQXphos) as chirality-
switchable, reusable, and highly enantioselective monodentate ligand in
catalytic asymmetric hydrosilylation of styrenes. J. Am. Chem. Soc. 132,
7899–7901 (2010).

7. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic
asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).
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