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Systematic identification of ALK substrates by integrated
phosphoproteome and interactome analysis
Jun Adachi1,2,3 , Akemi Kakudo1,2, Yoko Takada1,2, Junko Isoyama1,2, Narumi Ikemoto1,2, Yuichi Abe1,2, Ryohei Narumi1,2,
Satoshi Muraoka1,2, Daigo Gunji2,4, Yasuhiro Hara2, Ryohei Katayama5,6, Takeshi Tomonaga1,2

The sensitivity of phosphorylation site identification by mass
spectrometry has improved markedly. However, the lack of
kinase–substrate relationship (KSR) data hinders the improve-
ment of the range and accuracy of kinase activity prediction. In
this study, we aimed to develop a method for acquiring sys-
tematic KSR data on anaplastic lymphoma kinase (ALK) using
mass spectrometry and to apply this method to the prediction of
kinase activity. Thirty-seven ALK substrate candidates, including
34 phosphorylation sites not annotated in the PhosphoSitePlus
database, were identified by integrated analysis of the phos-
phoproteome and crosslinking interactome of HEK 293 cells with
doxycycline-induced ALK overexpression. Furthermore, KSRs of
ALK were validated by an in vitro kinase assay. Finally, using
phosphoproteomic data from ALK mutant cell lines and patient-
derived cells treated with ALK inhibitors, we found that the
prediction of ALK activity was improved when the KSRs identified
in this study were used instead of the public KSR dataset. Our
approach is applicable to other kinases, and future identification
of KSRs will facilitate more accurate estimations of kinase activity
and elucidation of phosphorylation signals.
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Introduction

Protein phosphorylation is a major regulator of intracellular sig-
nalling. Its dynamic plasticity governs a cell’s response to its en-
vironment. Dysregulation of phosphorylation signalling is often
implicated in pathogenesis and is a major therapeutic target in
diverse diseases, including cancer and neurodegenerative disor-
ders. Technological advances in mass spectrometry (MS) have
enabled us to quantitate tens of thousands of phosphorylation
sites from a variety of samples, even small samples such as biopsy
specimens (Abe et al, 2020; Satpathy et al, 2020). Various informatics

methods have been developed to extract biological insights, such
as the activity of kinases and signalling pathways, from large-scale
phosphorylation data (Linding et al, 2007; Casado et al, 2013; Krug et
al, 2019). In these analyses, only a small fraction (often less than 5%)
of the quantified phosphorylation sites were used, mainly because
much less information is available on known kinase–substrate
relationships (KSRs) than on phosphorylation sites quantified by
MS (Needham et al, 2019). Various strategies have been used to
obtain high-quality KSR data on a large scale; these approaches
include informatics approaches (Invergo et al, 2020; Nováček et al,
2020), approaches using in vitro kinase assays (Knebel et al, 2001;
Newman et al, 2013; Sugiyama et al, 2019), chemical proteomics
approaches using kinase inhibitors in vivo (Hijazi et al, 2020; Watson
et al, 2020), and biochemical and genetic approaches combining
proximity-dependent biotinylation (BioID)-based interactome and
phosphoproteome analyses (Cutler et al, 2020; Niinae et al, 2021).
The informatics approach relies on public phosphoproteome data
or KSR data as input data; thus, predicting new substrate can-
didates for a kinase with limited KSR data is difficult by this
approach. Because the in vitro kinase assay does not reflect
aspects of the intracellular environment, such as localization and
complex formation, its data contain false-positive hits of sites
that are not phosphorylated in vivo. To remove false-positive hits,
these data must be combined with additional data, such as ki-
nase perturbation data (Xue et al, 2012; Imamura et al, 2017). The
chemical proteomics approach makes it relatively easy to obtain
in vivo data. However, this approach cannot be applied to all
kinases because it requires a specific inhibitor for the target
kinase. On the other hand, establishing a genetically engineered
cell line via biochemical and genetic approaches requires time;
however, these approaches are straightforward and have the
potential to expand the experimental scale to the kinome level. In
this study, we used a combined biochemical and genetic ap-
proach in which we established doxycycline (Dox)-induced an-
aplastic lymphoma kinase (ALK)-overexpressing HEK 293 cells
and analysed the formaldehyde crosslinking interactome and
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time-course of the phosphotyrosine (pY) proteome to obtain KSR
data for ALK. We validated the usefulness of this approach in
predicting ALK activity using phosphoproteomic data from ALK-
mutated cultured cells, patient-derived cells and clinical
samples.

Results

Identification of ALK substrate candidates by combined
phosphoproteome and interactome analysis

To systematically identify ALK substrates, we established cells with
Dox-inducible ALK expression based on a Tet-On 3G–inducible gene
expression system (Fig 1A). The protein expression level of ALK was
increased 4.1-fold, and the phosphorylation level of ALK Tyr1507

was increased 38.9-fold by the addition of Dox (50 ng/ml) for 24 h
(Fig 1B). Using our cells with Dox-inducible ALK expression, we

performed time-course analysis of the phosphotyrosine proteome.
We quantified 655 phosphotyrosine sites and identified 111 phos-
photyrosine sites whose phosphorylation was up-regulated more
than 1.5-fold at 2, 4, 8, or 24 h after Dox induction (Fig 1C). We also
performed interactome analysis using formaldehyde crosslinking.
After crosslinking, Dox-induced cells (Dox+) and control cells (Dox−)
were lysed, and ALK-interacting proteins were immunoprecipitated
with an anti-flag antibody and quantified by label-free quantitation
(LFQ). We identified 732 protein groups that were significantly
precipitated (q < 0.05) (Fig 1D). Finally, we selected 37 phospho-
tyrosine sites (among 22 protein groups) that overlapped between
the up-regulated phosphoproteome and ALK interactome as
candidate ALK substrates (Fig 1E and Table 1). Sequence motif
analysis of the ALK substrate candidates revealed that the SH2
domain-binding motif pYXN (Schlessinger & Lemmon, 2003) was
enriched (Fig 1F). In addition to well-known ALK substrates, such as
the adaptor protein SHC1 (Tyr427) and the protein tyrosine phos-
phatase PTPN11 (Tyr279, Tyr542, and Tyr580), ANXA2 (Tyr30), APLP2

Figure 1. Identification of anaplastic lymphoma kinase (ALK) substrate candidates by phosphoproteome and interactome analysis of Dox-inducible HEK 293 cells.
(A) Overview of the Dox-inducible ALK gene expression system and the phosphoproteome and interactome analysis methods. (B) Time-course data of ALK protein
expression and phosphorylation. (C) Time-course data of phosphotyrosine proteome analysis. The pink and blue bars represent phosphotyrosine sites at which
phosphorylation was altered by more than 1.5-fold (i.e., up-regulated) or less than 0.66-fold (i.e., down-regulated), respectively, compared with that in non–Dox-treated
cells. (D) Volcano plot of interactome analysis data. The pink and blue dots represent significant precipitated proteins (q < 0.05). (E) Venn diagram showing the overlap
between the phosphotyrosine proteome and interactome data. (F) Sequence motif analysis by iceLogo of the amino acid residues between positions ±7 adjacent to the
phosphorylation sites of ALK substrate candidates. The significance threshold was set to 0.05.
Source data are available for this figure.
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Table 1. Identified phosphorylation sites of ALK substrate candidates.

Proteins Positions within
proteins Protein names Gene names

Q9UM73 1,096 ALK tyrosine kinase receptor ALK

Q9UM73 1,507 ALK tyrosine kinase receptor ALK

Q9UM73 1,586 ALK tyrosine kinase receptor ALK

Q9UM73; P29376 1,278; 672 ALK tyrosine kinase receptor; leukocyte tyrosine kinase
receptor ALK; LTK

Q9UM73; P29376 1,282; 676 ALK tyrosine kinase receptor; leukocyte tyrosine kinase
receptor ALK; LTK

Q9UM73; P29376 1,283; 677 ALK tyrosine kinase receptor; leukocyte tyrosine kinase
receptor ALK; LTK

P07355; A6NMY6 30; 30 Annexin A2; putative Annexin A2-like protein ANXA2; ANXA2P2

Q06481 750 Amyloid-like protein 2 APLP2

P09543 110 29,39-cyclic-nucleotide 39-phosphodiesterase CNP

Q7L576; Q96F07 1,054; 1,078 Cytoplasmic FMR1–interacting protein 1; cytoplasmic
FMR1–interacting protein 2 CYFIP1; CYFIP2

P50402 161 Emerin EMD

Q9BSJ8 359 Extended synaptotagmin-1 ESYT1

Q9BSJ8 822 Extended synaptotagmin-1 ESYT1

A0FGR8 824 Extended synaptotagmin-2 ESYT2

Q96CS3 79 FAS-associated factor 2 FAF2

O75955 216 Flotillin-1 FLOT1

O75955 238 Flotillin-1 FLOT1

O60547 323 GDP-mannose 4,6 dehydratase GMDS

O14654 151 Insulin receptor substrate 4 IRS4

O14654 291 Insulin receptor substrate 4 IRS4

O14654 336 Insulin receptor substrate 4 IRS4

O14654 615 Insulin receptor substrate 4 IRS4

O14654 656 Insulin receptor substrate 4 IRS4

O14654 921 Insulin receptor substrate 4 IRS4

Q14847 57 LIM and SH3 domain protein 1 LASP1

P07948 363 Tyrosine-protein kinase Lyn LYN

O95819 467 Mitogen-activated protein kinase kinase kinase kinase 4 MAP4K4

Q9Y237 122 Peptidyl-prolyl cis–trans isomerase NIMA-interacting 4 PIN4

Q06124 279 Tyrosine-protein phosphatase non-receptor type 11 PTPN11

Q06124 546 Tyrosine-protein phosphatase non-receptor type 11 PTPN11

Q06124 584 Tyrosine-protein phosphatase non-receptor type 11 PTPN11

P10586-2; P10586 1,612; 1,621 Receptor-type tyrosine-protein phosphatase F PTPRF

P10586; P23468; Q13332 1,381; 1,386; 1,422
Receptor-type tyrosine-protein phosphatase F; receptor-type
tyrosine-protein phosphatase delta; receptor-type tyrosine-
protein phosphatase S

PTPRF; PTPRD; PTPRS

P49023 88 Paxillin PXN

P29353 427 SHC-transforming protein 1 SHC1

P84022; Q99717; Q15797; Q15796;
O15198 88; 89; 88; 128; 92

Mothers against decapentaplegic homolog 3; mothers against
decapentaplegic homolog 9; mothers against decapentaplegic
homolog 2; mothers against decapentaplegic homolog 5;
mothers against decapentaplegic homolog 1

SMAD3; SMAD9; SMAD2; SMAD5;
SMAD1

Q9BZV1 336 UBX domain-containing protein 6 UBXN6
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(Tyr750), IRS4 (Tyr921), and PTPRF/PTPRD/PTPRS (Tyr1381/Tyr1386/
Tyr1422) contain a pYXN motif.

Confirmation of ALK–substrate relationships by an in vitro kinase
assay

To assess the direct phosphorylation of ALK, we performed an in
vitro kinase assay using 21 candidate ALK substrate proteins. As
shown in Fig 2, we assessed phosphorylation at 27 phosphotyrosine
sites and confirmed that all analysed sites except Lyn (Tyr363) were
significantly phosphorylated in the presence of ATP and ALK. This
finding suggested that Lyn (Tyr363) is phosphorylated in the absence
of ALK by autophosphorylation.

Validation of ALK–substrate relationships by phosphoproteome
analysis of neuroblastoma cell lines

ALK amplification or mutation was identified in ~14% of neuro-
blastomas (NBs), the most common extracranial childhood tumour
(Chen et al, 2008; George et al, 2008; Janoueix-Lerosey et al, 2008;
Mosse et al, 2008). To examine the phosphorylation status of ALK
substrate candidates identified in our study, the neuroblastoma
cell lines NB-1 and KP-N-RT-BM-1, which harbour amplification of
full-length ALK and the F1174L mutation, respectively, were selected
as the ALK-activated cell lines. The IMR-32 cell line, without ALK
gene mutation, was selected as a control cell line. These cells have
a common genotype of MYCN (amplified) and TP53 (wild-type)

(Wang et al, 2017). We performed phosphoproteome analysis,
and 25 phosphopeptides of ALK substrate candidates were
quantified (Fig 3). The protein expression level of ALK was not
increased in KP-N-RT-BM-1 cells but was increased by 3.9-fold in
NB-1 cells compared to IMR-32 cells. Five phosphopeptides of ALK
were quantified; these phosphopeptides were increased 0.9- to 3.1-
fold in KP-N-RT-BM-1 cells and 7.6- to 28.5-fold in NB-1 cells. Among
the 25 phosphopeptides of ALK substrates, 19 were significantly
increased in KP-N-RT-BM-1 cells, and 21 were significantly in-
creased in NB-1 cells (P < 0.05). All phosphopeptides except for EMD
Tyr161, Tyr161, and Ser171 MAP4K4 Tyr476 were up-regulated in either
KP-N-RT-BM-1 or NB-1 cells.

We calculated the log2-fold changes in phosphopeptides in KP-
N-RT-BM-1 versus IMR-32 cells and in NB-1 versus IMR-32 cells and
used these data for kinase activity prediction with PTM Signature
Enrichment Analysis (PTM-SEA) (Krug et al, 2019). We compared
default KSR data (ptm.sig.db.all.flanking.human.v1.9.0) and cus-
tomized KSR data to which our ALK substrate candidates (37
phosphotyrosine sites) were added. As shown in Fig 4, the nor-
malized enrichment score (NES) was increased 3.15–7.705 in KP-N-
RT-BM-1 cells and 3.46–9.52 in NB-1 cells by changing the KSR
dataset from the default setting to the custom setting. The adjusted
P-value was also greater than 0.05 for KP-N-RT-BM-1 cells with the
default KSR dataset but improved to less than 0.01 with the custom
KSR dataset. We used PTM-SEA to analyse the phosphoproteome
data of each neuroblastoma cell line. Predicted kinase activities
were visualized in a kinomemap (Fig 5) (Metz et al, 2018). Compared

Figure 2. In vitro kinase assay of anaplastic lymphoma kinase (ALK) substrate candidates.
An in vitro kinase assay of 27 ALK substrate candidates was performed in the presence or absence of ATP and the presence or absence of ALK. The results are expressed
as the mean ± SD values.
Source data are available for this figure.

Global identification of ALK substrates Adachi et al. https://doi.org/10.26508/lsa.202101202 vol 5 | no 8 | e202101202 4 of 13

https://doi.org/10.26508/lsa.202101202


Figure 3. Phosphorylation level of anaplastic lymphoma kinase substrate candidates in neuroblastoma cell lines.
A fold changes in the phosphorylation sites of anaplastic lymphoma kinase substrate candidates. The phosphorylation levels were normalized to those in IMR-32 cells,
which were set as 1. The asterisks indicate a significant difference by Welch’s test (*P < 0.05, **P < 0.01).
Source data are available for this figure.

Figure 4. Rank plot of anaplastic lymphoma kinase
substrate candidates in neuroblastoma cell lines.
The median of the phosphoproteomic expression data
of each cell (n = 3) was analysed by PTM-SEA. The dark
red circles indicate substrates of anaplastic
lymphoma kinase.
Source data are available for this figure.
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with IMR-32 cells, KP-N-RT-BM-1 and NB-1 cells show a very similar
pattern of kinome activity, although ALK is activated by ALK mu-
tation and ALK amplification. In particular, the RAF-MAPKK-MAPK
axis, AKT-GSK-3 axis, and CDK5 were commonly activated in KP-N-
RT-BM-1 and NB-1 cells.

Furthermore, we examined the effect of an ALK inhibitor on ALK
activity prediction using previously published deep phosphopro-
teome data obtained from NB-1 cells treated with the ALK inhibitors
crizotinib, TAE684, and LDK378 (Emdal et al, 2018). As shown in Fig S1,
inhibition of ALK activity by all the inhibitors was significantly
predicted using the custom KSR dataset (adjusted P-value < 0.05)
but not with the default KSR dataset.

Application of ALK–substrate relationship information for
predicting EML4-ALK activity

ALK activation in cancer is caused by ALK fusion proteins as well as
ALK overexpression (Hallberg & Palmer, 2013). ALK fusion proteins
are found in a wide range of cancer types. Crizotinib, the first
clinically approved drug to target ALK, is a tyrosine kinase inhibitor
that was approved for use in echinoderm microtubule-associated
protein-like 4 EML4-ALK-positive non-small-cell lung cancer
(NSCLC). Thus, we tried to detect upregulation of ALK activity in
EML4-ALK-positive cells using our recently published data (Mizuta
et al, 2021). As shown in Fig 6A, we compared the phosphorylation
status of ALK substrates and predicted ALK activity in an EML4-
ALK–positive NSCLC cell line (H3122), EML4-ALK–positive NSCLC
patient-derived cell line (JFCR-028-3), EML4-ALK-I1171N mutant
NSCLC patient-derived cell line (MCC-003) and ALK WT NSCLC cell
line (A549). With the custom KSR dataset, the NES values were
increased in H3122, JFCR-028-3, and MCC-003 cells and decreased in
A549 cells compared with the corresponding values obtained with
the default KSR dataset. In other words, the custom KSR dataset
improved our ability to detect the activation state of ALK. In ad-
dition, differential phosphoproteome data comparing cells treated
with gilteritinib, a newly discovered ALK inhibitor, and cells treated

with DMSO were applied to predict ALK activity. As shown in Fig 6B,
inhibition of ALK activity was predicted only in MCC-003 cells using
the default KSR dataset (adjusted P-value < 0.01). In contrast, in-
hibition of ALK activity was predicted in JFCR-028-3 and MCC-003
cells with the custom KSR dataset. In H3122 cells, the adjusted P-
value decreased from 0.43 to 0.0116, and the NES decreased from
−1.519 to −7.509, indicating that the ability of PTM-SEA to predict
EML4-ALK activity was improved with the custom KSR dataset.

Furthermore, to validate the results using clinical specimens, we
extracted phosphoproteome data for tumour tissue and normal
tissue adjacent to the tumour (NAT) in EML4-ALK–positive pa-
tients from Clinical Proteomic Tumor Analysis Consortium
(CPTAC) lung adenocarcinoma data (Gillette et al, 2020). In all
quantified samples, ALK Y1507 and GMDS Y323 or Y324 were up-
regulated, and ANXA2 Y30 and PXN Y88 were down-regulated. The
other four phosphotyrosine sites—APLP2 Tyr682, PTPN11 Tyr546 and
Tyr584, and SHC1 Tyr427—exhibited both increases and decreases
among the samples (Fig 7A and B). The heat map showed that
most of the substrates tended to be up-regulated in three cases
(C3N.00572, C3L.00442, and C3N.02422) but tended to be down-
regulated in other cases (C3N.00578, C3N.02587, C3N.00552, and
C3N.00550).

Discussion

Because ALK was initially discovered and characterized in a rare
type of lymphoma called anaplastic large-cell lymphoma (ALCL) as
an NPM-ALK fusion protein (Morris et al, 1994), ALK mutation and
overexpression have been found in many cancer types. With the
remarkable development of phosphoproteomics, large-scale an-
alyses of signals downstream of ALK have been reported (Borenäs
et al, 2021), and the relevance of ALK activity to disease is becoming
clearer. However, large-scale substrate identification has not yet
been achieved, as direct substrate identification requires the
confirmation of a direct interaction. At this stage, knowledge of ALK

Figure 5. Kinome activity profiles of neuroblastoma cell lines by PTM-SEA analysis.
Kinome activity map of the neuroblastoma cell lines IMR-32 (ALK WT), KP-N-RT-BM1 (ALK F1174L), and NB-1 (ALK amp). The colour of each node represents the
normalized enrichment score, and the size represents the −log10 q-value.
Source data are available for this figure.
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substrates is limited, and only 10 substrates in humans have been
registered in the PhosphoSitePlus database. In this study, we
identified 37 phosphotyrosine sites as ALK substrate candidates by
integrated phosphoproteome and crosslinking interactome anal-
ysis of HEK 293 cells with Dox-inducible ALK overexpression.
Phosphorylation sites of ALK substrate candidates were identified
from based on MS/MS spectrum (Fig S2). In the future, it is desirable
to confirm by other methods such as Western blotting using a site-
specific antibody or a combination of immunoprecipitation and
immunoblotting using an anti-phosphotyrosine antibody as shown
in Fig S3. Among our ALK substrate candidates, ALK (Tyr1278) and
PTPN11 (Tyr542 and Tyr580) overlapped with KSRs annotated in the
PhosphoSitePlus database. We also identified phosphorylation
sites in the activation loop of ALK (Tyr1282 and Tyr1283) and other sites
in ALK located in the intracellular region (Tyr1096, Tyr1507, and Tyr1586).

Moreover, a well-known adaptor protein, SHC1 (Tyr427), was iden-
tified as an ALK substrate.

In addition to these well-known ALK substrates, previously
unreported substrate candidates were identified in this
study, which contributed to the considerable improvement
in ALK activity prediction (Figs 4, S1, and 6A and B). Some of
these substrate candidates also formed a molecular asso-
ciation network (Fig S4). Recently, SMAD4 was reported to be
phosphorylated at Tyr95 directly by ALK to elicit TGF-β gene
transcription and tumour-suppressing responses (Zhang et al,
2019). We identified the corresponding site in SMAD1 (shared
with SMAD2, SMAD3, SMAD5, and SMAD9) as a candidate ALK sub-
strate. Thus, our data suggest that ALK is involved in TGF-β sig-
nalling through phosphorylation of a wide range of SMAD family
proteins.

Figure 6. Phosphorylation status of anaplastic lymphoma kinase substrate candidates as indicated by rank plots in NSCLC cells.
(A, B) Rank plot of phosphoproteome data for DMSO-treated NSCLC cells (A) and rank plot of phosphoproteome data for NSCLC cells treated with gilteritinib (B). The
average of the phosphoproteomic data of each cell (n = 3) was analysed by PTM-SEA. The dark red circles indicate substrates of anaplastic lymphoma kinase.
Source data are available for this figure.
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Members of the cytoplasmic FMR1-interacting protein family
(CYFIP1 and CYFIP2) are interactors of fragile X mental retardation
protein (FMRP), a mRNA-binding protein that plays a key role in the
translational silencing of its target mRNA (Schenck et al, 2001). In
addition, CYFIPs bind and inhibit the WAVE regulatory complex
(WRC), preventing the promotion of actin cytoskeleton reorgani-
zation. Phosphorylation of CYFIP2 (Thr1092) was reported to regulate
dendritic spine density and neurite outgrowth by decreasing the
interaction affinity for the WRC complex (Lee et al, 2017). In this
study, we identified CYFIP1/CYFIP2 (Tyr1054/1078), whose functions
are not yet known, as ALK substrates. ALK might regulate protein
synthesis and cytoskeletal dynamics via CYFIP phosphorylation.

Flotillin-1 has been reported to interact with ALK and regulate its
lysosomal degradation through endocytosis in neuroblastoma cells
(Tomiyama et al, 2014). Although ALK-dependent phosphorylation
was reported, the phosphorylation sites were not elucidated. Here,
we revealed that Tyr216 and Tyr238 are phosphorylated by ALK. It is
expected that this information will be used to further elucidate the
mechanisms that regulate ALK expression levels.

We also identified FAF2 (UBXD8), UBXN6 (UBXD1), ESYT1, and
ESYT2 as ALK substrate candidates. These proteins were previously
identified as endoplasmic reticulum-associated degradation
(ERAD) network components (Nagahama et al, 2009; Christianson et
al, 2011). Tyrosine phosphorylation of ERAD proteins by ALK has not
been reported, but our data suggest the involvement of ALK in ERAD.
As mentioned above, the ALK substrates identified in this study
have novel functions in addition to the previously known functions
of ALK. This finding will contribute not only to improving the pre-
diction of ALK kinase activity but also to elucidating the patho-
physiology of diseases featuring ALK gene mutations.

Furthermore, we found a difference in the experimental results
obtained by signal suppression by ALK inhibitors and those ob-
tained by signal enhancement, such as ALK overexpression. Spe-
cifically, in experiments in which EML4-ALK–positive NSCLC cells
were treated with ALK inhibitors, the phosphorylation of ALK itself,
PTPN11, FAF2, and SHC1 was strongly inhibited by gilteritinib,
whereas the phosphorylation of other sites was inhibited to a lesser
degree (Fig S5). In contrast, phosphorylation of these sites was

Figure 7. Comparison of the phosphorylation levels of anaplastic lymphoma kinase (ALK) substrate candidates in tumour tissues and NATs of ALK-positive NSCLC
patients.
(A) Log2-fold changes in the phosphorylation sites of ALK substrate candidates reported in a previous study (Gillette et al, 2020). (B) Heat map of log2-fold changes in the
phosphorylation sites of the ALK substrate candidates shown in Fig 7A.
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significantly increased in HEK 293 cells with doxycycline-induced
ALK overexpression and in ALK-active neuroblastoma NB-1 and/or
KP-N-RT-BM-1 cells (Fig 3). Typically, a single phosphorylation site is
phosphorylated by multiple kinases. The contribution of each ki-
nase is different for each phosphorylation site. Therefore, we
consider these data to suggest that when ALK inhibitors are
added, phosphorylation at sites that are highly phosphorylated by
ALK is inhibited, and phosphorylation at sites that are less fre-
quently phosphorylated by ALK are inhibited to a lesser degree.
When the kinase activity of ALK is increased, phosphorylation by
ALK is likely to increase, resulting in enhanced levels of ALK
substrate phosphorylation. In the case of cancer, enhanced
phosphorylation of these sites due to the activation of upstream
kinases might be involved in cancer growth and metastasis and
are promising targets for cancer therapy. Thus, further validation
using different cells and inhibitors will be important to elucidate
the “weight” of each KSR.

We also found that our custom KSR dataset improved the pre-
diction of ALK activity in EML4-ALK-positive NSCLC cells (Figs 6 and
S5). All variants of the EML4-ALK fusion protein contain the entire
intracellular tyrosine kinase domain of ALK, encoded by exons 20
through 29. Thus, unsurprisingly, the substrates of ALK and EML4-
ALK overlap, and ALK kinase activity prediction can be applied to
EML4-ALK-positive cells.

The application of kinase activity prediction to clinical samples is
very important for precision cancer medicine. We used clinical
phosphoproteome data from the CPTAC database to compare ALK
substrates in tumour tissues and NATs of EML4-ALK–positive NSCLC
patients (Fig 7) and found that the phosphorylation of ALK and
GMDS was increased in all tumour tissues, but the phosphorylation
of SHC1 and PTPN11 was decreased in four patients and increased in
three patients. Because the CPTAC data were obtained from surgical
specimens, ischaemia, and differences in conditions after resection
but before cryopreservation may affect the phosphorylation status
of the ALK substrates in these samples. Recently, a phosphopro-
teome analysis method using biopsy specimens that can be frozen
immediately after resection was developed (Abe et al, 2020;
Satpathy et al, 2020). State-of-the-art technologies such as this one
will contribute to the acquisition of more accurate kinase activity
profiles of cancer patients for optimal treatment selection and
evaluation.

Materials and Methods

Establishment of cells with inducible ALK expression

To generate ALK expression vectors to achieve the Dox-inducible
expression of C-terminal FLAG-tagged bait proteins, human ORFs,
which are provided as pDONR223 vectors, were selected from
Gateway-compatible human ORFeome collections, which are dis-
tributed by Addgene. For LR recombination, the in-house-designed
destination vector pRetroX-TRE3G/FLAG/GW, which we obtained
through ligation of the FLAG tag coding sequence and the Gateway
recombination cassette into pRetroX-TRE3G (Clontech), was used.
The constructed plasmids were packaged into retroviral particles
by using the packaging cell line AmphoPack-293 (Clontech).

Retrovirus-containing medium was harvested, filtered and used for
transduction of HEK 293 Tet-On 3G cells (Clontech). Cells were
transduced with the pRetroX-Tet3G/FLAG/GW retroviral vector and
were then selected with puromycin. The transduced cells were
pooled. Inducible expression of ALK was achieved by the addition of
Dox (50 ng/ml) to the medium.

Cell lines and culture conditions

HEK 293 Tet-On 3G cells were cultured in Iscove’s modified Dul-
becco’s medium high glucose (Nacalai Tesque) supplemented with
10% Tet System Approved FBS (Takara Bio) at 37°C in 10% CO2. IMR-
32, KP-N-RT-BM-1, and NB-1 human neuroblastoma cells were
cultured in RPMI 1640medium (Nacalai Tesque) supplemented with
10% FBS.

Cell treatment and lysis

ALK expression was induced by the addition of Dox (50 ng/ml) for 0,
2, 4, 8, and 24 h, and cell pellets were lysed with lysis buffer (50 mM
NaHCO3, 12 mM sodium N-lauroyl sarcosinate, and 12 mM sodium
deoxycholate) supplemented with cOmplete EDTA-free and
PhosSTOP (Roche).

Preparation of samples for MS-based proteome and
phosphoproteome analysis

Each sample was boiled at 95°C for 5 min. Lysates were further
sonicated with a Bioruptor sonicator (Cosmo Bio). Then, 2 mg of
each sample was reduced with 10 mM TCEP, alkylated with 20 mM
iodoacetamide, and quenched with 21 mM L-cysteine. The samples
were digested with trypsin (protein weight ratio: 1/50; Wako) and
Lys-C (1 mAU/25 μg; Wako) for 16 h at 37°C. Samples were acidified
with 1% TFA and centrifuged at 20,000g for 10 min at 4°C. Super-
natants were desalted, and 0.25% of each sample was used for
tandem mass tag (TMT) labelling for proteome analysis. The
remaining portions of the samples were subjected to phospho-
peptide enrichment on an immobilized metal affinity chromatog-
raphy (IMAC) column (Abe et al, 2020) and labelled with TMT 10plex
reagent. Each proteome and phosphoproteome sample was sub-
jected to TMT labelling according to the manufacturer’s protocol.
Then, 40% and 83.3% of labelled phosphopeptides from HEK 293
Tet-On 3G cells and neuroblastoma cells, respectively, were applied
to enrich phosphotyrosine peptides. Phosphotyrosine enrichment
was performed using a pY1000 antibody as previously reported (Abe
et al, 2017b).

TMT-labelled peptides/phosphopeptides used for proteome
and global phosphoproteome analysis were fractionated into
seven fractions with C18/SCX StageTips as described previously
(Adachi et al, 2016).

Preparation of samples for immunoprecipitation and
immunoblotting

IMR-32 and NB-1 cells were lysed with cell lysis buffer containing
50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100,
0.5% sodium deoxycholate, and 0.1% SDS and supplemented with
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cOmplete EDTA-free and PhosSTOP. The lysates were sonicated
with a Bioruptor sonicator and centrifuged at 4°C for 10 min at
14,000g.

For each reaction, 100 μl of a slurry of Protein-A magnetic
beads (10515-1-AP; Bio-Rad) was washed three times with PBS-T.
Four micrograms of LASP1 polyclonal antibody (10515-1-AP;
Proteintech) was immobilized to the beads in TBS-T. The bead-
antibody mixture was applied to the lysates and incubated at 4°C
for 1 h. The antigen-bound beads were washed four times in wash
buffer (TBS-T). After the final washing step, 40 μl of LDS sample
buffer (NP0007; Invitrogen) containing 20 mM DTT was added to
the beads. The samples were incubated at 70°C for 10 min. The
eluates were analysed by immunoblotting as previously de-
scribed (Abe et al, 2020).

For protein separation, a 5–20% XV Pantera gradient gel (DRC
Tokyo) was used. Eluates were subjected to electrophoresis at 300 V
for 15 min. Proteins were blotted to polyvinylidene difluoride (PVDF)
membranes at 40 V for 70 min. The PVDF membranes were incu-
bated with a primary antibody (LASP1 Polyclonal antibody [10515-1-
AP; Proteintech]) and Phospho-Tyrosine (P-Tyr-1000) antibody (Cell
Signalling Technology [# 8954]) overnight at RT and with a sec-
ondary antibody conjugated to HRP (18-8816; TrueBlot Anti-IgG HRP,
Rockland) for 1 h. Chemiluminescent measurements of the blotted
proteins were performed using ECL Blotting Reagents (RPN2109;
Cytiva) with LAS 4000 (Cytiva).

Preparation of samples for interactome analysis

HEK 293 Tet-On 3G cells cultured in 15-cm dishes were crosslinked
with 0.25% (wt/vol) formaldehyde solution for 10 min. The cross-
linking reaction was terminated by the addition of glycine at a final
concentration of 0.25 M. Cells were washed twice with ice-cold PBS
and lysed in cell lysis buffer (50 mM Tris–HCl (pH 7.5), 150 mM NaCl,
0.35% sodium lauroyl sarcosinate, 0.5% sodium deoxycholate, 0.1%
sodium dodecyl sulfate, and cOmplete EDTA-free phosphatase
inhibitor). Benzonase nuclease (25 U; Sigma-Aldrich) was then
added to the lysate and incubated for 15 min at 37°C, and 3.3 mg of
the lysate was incubated with 20 μl of anti-FLAG M2 agarose beads
(Sigma-Aldrich) at 4°C for 2 h on a rotating shaker. The beads were
washed twice with lysis buffer and three times with wash buffer
(50 mM Tris–HCl [pH 7.5], 150 mM NaCl, 0.35% sodium lauroyl sar-
cosinate, and 0.5% sodium deoxycholate), and after a final wash,
the complexes were eluted in 80 μl of a Flag peptide solution (500
μg/ml in wash buffer; Sigma-Aldrich). The samples were boiled
for 30 min, reduced with 10 mM TCEP, alkylated with 20 mM
iodoacetamide, and quenched with 21 mM L-cysteine. Samples
were digested with trypsin and Lys-C for 16 h at 37°C. Samples were
then acidified with 1% TFA and centrifuged at 20,000g for 10 min at
4°C. Supernatants were desalted with C18 StageTips (Ishihama et al,
2006).

In vitro kinase assay of the ALK protein and ALK substrates

Recombinant ALK, LYN, and MAP4K4 proteins were kindly provided
by Carna Bioscience. ANXA2, APLP2, CNP, CYFIP2, EMD, ESYT1, ESYT2,
FAF2, FLOT1, GMDS, LASP1, PIN4, PTPN11, PXN, PTPRS, PXN, SHC1,
SMAD1, and UBXN6 were purchased from Origene. IRS was obtained

from SAB. ATP (0 or 20 μM) was mixed with 8.3 μg/ml substrate
dissolved in reaction buffer before incubation for 60 min at 30°C.
After the kinase reaction, 10× PTS buffer was added and boiled at
95°C for 5 min. Then, the samples were reduced with 10 mM TCEP,
alkylated with 20 mM iodoacetamide, and quenched with 21 mM
L-cysteine before digestion with trypsin and Lys-C using the SP3
protocol (Hughes et al, 2019). In brief, 40 μl of a mixture of pre-
washed Sera-Mag Speed Beads A and B (Thermo Fisher Scientific)
and ethanol (EtOH) were added to each sample to a final con-
centration of 50% EtOH. Proteins were allowed to bind to the beads
for 10 min, and the beads were then incubated for 2 min on a
magnetic rack for immobilization. The supernatant was removed,
and the beads were washed three times with 500 μl of 80% EtOH.
The beads were resuspended in 100 μl of 50 mM ammonium bi-
carbonate (pH 8.0). Finally, 1 μg trypsin and 2mAU Lys-C were added
and incubated at 37°C overnight. Supernatants were acidified by
adding 5 μl of 20% TFA and used for phosphopeptide enrichment
via the StageTip-based IMAC method (Abe et al, 2020).

LC–MS/MS analysis

Liquid chromatography-tandem mass spectrometry (LC–MS/MS)
was performed with an UltiMate 3000 Nano LC system (Thermo
Fisher Scientific) and an HTC-PAL autosampler (CTC Analytics)
coupled to a Q Exactive, Q Exactive Plus or Orbitrap Fusion Lumos
mass spectrometer (Thermo Fisher Scientific). For proteome and
phosphoproteome analysis of HEK 293 Tet-On 3G cells, the nano-
liquid chromatography gradient was composed of Buffer A (0.1%
formic acid and 2% acetonitrile) with a gradient of 5–30% Buffer B
(0.1% formic acid and 90% acetonitrile) over 145 min. The settings of
the Q Exactive Plus mass spectrometer were similar to those de-
scribed in a previous phosphoproteomic study (Abe et al, 2017a,
2020). For interactome analysis and the in vitro kinase assay, 85 and
30-min gradients from 5 to 30% Buffer B were used. The Q Exactive
instrument was operated as previously described (Adachi et al,
2016). For proteome and phosphoproteome analysis of neuro-
blastoma cells, a 145-min gradient from 5 to 30% solvent B (solvent
A, 0.1% FA; solvent B, 0.1% FA, and 99.9% acetonitrile) was used. The
settings of the Orbitrap Fusion Lumos mass spectrometer were
essentially as described in our previous study.

MS data analysis

Raw MS data were processed with MaxQuant (versions 1.5.1.2, 1.6.3.3,
and 1.6.14.0 for HEK 293 Tet-On 3G cell, interactome, neuroblastoma
cell, and in vitro kinase assay analyses, respectively) supported by
the Andromeda search engine for peak detection and quantifica-
tion (Cox & Mann, 2008). The MS/MS spectra were searched against
the UniProt human database with the following search parameters:
full tryptic specificity, up to two missed cleavage sites, carbami-
domethylation of cysteine residues set as the fixed modification,
and N-terminal protein acetylation andmethionine oxidation set as
variable modifications. For phosphoproteome analysis, phos-
phorylation of serine, threonine, and tyrosine was added as a
variable modification. The search results were filtered to a maxi-
mum false discovery rate of 0.01 at the protein, peptide-spectrum
match (PSM), and posttranslational modification (PTM) site levels.
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We required two or more unique/razor peptides for protein
identification and a ratio count of two or more for protein
quantification. PTM sites with a measured localization probability
>0.75 were considered to be localized. The MS/MS spectra used to
identify the substrate candidates are shown in Fig S2.

Bioinformatic analysis

Statistical analysis was carried out with Perseus 1.6.5.0 and 1.6.14.0
(https://maxquant.net/perseus/) (Tyanova et al, 2016). For the
proteome and phosphoproteome data, the quantitative TMT re-
porter ion intensities were log2-transformed and normalized by the
median centering of the values in each sample. Kinase activity
prediction was performed using site-centric PTM-SEA and PTMsigDB
v1.9.0 (Krug et al, 2019). PTM-SEA results were visualized with Coral
(Metz et al, 2018). To assess sequence bias around the phos-
phorylation sites of ALK substrate candidates, sequence motif logo
plots (amino acids between positions ±7 adjacent to the identified
phosphorylated sites) were generated and visualized using iceLogo
software (Colaert et al, 2009) with default parameters (P < 0.01). The
identified phosphotyrosine sites were used as the common
background. For interactome data, ALK interactors with statistically
significant changes were identified by two-tailed Welch’s t test
using the LFQ intensities of Dox (+) and Dox (−) samples. A per-
mutation test was performed to calculate the adjusted q-values.
Based on the fold change and q-value, significant differences for
ALK interactors were determined as reported previously (Tusher et
al, 2001). Modulated ALK interactors are summarized in the source
data for themain figures. The protein association network based on
ALK substrate candidates was obtained using the STRING database
(version 11) (Szklarczyk et al, 2019). All active interaction sources
were included in the network, and a medium confidence score of
greater than 0.4 was needed.

Data Availability

All raw data files generated in this study were deposited into
jPOST, a public proteome database certified by the Proteo-
meXchange Consortium (Okuda et al, 2017), under accession number
PXD027676/JPST001277, and PXD027677/JPST001278.
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Supplementary Information is available at https://doi.org/10.26508/lsa.
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