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Abstract
Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of 
brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/
or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed 
that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine mono-
phosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these 
pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which 
was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hy-
droxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, 
cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treat-
ment of Parkinson’s disease. 

Key Words: nerve regeneration; motor cortex lesions; dopaminergic neurons; GABAergic neurons; Darpp32; calbindin; μ-opioid receptor; 
neuropeptide Y; parvalbumin; neural regeneration 
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Introduction
Parkinson’s disease (PD) is a common neurodegenerative 
disease caused by dopaminergic (DA) neuronal degenera-
tion/loss in the midbrain substantia nigra compacta (Wood, 
2010; Morley and Duda, 2012). Pathomechanisms of PD 
include genetic mutations, the environment, oxidative stress, 
calcium dyshomeostasis, excitotoxicity, mitochondrial dys-
function, cell apoptosis, overexpression of related proteins, 
and immunological factors (Colosimo et al., 2003; Perier et 
al., 2011; Müller et al., 2013). Indeed, loss of midbrain DA 
neurons is only the initial trigger for complex pathologi-
cal changes (Wirdefeldt et al., 2011). Consequently, loss of 
DA neurons in the substantia nigra results in striatal DA 
neurotransmitter depletion, and causes morphological and 
functional changes in the corpus striatum (Zhou et al., 2014; 
Xiao, 2015; Jimenez-Shahed, 2016). 

Striatal neurons include projection neurons (approximately 
95% in rodents) and interneurons (5% in rodents) (Gerfen and 
Surmeier, 2011). Projection neurons are γ-aminobutyric acid 
(GABA)-ergic inhibitory neurons, which can be specifically 
marked by dopamine- and cAMP-regulated phosphoprotein, 
molecular weight 32 kDa (Darpp32), calbindin (Calb), and 
μ-opioid receptor (Mor) (Reiner et al., 1998; Dopeso-Reyes et 
al., 2014; Fu et al., 2016). Moreover, studies have confirmed 
four types of striatal interneurons: parvalbumin (Parv)+, calre-
tinin (Cr)+, neuropeptide Y/somatostatin/neuronal nitric ox-
ide synthase (NPY/SS/nNOS)+, and choline acetyltransferase 
(CHAT)+ (Kawaguchi, 1997; Gittis and Kreitzer, 2012). In ad-
dition, these different types of striatal neurons exhibit distinct 
susceptibility to various types of brain damage (Mallet et al., 
2006; Planert et al., 2010). Vulnerability of projection neurons 
and resistance of interneurons are widely reported in cerebral 
ischemia and Huntington’s disease models induced by 3-nitro-
propionic acid or quinolinic acid (Ma et al., 2013; Feng et al., 
2014; Mu et al., 2014). Although the pathological mechanism 
of striatal projection neuron injury following DA depletion 
induced by 6-hydroxydopamine (6OHDA) remains unclear, 
our previous studies have shown that DA depletion results in 
sensorimotor and cognitive dysfunction in experimental rats, 
with a characteristic hyperplastic reaction of striatal interneu-
rons (Jia et al., 2014; Ma et al., 2014). 

Striatal projection neurons receive excitatory glutamatergic 
inputs from the cortex and thalamus, and DA input from the 
mesencephalon, which thereby maintains a dynamic balance 
in their morphology and function (Ingham et al., 1998; Ger-
fen, 2006; Lovinger, 2010; Macpherson et al., 2014). Therefore, 
degeneration of DA neurons leads to disruption of the balance 
between excitatory and inhibitory inputs in striatal projection 
neurons, as well as abnormal activity of direct and indirect 
pathway neurons (Do et al., 2013). Further, striatal DA deple-
tion decreases the number of dendritic spines on projection 
neurons, which may reflect removal of tonic DA inhibitory 
control over corticostriatal glutamatergic drive, resulting in 
increased glutamatergic release, and culminating in spine loss 
(Garcia et al., 2010). To determine if changes in projection 
neurons and interneurons require glutamatergic release (and 
hence if cortical lesions mitigate damage by suppressing glu-

tamatergic release), we used a DA depletion model (substantia 
nigra of the midbrain), glutamatergic depletion model (cor-
tex), and DA + glutamatergic depletion model to investigate 
histopathological and protein changes in projection neurons 
and interneurons. Our aim was to provide comprehensive ev-
idence on the pathological mechanisms of PD and the effect 
of cortical lesions in a PD model.

Materials and Methods
Animals
In total, 40 specific-pathogen-free adult male Sprague-Dawley 
rats (Sun Yat-sen University, China; SCXK2016-0029) weigh-
ing 250–300 g were group housed under a 12-hour light/dark 
cycle with access to food and water. All animal experiments 
were performed with the approval of the Animal Care and 
Use Committee of Sun Yat-sen University. Rats were random-
ly divided into four groups: 6OHDA (n = 10), ibotenic acid 
(IA) (n = 10), 6OHDA + IA (n = 10), and control (n = 10).

Rat treatment 
The methods used in the present study have been previously 
described in detail (Jia et al., 2014; Ma et al., 2014). Briefly, 
rats in the 6OHDA group received a unilateral injection of 
6OHDA (Sigma, St. Louis, MO, USA) into the right median 
forebrain bundle at a final dosage of 5.4 μg (Jia et al., 2014; 
Ma et al., 2014). Rats were then anesthetized with chloral hy-
drate (150 mg/kg) and placed onto a Kopf stereotaxic instru-
ment (Stoelting, Wood Dale, IL, USA). Two skull areas were 
exposed (coordinates: lateral = −1.8 mm, anterior = −4.2 
mm, vertical = −8.1 mm; and lateral = −1.4 mm, anterior = 
−4.5 mm, and vertical = −8.0 mm). Next, 6OHDA (3 μg/μL; 
6OHDA dissolved in 0.9% saline containing 0.01% ascorbic 
acid as an antioxidant) was injected using a 10 μL syringe 
(Hamilton, Reno, NV, USA). With rats in the IA group, mo-
tor cortex lesions were produced by unilaterally injecting 
a 1.0 μL volume of 45 nM IA (Sigma) into the M1 cortex 
(lateral = +1.7 mm, anterior = +2.2 mm, and vertical = –1.7 
mm) at a rate of 200 nL/min the (Garcia et al., 2010). Rats in 
the 6OHDA + IA group received unilateral injection of both 
6OHDA and IA using the same method. 

At 2 and 4 weeks after 6OHDA lesion, rats were assessed 
by apomorphine-induced rotation. Rats were subcutaneously 
injected with apomorphine (Tocris, Bristol, UK) at a dose of 
0.25 mg/kg. Next, the number of 360° contralateral rotations 
was counted for 30 minutes. Only rats with significant con-
tralateral rotations (> 7 cycles per minute or total cycles > 
210) were included (Jia et al., 2014; Ma et al., 2014). All rats 
were killed at 28 days after surgery and further examined.

Immunohistochemistry
Rats were anesthetized with chloral hydrate (0.4 g/kg) (Aoxin, 
Yangzhou, Jiangsu Province, China), and then transcardially 
perfused with 0.9% saline, followed by 4% paraformalde-
hyde (400 mL) in 0.01 M phosphate buffer (pH 7.4, 4°C). 
Brains were quickly removed, immersed in the same fixative 
overnight at 4°C, then transferred into graded sucrose and 
subsequently frozen. Sections (each of 40 µm) containing the 



1971

Wu JJ, et al. / Neural Regeneration Research. 2016;11(12):1969-1975.

corpus striatum were cut using a cryoultramicrotome, and 
then pretreated in 0.3% H2O2 in 0.01 M phosphate buffer (pH 
7.4) for 30 minutes. Sections were washed three times in 0.01 
M phosphate buffer (pH 7.4) for 5 minutes before antibody 
incubation. 

Sections were incubated with the following primary antibod-
ies for 36 hours at 4°C: rabbit anti-Darpp32 (1:250; Cell 
Signaling, Danvers, MA, USA), rabbit anti-Mor (1:1,000; 
Chemicon, Rolling Meadows, IL, USA), mouse anti-Calb 
(1:1,000; Sigma), rabbit anti-NPY (1:3,000; Abcam, 
Cambridge, UK), and mouse anti-Parv (1:1,000; Sigma). 
Afterwards, sections were incubated with the following 
secondary antibodies for 3 hours at room temperature: 
goat anti-rabbit IgG or goat anti-mouse IgG (both 1:200; 
Sigma), and then washed and incubated with homolo-
gous peroxidase anti-peroxidase complex (1:100; Sigma) 
at room temperature for 2 hours. Standard avidin-biotin 
binding was detected using 3,3′-diaminobenzidine (0.05% 
in 0.01 M phosphate buffer, pH 7.4; Sigma) for 2–8 min-
utes. Unequivocally positive neurons were counted using 
ImageJ software (National Institutes of Health, Bethesda, 
MD, USA). The sections were selected from every fifth 
section of the brain containing the striatum (three sections 
per animal for each staining method). Average positive 
area (%, expressed as positive expression percentage) and 
number of positive cells per mm2 were calculated. The 
cell counts of Darpp32+, Parv+ and NPY+ neurons were 
determined as follows: each section was first viewed at 
100× magnification with a reticule (0.1 mm × 0.1 mm) in 
one eye piece to observe the whole striatum, and then the 
reticule was randomly moved into five nonoverlapping 
regions (0.01 mm2 for each) within striatum, and the cell 
count was performed within the reticule field at 400× 
magnification. In addition, the positive area of Mor+ and 
Calb+ neurons was quantified by ImageJ software.

Western blot assay
After deep anesthesia with chloral hydrate (0.5 g/kg), rats 
were killed by decapitation and the striatum extracted and ho-
mogenized. Next, 30 μg of total protein from each sample was 
separated on 10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis gels and transferred to polyvinylidene fluo-
ride membrane. After blocking with 5% nonfat dry milk for 2 
hours at room temperature, membranes were incubated over-
night at 4°C with primary antibodies: rabbit anti-Darpp32 
(1:250; Cell Signaling), rabbit anti-NPY (1:3,000; Abcam), 
mouse anti-Parv (1:1,000; Sigma), and rabbit anti-β-actin 
(1:2,000; Millipore, Billerica, MA, USA). Afterwards, mem-
branes were incubated with horseradish peroxidase conjugat-
ed anti-rabbit and anti-mouse secondary antibodies (1:3,000; 
Millipore) for 2 hours at room temperature. Blots were visu-
alized using an enhanced chemiluminescence system (GE, 
Fairfield, CT, USA), as previously described, and quantified 
by optical density using ImageJ software. 

Statistical analysis
SPSS 19.0 software (IBM, Armonk, New York, USA) was 

used for all statistical analyses. All experimental data are 
expressed as the mean ± SD. Comparisons among groups 
were examined by one-way analysis of variance and Student’s 
t-test. P < 0.05 was considered statistically significant. 

Results
Effect of cortical lesions on striatal projection neuron 
morphology  
Using Darpp32 as a marker of striatal projection neurons, 
immunohistochemical staining showed that Darpp32 neu-
rons were of similar median size and uniformly distribut-
ed throughout the striatum (Figure 1). Statistical analysis 
showed lower neuronal Darpp32+ immunoreactivity in the 
6OHDA group compared with the control and IA groups. 
In contrast, neuronal Darpp32+ immunoreactivity was high-
er in the 6OHDA + IA group compared with the 6OHDA 
group (all P < 0.05; Figure 2D).  

Immunohistochemical staining of Mor and Calb, which are 
also specific labels for projection neurons, showed that Mor+ 
neurons were expressed as a plaque area with a clear boundary. 
Moreover, Calb+ neurons were expressed as a large positive 
area with a small area of light staining (Figure 3). Statistical 
analysis showed significantly less Mor immunoreactivity in the 
6OHDA group compared with the control and IA groups, yet 
higher immunoreactivity in the 6OHDA + IA group compared 
with the 6OHDA group (all P < 0.05; Figure 2C). Calb immu-
noreactivity was also less in the 6OHDA group compared with 
the other groups (all P < 0.05; Figure 2C). 

Effect of cortical lesions on striatal interneuron 
morphology 
Immunohistochemical staining showed a sparse distribu-
tion of median sized NPY+ and Parv+ neurons (Figure 4). 
Statistical analysis showed higher neuronal NPY+ immuno-
reactivity in the 6OHDA group compared with the control 
and IA groups, but lower immunoreactivity in the 6OHDA 
+ IA group compared with the 6OHDA group (all P < 0.05; 
Figure 2D). Neuronal Parv+ immunoreactivity was not 
significantly different among the four groups (all P > 0.05; 
Figure 2D). 

Effect of cortical lesions on protein expression levels in 
striatal projection neurons and interneurons 
Western blot assays showed significantly lower expression 
levels of striatal Darpp32 protein in the 6OHDA group com-
pared with the control and IA groups, but higher levels in 
the 6OHDA + IA group compared with the 6OHDA group 
(all P < 0.05; Figure 2A, B). Expression levels of striatal NPY 
protein were significantly higher in the 6OHDA group com-
pared with the control group (P < 0.05; Figure 2A, B), while 
no significant difference was found between the IA and 
6OHDA + IA groups (both P > 0.05; Figure 2A–B). There 
was no significant difference in Parv protein expression lev-
els among the four groups (all P > 0.05; Figure 2A, B). 

Discussion
The striatum is the main component of the basal ganglia, and 
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has a complex cell structure and neurochemical phenotype. 
Striatal neurons are divided into projection neurons and 
interneurons according to cellular morphology and function 
(Flores-Barrera et al., 2010). In mammals, DARPP32 is a 
D1-receptor associated signaling protein found in striatal 
projection neurons, including both substance P-contain-
ing-positive neurons and enkephalinergic projection neu-
rons (Reiner et al., 1998). The striatum can also be divided 
into patch (striosome) and matrix compartments based on 
differential connectivity and expression of neuropeptides 
and receptors (Gerfen et al., 1985; Graybiel, 1990; Crittenden 
and Graybiel, 2011). The patch compartment is thought to be 
a limbic channel that runs through the striatum, and receives 
input from the prelimbic cortex and amygdala. Alternatively, 
the matrix compartment is considered to be a motor channel 
that traverses the striatum, and it receives inputs from sen-
sorimotor and associative forebrain regions (Gerfen, 1984; 
Ragsdale and Graybiel, 1988; McDonald, 1992). The stria-
tum also contains a small amount of interneurons including 
Parv+, NPY+, Cr+, and Chat+ neurons (Galarreta and Hestrin, 
2001). Striatal projection neurons in direct and indirect 
pathways have opposite effects in regulating movement 
function of the cerebral cortex, while interneurons function 
in regulation of projection neurons via GABA microcircuits 
(Ballion et al., 2008; Planert et al., 2010). 

Striatal DA neurons are lost during the pathological 
changes of PD. However, different types of striatal neurons 
exhibit different degrees of damage in PD. Various striatal 
neurons show different sensitivity in the pathological pro-
cess of PD (Jia et al., 2014; Ma et al., 2014). In the striatum, 
medium spiny GABA projection neurons are damaged first, 
especially indirect pathway neurons (D2+) (Day et al., 2008; 
Tozzi et al., 2011; Kim et al., 2013). Conversely, striatal inter-
neurons show strong resistance to pathological damage. Our 

Figure 2 Effect of cortical lesions on 
levels of striatal Darpp32/NPY/Parv 
proteins in a Parkinson’s disease rat 
model. 
(A) Western blot assay results showing 
Darpp32, NPY, and Parv protein ex-
pression levels in the striatum of all four 
groups. (B) Western blot quantitation 
results are represented as the optical den-
sity ratio of the target protein to β-actin. 
(C) Area of Mor+ and Calb+ projection 
neurons in the striatum. (D) Number of 
Darpp32+ projection neurons and NPY+ 
and Parv+ interneurons in the striatum. 
All data are expressed as the mean ± SD. 
Comparisons among groups were ex-
amined by one-way analysis of variance 
and Student’s t-test. *P < 0.05, vs. Ctrl 
group; #P < 0.05, vs. 6OHDA group. The 
experiment was performed five times. 
Darpp32: Dopamine- and cAMP-regu-
lated phosphoprotein, molecular weight 
32 kDa; NPY: neuropeptide Y; Parv: 
parvalbumin; Mor: μ-opioid receptor; 
Calb: calbindin; Ctrl: control; 6OHDA: 
6-hydroxydopamine; IA: ibotenic acid. 

Figure 1 Effect of cortical lesions on Darpp32+ projection neurons in 
the striatum of a Parkinson’s disease rat model.  
(A–D) Low power light microscopic images of immuohistochemical 
staining. (A’–D’) High magnification of A–D: Darpp32+ neuronal 
number decreased in the 6OHDA group compared with the control 
group. In contrast, Darpp32+ neuronal number increased significantly 
in the 6OHDA + IA group. Scale bars: 100 μm in A–D, 50 μm in A’–D’. 
Darpp32: Dopamine- and cAMP-regulated phosphoprotein, molecular 
weight 32 kDa; Ctrl: control; 6OHDA: 6-hydroxydopamine; IA: iboten-
ic acid. Arrows indicate Darpp32+ projection neurons.
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Figure 3 Effect of cortical lesions on Mor+ and Calb+ projection neurons in the striatum of a Parkinson’s disease rat model.  
(A–D) Low power light microscopic images of immuohistochemical staining for Mor+ projection neurons. (A’–D’) High magnification views. Arrows 
indicate Mor+ projection neurons. Mor+ neuronal area decreased in the 6OHDA group compared with the control group. However, Mor+ neuronal area 
increased significantly in the 6OHDA + IA group. (E–H) Simultaneous visualization of Calb+ projection neurons in all four groups at low magnification. 
E’–H’ are from the corresponding images E–H. Arrows  indicate Calb+ projection neurons. Minimal hyperchromatism areas marked by * were observed 
in images E–H, which represent Patch intermediate zones. Scale bars: 250 μm in A–H, 50 μm in A’–H’. Mor: μ-opioid receptor; Calb: calbindin; Ctrl: con-
trol; 6OHDA: 6-hydroxydopamine; IA: ibotenic acid. 

Figure 4 Effect of cortical lesions on NPY+ and Parv+ interneurons in the striatum of a Parkinson’s disease rat model.   
A–D and A’–D’ show the distribution pattern and morphology of striatal NPY+ interneurons by immunohistochemical staining. A–A’, B–B’, C–C’, and D–
D’ show NPY+ interneurons (arrows) in Ctrl, 6OHDA, IA, and 6OHDA + IA groups, respectively. E–H and E’–H’: distribution pattern and morphology 
of striatal Parv+ interneurons. E–E’, F–F’, G–G’, and H–H’: Parv+ interneurons (arrows) in Ctrl, 6OHDA, IA, and 6OHDA + IA groups, respectively. Scale 
bars: 150 μm in A–H, 60 μm in A’–H’. NPY: Neuropeptide Y; Parv: parvalbumin; Ctrl: control; 6OHDA: 6-hydroxydopamine; IA: ibotenic acid. 

 A   

 B   

 C   

 D   

 E   

 F   

 G   

 H   

 A’  

 B’   

 C’   

 D’   

 E’   

 F’   

 G’   

 H’   

 A   

 B   

 C   

 D   

 E   

 F   

 G   

 H   

 A’   

 B’   

 C’   

 D’   

 E’   

 F’   

 G’   

 H’   



1974

Wu JJ, et al. / Neural Regeneration Research. 2016;11(12):1969-1975.

previous studies confirmed that four interneuron types show 
intense proliferative changes in middle cerebral artery 
occlusion and quinolinic acid models, as well as character-
istic changes during 6OHDA-induced DA depletion (Ma 
et al., 2013, 2014; Feng et al., 2014; Mu et al., 2014). In the 
present study, we used immunohistochemistry and west-
ern blot assays to examine the damage to striatal projec-
tion neurons and interneurons in a PD model. Our results 
show that the number of Darpp32+ projection neurons 
and areas of Mor+ and Calb+ projection neurons decreased 
significantly after DA depletion induced by 6OHDA. 
However, reduction of Darpp32, Calb, and Mor was not 
observed in the 6OHDA + IA group. Protein expression 
levels of Darpp 32 also exhibited the same trend as our 
immunohistochemical results. Thus, our study confirms 
that projection neurons are sensitive to damage following 
DA depletion, while cortical lesions reverse the reaction of 
projection neurons. 

Our previous studies confirmed that striatal interneu-
rons are tolerant to pathological lesions of PD, but do not 
completely escape from damage. In the present study, we 
chose two characteristic interneuron markers, NPY and 
Parv, to observe neuronal changes in morphology and pro-
tein levels. In our PD model, NPY+ interneurons showed 
a proliferative reaction, with increased number and pro-
tein levels, consistent with our previous study (Ma et al., 
2014). The significance of this phenomenon is still unclear. 
It may reflect reactive hyperplasia to DA depletion injury 
or a feedback response to loss of projection neurons (e.g., 
projection neurons may inhibit the interneuron reaction). 
All of these possibilities require further studies. However, 
increased number and protein levels of NPY+ interneurons 
were not detected in our PD model after cortical lesions. 
Moreover, no significant change in Parv+ interneurons 
was observed in any group. This result also shows that 
cortical lesions inhibit striatal dysfunction and injury in-
duced by 6OHDA. The metabotropic glutamate (mGluR) 
2/3 receptor agonist, LY379268, is a preferential agonist 
at mGluR2/3 receptors (Schoepp et al., 1999; Imre, 2007). 
The effect of LY379268 on PD-related motor deficits was 
confirmed by suppressing corticostriatal glutamate release 
(Murray et al., 2002; Garcia et al., 2010), which will be our 
future research aim. 

In summary, our study is the first to compare striatal pro-
jection neurons and interneurons following cortical lesions 
of DA depletion. Our findings demonstrate that 6OHDA-in-
duced DA depletion causes reduced Darpp32, Mor, and 
Calb immunohistochemical staining (number and positive 
area), and reduces protein levels for striatal projection 
neurons. Meanwhile, cortical lesions reversed these patho-
logical changes. 6OHDA-induced DA depletion results in 
increased number and protein levels of NPY interneurons, 
which is also inhibited by cortical lesions. No morphologi-
cal or protein changes were observed in Parv interneurons 
after 6OHDA-induced DA depletion and cortical lesions. 
NPY interneuron number and Darpp32 protein levels were 
most significant for the reaction of DA depletion and corti-

cal lesions. Taken together, striatal projection neurons and 
interneurons exhibit different susceptibility to DA deple-
tion. While cortical lesions inhibit striatal dysfunction and 
damage induced by 6OHDA, providing a new possibility for 
clinical treatment of PD.
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