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Abstract
Background: In a cross-sectional stepped-wedge cluster randomized trial comparing usual care to a new intervention,
treatment allocation and time are correlated by design because participants enrolled early in the trial predominantly
receive usual care while those enrolled late in the trial predominantly receive the new intervention. Current guidelines
recommend adjustment for time effects when analyzing stepped-wedge cluster randomized trials to remove the con-
founding bias induced by this correlation. However, adjustment for time effects impacts study power. Within the
Frequentist framework, adopting a sample size calculation that includes time effects would ensure the trial having ade-
quate power regardless of the magnitude of the effect of time on the outcome. But if in fact time effects were negligible,
this would overestimate the required sample size and could lead to the trial being deemed infeasible due to cost or una-
vailability of the required numbers of clusters or participants. In this study, we explore the use of prior information on
time effects to potentially reduce the required sample size of the trial.
Methods: We applied a Bayesian approach to incorporate the prior information on the time effects into cluster-level
statistical models (for continuous, binary, or count outcomes) for the stepped-wedge cluster randomized trial. We con-
ducted simulations to illustrate how the bias in the intervention effect estimate and the trial power vary as a function of
the prior precision and the mis-specification of the prior means of the time effects in an example scenario.
Results: When a nearly flat prior for the time effects was used, the power or sample size calculated using the Bayesian
approach matched the result obtained using the Frequentist approach with time effects included. When a highly precise
prior for the time effects (with accurately specified prior means) was used, the Bayesian result matched the Frequentist
result obtained with time effects excluded. When the prior means of the time effects were nearly correctly specified,
including this information improved the efficiency of the trial with little bias introduced into the intervention effect esti-
mate. When the prior means of the time effects were greatly mis-specified and a precise prior was used, this bias was
substantial.
Conclusion: Including prior information on time effects using a Bayesian approach may substantially reduce the required
sample size. When the prior can be justified, results from applying this approach could support the conduct of a trial,
which would be deemed infeasible if based on the larger sample size obtained using a Frequentist calculation. Caution is
warranted as biased intervention effect estimates may arise when the prior distribution for the time effects is concen-
trated far from their true values.
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Background

The stepped-wedge cluster randomized trial (SW-CRT)
design has received considerable attention in recent
years.1–8 In its standard form, the SW-CRT design
begins with each cluster delivering the control
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(standard-of-care) treatment and ends with each cluster
delivering the new intervention. At each of a set of pre-
specified time points, called the ‘‘steps,’’ a randomly
selected subset of clusters crosses from delivering the
control treatment to delivering the new intervention.
Each cluster collects participant outcome data under
both the control and the intervention conditions2

(Figure 1). The SW-CRT is particularly well-suited for
evaluating the effectiveness of the implementation of
an intervention in the real world.

One important feature of the SW-CRT design is that
early in the trial, participants predominantly receive the
control treatment while late in the trial, they predomi-
nantly receive the new intervention. As a result, treat-
ment received and time are correlated by design so time
will be a confounder of the intervention–outcome rela-
tionship if there is an effect of time on the outcome, and
analytic models that ignore this correlation will yield
biased intervention effect estimates, as noted by Hussey
and Hughes in their seminal paper.1 Other authors have
argued that when the duration of the trial is short, the
time effect is likely to be unimportant and it may be rea-
sonable to ignore it.9 Nonetheless, current consensus
guidelines recommend that analyses should adjust for
time effects to avoid the risk of bias.10 Consequently,
the power/sample size calculations used in designing a
trial should also be based on an analytic model that
includes time effects.

Within the Frequentist framework, the required
sample size is substantially larger when the calculation
accounts for time effects than when time effects are
ignored, because adjusting for a variable (time, in this
case) that is highly correlated with the intervention

greatly increases the standard error of the intervention
effect and so reduces the ability of the analysis to detect
that effect.11–13 Zhou et al.14 compared models for con-
tinuous outcomes in the SW-CRT design with and
without time effects, and found that the design incor-
porating time effects often required more than twice as
many clusters as the one without time effects. Similarly,
Baio et al.15 concluded that failure to account for time
effects at the design stage while including them at the
analysis stage may artificially and grossly overestimate
the power of a study. Adopting the sample size calcula-
tion that includes time effects would ensure the trial
having adequate power regardless of the strength of the
effect of time on the outcome. But if in fact time effects
were negligible, this would overestimate the required
sample size and could lead to the trial being deemed
infeasible due to cost or unavailability of the required
number of clusters or participants.

In some situations, prior information on the magni-
tudes of the time effects may be available, such as from
historical trends in outcomes under the current stan-
dard of care. Or the expected change in outcome rates
over time during the trial may be judged to be small if
the trial is completed in relatively short time frame. The
concern is perhaps not so much whether prior informa-
tion is available (which it usually is, in our experience),
but the extent to which the prior information is deemed
informative of the time trends that will be encountered
in the trial. Consideration of this information could
enable trial designers to show that the trial would be
adequately powered with a smaller sample size, poten-
tially turning an infeasible trial into a feasible one. The
Frequentist sample size calculation methods provide no
option for making this assessment. We propose using a
Bayesian model to incorporate this prior information
in the design and analysis to narrow the uncertainty in
the estimated time effects. This, in turn, would narrow
the uncertainty in the estimated intervention effect and
improve the efficiency of the trial while still adjusting
for potential time effects.

This article provides a proof-of-principle illustration
of the potential impact of incorporating priors for time
effects on the bias in the intervention effect estimate
and on trial power/sample size by presenting the
numerical results from an example design that assumes
linear time effects. The expectation is that when the
means on the time effects priors match their true val-
ues, trial power will be increased while retaining
unbiased estimates for the intervention effect, but mis-
specification of these means can lead to biased esti-
mates for the intervention effect. Through comparison
to the Frequentist sample size calculations, we illustrate
how incorporating prior information on time effects
can address the shortcomings of the Frequentist power
calculations and enable us to obtain a justifiable and

Figure 1. Schematic of a standard stepped-wedge design.
Clusters are randomly allocated to transition from delivery
of the standard of care (white cells) to delivery of the new
intervention (gray cells) at different time points (T1, T2,..., T5).
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accurate assessment of the required sample size. R code
for continuous, binary, and count outcome models is
included in the Supplementary material to assist
researchers with exploring the utility of this approach
for their own trial designs.

Methods

Bayesian stepped-wedge model

For expository concreteness, we illustrate our method
using a slightly modified version of the Bayesian model
used by Cunanan et al.16 for the stepped-wedge design
with a count outcome analyzed at the cluster level. Our
model includes an intercept parameter to allow for esti-
mation of the baseline outcome rate rather than pre-
specifying the expected outcome rate. The models for
continuous (Gaussian) and binary outcomes are
described in the Supplementary material. Suppose the
trial enrolls Nij patients in cluster i (i = 1, ..., I) during
time period j (j = 1, ..., J). Each patient contributes a
single count outcome. Let Yij be the cluster-level count
outcome aggregated over the Nij patients in cluster i
and time period j. We assume the Yij are independent
Poisson (lij) random variables, where lij is determined
by

log(lij)= log (Nij)+a+ai +bj + uXij

Here, a is the individual-level log-baseline rate in the
population, ai is the random effect for cluster i, bj is
the fixed time effect in period j, Xij is the treatment
group indicator (0 = control, 1 = intervention), and u

is the log-relative risk of an event for treatment versus
control.

Cunanan et al. assumed that each cluster transi-
tioned at equally spaced, unique time points (i.e. the
number of periods equals the number of clusters plus
one). Using simulation, they evaluated the
(Frequentist) power and Type I error performance (i.e.
the proportions of simulations that declare the inter-
vention is effective when in fact it is not or it is true,
respectively)17 under the assumption of relatively flat
prior distributions for the cluster random effects and
the fixed time effects. Specifically, they assumed that
ai ; Normal (0, 1/t2) where t2 ; Gamma (0.1, 1) and
that bj ; Normal (0, 10), where Normal (a, b) denotes
the normal distribution with mean a and variance b.
For the intervention effect, they assumed a modestly
informative prior, u ; Normal (0, 0.1), which assigns
roughly 95% of the probability for u in the interval
(20.63, 0.63). The intervention was declared to be
effective if the posterior probability of a beneficial
intervention effect was greater than 0.95, that is, if Pr (u
\ 0| data) . 0.95. Their results suggested that the
power and bias in the estimated intervention effect was
relatively insensitive to the true values of the cluster

effects variance and the time effects. However, they did
not explore the impact of using an informative prior
distribution on the time effects. In our work, we
assumed a flatter prior for the cluster random effects,
that is, ai ; Normal (0, 1/t2) where t2 ; Gamma
(0.001, 0.001) to ensure the intervention effect estimates
would not be impacted by prior information for ai. We
also adopted nearly flat priors, a ; Normal (0, 100)
and u ; Normal (0, 9), for the individual-level log-
baseline rate and intervention effect, respectively. We
investigated the impact of assuming priors with varying
degrees of informativeness for the time effects bj;

Normal (0, s2) by varying the value of the prior stan-
dard deviation s within the set of values (0.01, 0.05,
0.15, 0.3, 0.5, 3). To facilitate comparison with the
standard Frequentist calculations that use a two-tailed
test at significance level 0.05, we declared a difference
between the two treatments if the Pr (u \ 0| data)
. 0.975 or Pr (u . 0| data) . 0.975.

Simulation study

To assess the performance of our models, we simulated
trials assuming a true relative risk of 0.7 (i.e. u’20.357
and a lower count corresponds to a better outcome).
With respect to this magnitude for the intervention
effect, the values of s could be interpreted as follows:
The value s = 0.01 corresponds to nearly a point prior
which represents near certainty regarding the magni-
tudes of the time effects (zero in this example) while the
value s = 3 corresponds to a nearly flat prior and rep-
resents very high uncertainty about the magnitudes of
the time effects. The values in between could be inter-
preted roughly as ‘‘some uncertainty exists regarding
the magnitudes of the time effects but the level of
uncertainty is:’’ (a) s = 0.05, ‘‘almost surely less than
the intervention effect,’’ (b) s = 0.15, ‘‘very likely less
than the intervention effect,’’ (c) s = 0.3 or 0.5 ‘‘simi-
lar to the magnitude of the intervention effect.’’ We set
the true cluster effect variance at 1/t2 = 0.25, the
individual-level log-baseline rate at a = 0.1175 and the
cluster-period sizes at a constant value of Nij = 20. We
fixed the number of transition steps at five to ensure
that variation in our results could not be attributed to
variation in the number of periods (that occur when the
number of clusters changes, as was done in Cunanan
et al.). If the number of the clusters was a multiple of
five, then an equal number of clusters was allocated to
transition at each step. Otherwise, the remaining clus-
ters were assigned, for simplicity, to the transition steps
sequentially beginning with the first step. For example,
Figure 1 illustrates this scheme for a stepped wedge
design with 12 clusters. After allocating two clusters to
transition at each of the five steps, the remaining two
clusters were allocated randomly to the first two steps.
Thus, three clusters will transition at each of the first
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two steps, while two clusters will transition at each of
the remaining steps. Note that changing the steps at
which these remaining clusters transition would lead to
a slightly different power,18 which could change slightly
the number of clusters needed, but this difference is
immaterial to the ideas presented in this article.

In our base scenario, for each value of s, we deter-
mined via simulation the minimum number of clusters
required to obtain at least 80% power under the
assumption that there were no time effects (i.e. the data
were generated assuming bj = 0 for all time periods
j). The number of simulation replicates was 8000 for
each configuration of input parameter values, yield-
ing a standard error of approximately 0.005 in the
power estimates. The minimum number of clusters
required was determined by making an initial guess
and then adjusting that number through trial-and-
error power calculations until the target power was
achieved. In this scenario, the priors for the time
effect were correctly specified in that they are cen-
tered around the true values of bj. We assessed the
gain in efficiency by comparing these sample sizes to
the Frequentist calculation based on the generalized
linear mixed model proposed by Hussy and Hughes1

using the simulation-based approach in the R pack-
age ‘‘SWSamp.’’15,19

As with all Bayesian analyses that utilize informative
priors, a mis-specified prior may increase the bias of
estimators so it is important to investigate the sensitiv-
ity of the results to the prior. Hence, in our sensitivity
scenarios, we assumed the sample sizes calculated in the
base scenario and evaluated the bias in estimating the
intervention effect, defined as the posterior mean of u,
and the corresponding power as a function of the mag-
nitude of mis-specification in the prior mean for the
time effects (i.e. due to being not centered around the
true values of bj). In practice, the relevant patterns and
magnitudes of mis-specification that should be explored
will vary with context. For illustrative purposes in this
article, the time effects were assumed to be linear, with
‘‘small’’ (range of values of bj = u/20), ‘‘medium’’
(range of bj = u/10), ‘‘large’’ (range of bj = u/4), and
‘‘very large’’ (range of bj = u/2) magnitudes starting
from 0 at baseline. Investigations were conducted for
both increasing and decreasing outcome rates over
time. The number of simulation replicates and all other
model parameters were kept unchanged from the base
scenario. Computations were conducted using the code
published by Cunanan et al., with adaptations needed
to match our models (see Supplementary materials). All
simulations were done using RJAGS (version number
4.3.0) by R (version 3.6.1) on the Cedar Compute
Canada computing cluster located at Simon Fraser
University. Additional information about Markov

Chain Monte Carlo settings and diagnostics can be
found in the web appendix.

Results

Efficiency gain using an informative prior for the time
effects, with correctly specified prior means

In the base scenario (no time effects/correctly specified
prior means), the second row in Table 1 displays the
minimum number of clusters needed to obtain at least
80% power (confirmed by the entries in the middle row
labeled ‘‘None’’ in Table 2). The results suggested that
even relatively modest knowledge about the time effects
reduced substantially the number of clusters needed.
When the prior was nearly flat (s = 3), the required
number of clusters was 51, which matched the result of
the Frequentist calculation based on the model that
included time effects. If s was lowered to 0.3, corre-
sponding to an uncertainty in the time effect similar in
magnitude to the intervention effect (u = 20.357), the
required number of clusters decreased to 43. This num-
ber further decreased to 32 when s was lowered to
0.15, which was roughly half of the intervention effect.
And finally, when s = 0.01, corresponding to the case
where the designer knows the magnitudes of the time
effects with near certainty, the required number of clus-
ters decreased to 22, which matched the Frequentist
result based on a model that omitted time effects.

Across all of these choices for s, we observed a small
(;1%) but relatively stable bias toward the null for the
intervention effect on the relative risk scale (see the row
labeled ‘‘None’’ in Table 1).

Bias due to mis-specification of the prior means of
the time effects

The intervention effect estimates (bias) and the power
under the sensitivity scenarios (linear time effect/mis-
specified prior means) are shown in the four rows
above and four rows below the row labeled ‘‘None’’ in
Tables 1 and 2, respectively. When a nearly flat prior
(s = 3) was used, the intervention effect bias under
different magnitudes of mis-specification all matched
the values from the base scenario, which is consistent
with the intuition that the prior mean is unimportant
when the prior is nearly flat. However, the power
decreased (increased) modestly when the outcome rate
decreased (increased) over time. This result is not a fea-
ture of the Bayesian approach but is simply a conse-
quence of the absolute difference in the outcome rates
decreasing (increasing) over time, resulting in decreased
(increased) difficulty in detecting the intervention
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effect—the Frequentist calculations exhibited the same
pattern.

As s decreased, the bias in the intervention effect
estimate increased. The prior mean of zero for the time
effects biased the time effects estimates toward zero,
increasingly so as s decreased, and led to the interven-
tion effect estimates absorbing the bias that was
induced in the time effects estimates. In this example,
when the true time trend was decreasing (i.e. from zero
to negative values of bj, and corresponding to improved
outcomes over time), but not captured fully in the time
effects estimates, the intervention effect was overesti-
mated (bias . 0). Conversely, when the time trend was
increasing (corresponding to poorer outcomes over
time), the intervention effect was underestimated (bias
\ 0). The intervention effect bias reached up to 11%
when the range of time effects equaled one-half the true
intervention effect and a precise prior was used.
However, within the ranges of values for s and for the
bj values, there existed a triangular region (cells shaded
blue in Table 1), comprising situations with either
larger values of s or smaller bj values, within which
using the prior reduced the required number of clusters,
yet introduced very little bias (\ 3%) in the interven-
tion effect estimate.

The choice for s also impacted the trial power, but
in different directions depending on the direction of the

time effects trend. When the time trend was decreasing
(outcomes improving over time), the power increased
as s decreased due to both an increase in precision and
overestimation of the intervention effect. When the
time trend was increasing, the power decreased as s

decreased due to underestimation of the intervention
effect (the impact of which was not fully mitigated by
an increase in precision). Though the power values
showed a slightly different pattern to that seen for the
intervention effects/bias in Table 1, there was a corre-
sponding triangular region (cells shaded blue in
Table 2), closely overlapping the one seen in Table 1,
within which using the corresponding prior did not
appreciably impact the trial power. That is, scenarios in
which the bias was low corresponded well with the sce-
narios in which the power remained near the nominal
80%.

Discussion

We have proposed a Bayesian approach for calculating
the number of clusters needed in a stepped-wedge trial
that utilizes prior information about the magnitudes of
the time effects and illustrated how this approach
bridges the large difference in the number of required
clusters that is obtained via the two Frequentist calcu-
lations when time effects are either included or ignored.

Table 1. Impact of the prior distribution for the time effects on the bias of the intervention effect (relative risk) estimate.

Standard deviation
of the time
effect prior (s)

3 0.5 0.3 0.15 0.05 0.01

No. of clusters 51 47 43 32 23 22
Outcome
time trend

Range of bj Intervention effect relative risk (% bias)

Deteriorating
over time

0 to 0.178
(2u/2)

0.71
(21.2%)

0.72
(22.5%)

0.73
(24.3%)

0.75
(27.3%)

0.78
(211.2%)

0.78
(211.3%)

0 to 0.089
(2u/4)

0.71
(21.2%)

0.71
(21.6%)

0.72
(22.8%)

0.73
(24.5%)

0.74
(26.1%)

0.75
(27.2%)

0 to 0.0357
(2u/10)

0.71
(21.4%)

0.71
(21.5%)

0.71
(22.0%)

0.72
(23.0%)

0.72
(22.8%)

0.72
(23.1%)

0 to 0.0178
(2u/20)

0.71
(21.2%)

0.71
(21.7%)

0.71
(21.5%)

0.71
(21.4%)

0.71
(21.0%)

0.71
(21.1%)

None 0 0.71
(21.5%)

0.71
(21.2%)

0.71
(21.1%)

0.71
(21.2%)

0.71
(20.9%)

0.71
(21.1%)

Improving
over time

0 to 20.0178 (u/20) 0.71
(21.4%)

0.71
(21.1%)

0.71
(21.0%)

0.71
(20.9%)

0.71
(20.7%)

0.70
(0.3%)

0 to 20.0357 (u/10) 0.71
(21.1%)

0.71
(20.9%)

0.71
(20.9%)

0.70
(0.2%)

0.69
(1.2%)

0.69
(1.6%)

0 to 20.089 (u/4) 0.71
(21.0%)

0.71
(20.8%)

0.70
(20.1%)

0.69
(1.5%)

0.68
(3.1%)

0.68
(3.3%)

0 to 20.178 (u/2) 0.71
(21.1%)

0.70
(20.2%)

0.69
(0.8%)

0.67
(4.4%)

0.65
(7.9%)

0.64
(8.8%)

The number of clusters is set at the minimum needed to achieve 80% power when the prior mean is correctly specified (i.e. both the true and the

prior mean time effects are zero). The corresponding intervention effect estimates (bias) are shown in the row labeled ‘‘None.’’ Rows above and

below this row show the intervention effect estimates (bias) when the true time effects (bj) deviate from the prior means (all zero). (Note that

u = 20.357 and the true relative risk = 0.70.).
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The results show that when an informative time effects
prior is used, this approach can reduce substantially
the number of clusters needed, while introducing very
little bias into the intervention effect estimate (and
maintaining true power) as long as the prior time
effects means are not greatly mis-specified. The robust-
ness to modest mis-specification was particularly
noteworthy—when the magnitude of mis-specification
of the true time effects means was within roughly 10%
of the intervention effect, the adoption of an informa-
tive prior, even one that was very precise, did not incur
either substantial bias in the intervention effect estimate
or a meaningful change in power. This result can be
viewed as mathematical support for the argument that
omitting time effects in the Frequentist design and
analysis may be justified when the values of the time
effects are assumed a priori to be known (often zero).
However, claiming to know the time effects is a very
strong assumption that we believe would be difficult to
justify in practice. Hence, use of the Frequentist
approach ignoring time effects or the analogous
Bayesian approach in which near certainty in the time
effects prior is assumed, should be avoided. As seen in
the scenarios where the magnitudes of the time effects
are not small compared to the intervention effect, mis-
specification of the prior means of the time effects can
lead to substantial bias in the intervention effect esti-
mate and under-powering of the trial if the outcome
time trend is worse than that assumed. We emphasize
that the trial designer using the proposed Bayesian
model must ensure that the choice of prior can be justi-
fied (such as having been obtained through a formal
elicitation process with subject-area experts) and that it
reflects the true uncertainty in the time effects. To
ensure that the potential consequences of using a par-
ticular prior are well understood before setting the sam-
ple size, we recommend the trial designer assess the
sensitivity of the trial performance characteristics to the

true time effects (as exemplified in Tables 1 and 2), as
well as compare to case where an uninformative prior
is assumed.

We observed similar patterns in the results for our
examples with continuous and binary outcomes,
although for the continuous outcome, changes in the
magnitudes of the true time effect did not affect the
power values, since the difference in mean outcomes
between the two interventions does not depend on the
time effects (see Supplementary materials for details).
For binary or count outcomes, if there is need to miti-
gate the change in power due to the presence of the time
trend when designing a specific trial, the designer can
replace the individual-level baseline outcome rate with
the expected outcome rate at the mid-point of the trial.

How often the proposed approach will find applic-
ability in the real world remains unclear. The natural
histories of most diseases evolve slowly, and when the
standard of care has remained the same for some time,
one would expect the outcome rates to change rela-
tively slowly. Thus, historical time trends typically can
be estimated fairly precisely, which suggests that this
approach has the potential to be widely applicable.
However, while considerable literature exists on the
methods for eliciting priors for intervention effects, we
are not aware of any prior elicitation work addressing
the extrapolation of historical trends to a future trial.
Because historical time trends may not persist into the
future, a key risk to consider when deciding whether to
adopt the proposed approach is that the approach
would not be robust to disruptions in these trends.

Our results should be interpreted as a proof of prin-
ciple demonstration in a limited range of settings. The
scope of our simulation work necessarily was limited
due to the many input parameters used in the power
calculations, and considered only on the cross-sectional
design. We expect that our main conclusions qualita-
tively would hold if the values of input parameters such

Table 2. The impact of the prior distribution for the time effects on the trial power.

Standard deviation of
the time effect prior (s)

3 0.5 0.3 0.15 0.05 0.01

No. of clusters 51 47 43 32 23 22
Outcome time trend Range of bj Power

Deteriorating over time 0 to 0.178 (2u/2) 0.83 0.81 0.78 0.67 0.59 0.58

0 to 0.089 (2u/4) 0.82 0.80 0.79 0.74 0.71 0.70

0 to 0.0357 (2u/10) 0.81 0.80 0.80 0.78 0.77 0.77

0 to 0.0178 (2u/20) 0.80 0.80 0.80 0.79 0.79 0.79

None 0 0.80 0.80 0.80 0.80 0.80 0.80

Improving over time 0 to 20.0178 (u/20) 0.80 0.80 0.80 0.81 0.81 0.81

0 to 20.0357 (u/10) 0.80 0.79 0.81 0.82 0.83 0.84

0 to 20.089 (u/4) 0.79 0.79 0.82 0.84 0.87 0.87

0 to 20.178 (u/2) 0.77 0.78 0.83 0.89 0.91 0.92

The cells shaded in blue correspond to the cells in Table 1 in which the bias of the intervention effect was \3%.
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as the treatment effect size, the number of time periods,
and so on were to vary, but trial designers will need to
conduct simulations using appropriate inputs to assess
the magnitudes of the benefits and risks of applying this
approach in their specific contexts. Due to the substan-
tial computational time needed to conduct the simula-
tions, development of analytic approximations would
facilitate obtaining more general conclusions across
more diverse scenarios, as well as making this method
accessible. However, the simulation code is relatively
simple and easy for trial designers to use, so ought to
be adequate to meet the needs for a specific trial that
utilizes a continuous, binary, or count outcome.

Our examples were restricted to designs with six peri-
ods and assumed a continuous, linear effect of time on
(the transformed) outcomes. The performance of the
proposed method for designs with different numbers of
periods or for other time effect parameterizations has
not yet been evaluated. Our code allows for setting and
estimating the time effect in each period independently
from other periods, though this parameterization of the
time effects may not be the most appropriate or effi-
cient one in general. Recent work by various groups
have investigated the impact of parameterization and
mis-specification of time effects on analytic validity and
power within the Frequentist framework.20–22 Future
work could investigate these impacts within this
Bayesian approach.

Because of the potential risks of introducing bias
when prior distributions (for time trends as in this arti-
cle, but more generally for other model parameters) are
mis-specified, we do not recommend incorporating
prior information as the default approach when calcu-
lating required sample sizes. An additional risk in this
calculation is that the trial ultimately may be under-
powered if it was determined later and that a less infor-
mative prior was appropriate at the data analysis stage.
However, in situations where trial feasibility is jeopar-
dized due to (lack of) availability of sufficient numbers
of clusters or participants, incorporating external infor-
mation on time effects using this Bayesian approach
enables assessment of whether a smaller sample size
could be adequate and so can better inform the deci-
sion about whether the trial should be conducted.
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