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Bacteriophages, as the most abundant biological entities on Earth, place significant

predation pressure on their hosts. This pressure plays a critical role in the evolution,

diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity

of prokaryotic communities through the transfer of auxiliary metabolic genes. Various

studies have been conducted in diverse ecosystems to understand phage-host

interactions and their effects on prokaryote metabolism and community composition.

However, hypersaline environments remain among the least studied ecosystems and the

interaction between the phages and prokaryotes in these habitats is poorly understood.

This study begins to fill this knowledge gap by analyzing bacteriophage-host interactions

in the Great Salt Lake, the largest prehistoric hypersaline lake in theWestern Hemisphere.

Our metagenomics analyses allowed us to comprehensively identify the bacterial and

phage communities with Proteobacteria, Firmicutes, and Bacteroidetes as the most

dominant bacterial species and Siphoviridae, Myoviridae, and Podoviridae as the most

dominant viral families found in the metagenomic sequences. We also characterized

interactions between the phage and prokaryotic communities of Great Salt Lake and

determined how these interactions possibly influence the community diversity, structure,

and biogeochemical cycles. In addition, presence of prophages and their interaction

with the prokaryotic host was studied and showed the possibility of prophage induction

and subsequent infection of prokaryotic community present in the Great Salt Lake

environment under different environmental stress factors. We found that carbon cycle

was the most susceptible nutrient cycling pathways to prophage induction in the

presence of environmental stresses. This study gives an enhanced snapshot of phage

and prokaryote abundance and diversity as well as their interactions in a hypersaline

complex ecosystem, which can pave the way for further research studies.
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INTRODUCTION

Microbial communities and particularly prokaryotes provide
diverse ecosystem functions in aquatic habitats. These functions
include the cycling of carbon (Jasser et al., 2009; Li et al.,
2010), sulfur (Sorokin et al., 2012), nutrients (Kouki et al.,
2009; Wang et al., 2013; Motlagh and Goel, 2014), mercury
transformation (Chavan et al., 2007; Mitchell et al., 2009;
Ramasamy et al., 2012), sulfate reduction (Fortin et al., 2000; Bahr
et al., 2005; Faulwetter et al., 2013), and many other biological
processes. Therefore, the study of aquatic microbial communities
can provide important information about nutrient removal
processes, ecosystem functioning and drivers of biodiversity
(Gough and Stahl, 2010; Kim et al., 2011).

Bacteriophages outnumber prokaryotic cells in many
ecosystems, thus exerting significant predation pressure on their
hosts (Williamson et al., 2008). This pressure plays a critical
role in the evolution, diversity, and abundance of prokaryotes
(Stern and Sorek, 2011). Bacteriophages infect and lyse up
to 40% of the prokaryotic population in marine sediments
on a daily basis (Middelboe, 2008), resulting in decay of the
cell mass and affecting the carbon pool in sediments, which
causes more nutrients to be released into the water column.
In addition, bacteriophages can influence the genetic diversity
of prokaryotic communities in many different ways. Phages
selectively kill their hosts, often in a “kill-the-winner” dynamic
(Thingstad et al., 2008) in which the most abundant members of
a microbial community are the most targeted by phage infection,
consequently having their genes temporarily depleted from the
genetic pool of a given habitat (Motlagh et al., 2016).

Phages also contribute to the genetic diversification of
prokaryotic communities through transduction, a form of
phage-mediated horizontal gene transfer (HGT). Through HGT
organisms can acquire exogenous DNA from closely or distantly
related lineages, and recognition of this process has caused a
shift from a diverging “tree of life” view to a “web of life”
view of evolution (Olendzenski and Gogarten, 2009; Puigbó
et al., 2010). Between 1.6 and 32.6% of genes in prokaryote
genomes are estimated to have been acquired through horizontal
gene transfer (Koonin et al., 2001), while up to 81% of the
genes are estimated to be affected in prokaryotic genomes if
the cumulative impact of horizontal gene transfer toward a
lineage is also considered (Dagan et al., 2008). Transduction
has been studied in various natural environments including
freshwater (Kenzaka et al., 2010), marine (Jiang and Paul, 1998),
plant-associated (Kidambi et al., 1994), and wastewater systems
(Del Casale et al., 2011). However, most previous work has
been focused on understanding phage and prokaryote genomes
in the transduction process, while the role of transduction in
the diversification of prokaryotic genomes and how it affects
ecological processes driven by prokaryotes remains poorly
understood. This is of special relevance considering the previous
research studying the susceptibility of marine microbes to
infection by phages isolated from soil, marine sediments, and
fresh water and demonstrating that phages move and propagate
between major biomes, mediating the transfer of DNA between
microbes from very different ecosystems (Sano et al., 2004).

An important component in the study of phage-host
interactions is the symbiotic state known as lysogeny, i.e.,
the stable and non-lytic co-existence of a whole viral genome
inside the prokaryotic host genome. Such quiescent phage
genomes are called prophages, and they can be integrated into
the chromosome of the host bacterium or exist as plasmids.
Prophages often account for most of the difference between
strains of the same microbial species (Casjens, 2003; Dutilh et al.,
2014), and in a “piggyback-the-winner” strategy prophages may
become especially important in high microbial density situations
(Knowles et al., 2016). Although the integration of temperate
phages into the host genome can be beneficial to host and phage
(Yosef et al., 2015), these prophages may be induced by a wide
range of environmental stress factors such as nutrients (McDaniel
and Paul, 2005) or heavymetals (Motlagh et al., 2015) which leads
to lysis of the bacterial cell and phage virion release. Moreover,
a prophage can dramatically change the phenotype of the host
via lysogenic conversion (Paul, 2008). Therefore, studying the
presence and role of prophages in natural ecosystems is a critical
step toward understanding phage-host interactions.

Studies over the previous decades have greatly increased
estimations of the genetic richness of viruses in aquatic
environments. Culture-independent techniques such as
restriction fragment length polymorphism (RFLP) (Chen et al.,
1996) and PCR-based methods such as denaturing-gradient-gel
electrophoresis (DGGE) (Short and Suttle, 1999), pulse-field-
gel electrophoresis (PFGE) (Bhattacharjee et al., 2015), and
hybridization analyses (Wichels et al., 1998; Wommack et al.,
1999) provided initial snapshots of diversity among prokaryotic
communities. However, understanding the taxonomic viral
diversity in the environment is challenging since, unlike bacteria,
viruses do not carry universally conserved genetic elements
(e.g., ribosomal RNA genes of bacteria) that could be used as
taxonomic markers to identify all viruses (Rohwer and Edwards,
2002). Metagenomics sequencing approaches have enabled
exploration of genetic diversity within environmental samples,
thus evading limitations associated with conventional culture-
dependent microbiology methods. In addition, by targeting
total nucleic acids, shotgun metagenomics allows functional
and taxonomic characterization of samples without the need for
prior knowledge of the microbial types present in the studied
environment.

Previous studies have demonstrated the effect of phages
and their infection processes on the sediment microbiome in
different environments such as wetland (Jackson and Jackson,
2008), marine (Rohwer and Thurber, 2009), and freshwater
(Short and Suttle, 2005). However, hypersaline environments
are among the least studied ecosystems, and so there is a
lack of knowledge about the interaction between prokaryotic
communities and bacteriophages in such habitats. The Great
Salt Lake (GSL) is the largest prehistoric hypersaline lake in the
Western Hemisphere, having a unique geology that gives rise
to special ecologic and economic domains of relevance in its
various uses as both a migratory bird habitat and a source of
brine shrimp, trace elements, and other minerals. In the present
study, we employed metagenomics analysis to determine the
diversity of phages and prokaryotes in the GSL, as well as to
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better understand the effects of bacteriophages in defining the
diversity and interactions among prokaryotic communities and
their biogeochemical cycles.

MATERIALS AND METHODS

Site Description and Sediment Sampling
The Great Salt Lake (GSL) is a terminal lake that represents a
complex hypersaline ecosystem with a salinity gradient between
6 and 28% that is contaminated with, for example, mercury,
selenium, and nutrients (Williams, 2002). The lake is fed by the
Weber, Bear, and Jordan rivers. These rivers carry more than
1.1 million tons of salts annually into the lake (Rafferty, 2011),
which transformed GSL into one of the most saline bodies of
water in the world. The total dissolved mineral accumulation
in the lake basin is estimated at 5 billion tons, consisting of
mainly sodium, and chloride ions, though sulfate, magnesium,
and potassium are also abundant (Stephens, 1998). The sediment
sample was collected 6miles west of Antelope Island (40◦53’51.3”
N, 112◦21’00”W) in the South Arm of the Great Salt Lake (Figure
S1). Physicochemical data in the water column were obtained
using a sounder equipped with pH, specific conductivity, water
temperature, depth, and dissolved oxygen sensors. The sampling
was carried out in June 2014 with the collaboration of the United
States Geological Survey (USGS). Sediment sample was collected
at a depth of 27 ft from the deep brine layer at the surface of
the sediment with a stainless steel box corer (Wildco, FL). The
sediment sample was immediately stored on ice and shipped to
the laboratory for analysis.

Characteristics of the Environmental
Sample
For nutrient determination, sediment sample was centrifuged at
2,000 × g for 10 min to extract interstitial and pore water. The
pore water was filtered with 0.45µmmixed cellulose hydrophilic
filter paper (Millipore, MA) and ammonia (NH3), nitrite
(NO2), nitrate (NO−

3 ), total nitrogen (TN), total phosphorus
(TP), and total organic carbon (TOC) were quantified using
HACH methods HACH 8155, TNT839, TNT835, TNT826,
TNT843, and HACH 10128, respectively, according to the
manufacturer’s instructions. In order to ensure that the high
salinity of the samples did not interfere with the measurement
procedure and reading the spectrophotometer, control samples
with known concentration of ammonia, nitrite, nitrate, and
phosphorus were also used alongside each sample. Total solids
(TS) and volatile solids (VS) were also measured by drying
the sediment sample at 103◦C for 24 h followed by igniting
at 550◦C for 2 h according to EPA Method 1684 (USEPA,
2001). In addition, to study the biogeochemistry of the sediment
sample, trace metal concentrations (Mn, Fe, Co, Ni, Cu, Zn,
Se, Mo, and Pb) were measured by using 15 g of sediment,
centrifuging at 5,000× g for 10 min and filtering the supernatant
with 0.22µm hydrophilic filter and then analyzed using
inductively coupled plasma mass spectrometry (ICP-MS, Agilent
7500ce, CA).

Microbial Nucleic Acid Extraction
Five grams of sediment were re-suspended in sterilized 10 ml of
PBS buffer and vortexed for 5 min to homogenize the sediment.
The homogenized sample was then centrifuged for 5 min at
2,000 × g and 250µl of clear supernatant devoid of any cells
was discarded. The pellet was re-suspended in 1 mL of PBS
buffer and 500µl of sample was used for DNA extraction with
different methods including phenol-chloroform DNA extraction
(Köchl et al., 2005), cetyl trimethyl ammonium bromide (CTAB)
extraction (Zhou et al., 1996), PowerSoil R© DNA isolation kit
(MoBio laboratories, CA), and PowerMaxTM Soil DNA isolation
kit (MoBio laboratories, CA) following the manufacturers’
procedures. In order to minimize the extraction biases, the
extracted DNA was pooled and the quantity and quality were
verified on a NanoDrop ND 2,000 spectrophotometer (Thermo
Scientific, USA) at 260 and 280 nm. TheDNApurity and quantity
were also verified on 1.2% agarose gel prior to high-throughput
sequencing.

Bacteriophage Isolation and Nucleic Acid
Extraction
Free phages were extracted by re-suspending 250 g of sediment
in 3× volume of filter sterilized 1% (w/v) potassium citrate
buffer (10 g/l potassium citrate, 1.44 g/l of disodium phosphate,
0.24 g/l of monopotassium phosphate, pH 7). The sediment
with potassium citrate buffer was placed on a shaker on
ice overnight to suspend free phages in solution. Thereafter,
the mixture was centrifuged at 8,000 rpm on an Avanti J-E
centrifuge (Beckman Coulter, CA) for 30 min to pellet the
bacterial debris followed by centrifugation of the supernatant
at 9,000 rpm for 12 h to concentrate the phages. Following
overnight centrifugation, the pellet was re-suspended in SMG
buffer (5.8 g/l sodium chloride, 2 g/l magnesium sulfate, 5
ml/l of 5% (w/v) gelatin, 50ml/l of 1M Tris–Cl, pH 7.5)
and filtered with 0.22µm pore size filter paper (Millipore
Co., MA) to remove any residual bacterial cells and sediment
debris.

The phage particles were purified using cesium chloride
(CsCl) gradients at 1.35–1.6 g/ml density by isopycnic
centrifugation at 35,000 rpm for 3 h (Angly et al., 2006).
This process was carried out twice to ensure the removal
of any residual bacterial cell debris and guarantee the
purity of viral particles. Before DNA extraction from the
virions, the sample was subjected to DNase treatment
with RNase-free DNase I (Thermo Scientific, CA) at 37◦C
for 30 min. This step digested any free DNAs in the
sample. Subsequent phage DNA extraction was performed
with a phage DNA isolation kit (Norgen Biotek Corp.,
Canada). In addition, to confirm the absence of microbial
DNA contamination in the phage DNA extracts, PCR
amplification of the hypervariable V4–V9 region was tested
using 515F/1492R universal 16S rRNA gene primer set
(Diemer and Stedman, 2012). Aliquots of the amplification
products were electrophoresed in a 1.2% agarose gel stained
with ethidium bromide (10µg/ml) and visualized under UV
illumination.
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DNA Library Preparation for Sequencing
Amplificationmethods such as random amplified shotgun library
(RASL), linker-amplified shotgun library (LASL), and multiple
displacement amplification (MDA) are usually implemented to
increase the nucleic acid yield and obtain a sufficient quantity
of DNA for sequencing. However, these methods can result
to quantitative biases such as selective amplification of single-
stranded DNA (ssDNA) viruses’ genomes (Kim et al., 2008) and
production of artifacts such as chimeras (Lasken and Stockwell,
2007). Therefore, we refrained from using any amplification
process in order to minimize biases for the phage metagenomics
and analysis of the phageome data.

Library construction was performed using the Epicentre
EpiGnome Methyl-Seq Kit as described below. Briefly, genomic
DNA (∼50 ng) was heat denatured and hybridized with
oligonucleotides consisting of random hexamers linked
to Illumina P5 adapter sequences. Strand replication was
accomplished using EpiGnome polymerase. Double-stranded
DNA was heat denatured to enable ligation of the EpiGnome
Terminal Tagging Oligo which adds Illumina P7 adapter
sequence to the 3′ end of the replicated strand. Adapter-ligated
DNA molecules were enriched by 10 cycles of PCR and the
amplified library was subsequently purified using Agencourt
AMPure XP beads (Beckman Coulter Genomics, CA). The
concentration of the library was measured using the Qubit
dsDNA HS Assay (Invitrogen, CA) and an aliquot of the library
was resolved on an Agilent 2,200 Tape Station using a D1000
assay to define the size distribution of the sequencing library.
Libraries were adjusted to a concentration of approximately
10 nM and quantitative PCR was performed using the Kapa
Library Quant Kit (Kapa Biosystems, MA) to calculate the
molarity of adapter-ligated DNA molecules. The concentration
was further adjusted following qPCR to prepare the library for
Illumina sequence analysis and the samples were sequenced on
an Illumina MiSeq Bench top DNA sequencer (Illumina, CA)
with 300-cycles paired-end at HCI Core Facility of University of
Utah.

Metagenomic Analysis
Paired-end raw reads were interleaved, quality filtered and
trimmed using CLC Genomics Workbench v.7.0.4 (CLC Bio,
Denmark) with a threshold of 100 bp as the minimum length
of read and a Phred score of 28. The trimmed reads were
de novo assembled using CLC Genomics Workbench v.7.0.4
with the following criteria: word size of 20 bp, automatic
bubble size of 50 bp, and minimum contig length of 500
bp. Identification of open reading frames (ORFs) and gene
prediction were performed using MetaGeneMark v.2.8 (Zhu
et al., 2010) followed by gene annotation using the RPSBLAST
program (Altschul et al., 1990) on the clusters of orthologous
group (COG) prokaryotic protein database (Tatusov et al., 2000).
Statistical over-representation of annotated COG genes and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
was determined by pairwise comparisons of each metagenomic
sample using Fisher’s exact test, with confidence intervals at 99%
significance. Besides COG analysis, the predicted genes were
categorized into SEED Subsystems to provide consistent and

accurate genome annotations (Overbeek et al., 2014) through
MG-RAST (metagenomics rapid annotation using subsystem
technology) pipeline to identify all of the encoded proteins
and their functions in the host metabolism. The enzymes were
compared against SEED Subsystems using a maximum e-value
of 1E-5, a minimum identity of 60%, and a minimum alignment
length of 100 measured in amino acids for protein databases.
The minimum alignment length of 100 amino acids (equal to
300 bps) was chosen as the criterion to specify the possible
functional genes (not only partial genes) that are transferred from
prokaryotes to the phages.

In order to understand the phage-host interactions, the GC
contents of phage and prokaryote contigs were calculated and
compared with contig percentage shown in a histogram. The
occurrence of each single tetranucleotide in the phage and
prokaryote contigs was calculated using JSpecies v.1.2.1 (Richter
and Rossello-Mora, 2009). In addition, the calculated GC content
of phage and prokaryote contigs were graphed along with the
scaffold length and contig coverage using the ggplot package in
R v.3.0.1. The sequences are deposited in MG-RAST repository
with accession number mgm4582011.3 and mgm4582012.3 for
bacteria and phage sequences, respectively.

Analysis of Prokaryotic Metagenome
The taxonomic composition of the prokaryotic metagenome was
determined by comparison of the assembled contigs against the
NCBI non-redundant (nr) nucleotide database using tBLASTx
v. 2.2.28 program (Altschul et al., 1990) with 1E-5 e-value cut-
off. Relative abundance of taxa was assessed on the basis of
average counts of mapped reads on the BLAST annotated contigs.
Therefore, for the reads that were mapped to contigs, every
blast hit was multiplied by the average depth of the reads on
each contig. Eventually, significant hits to GenBank entries were
recorded in a BLAST output file and imported on MEGAN
v.5 (Huson et al., 2007) for interpretation with the lowest
common ancestor (LCA) method followed by visualization in
iTOL online tool (Letunic and Bork, 2007). For the MEGAN
analysis, default parameters for each metagenome were selected
as follows: minimum support of 5, minimum score of 50, top
percent of 10, win-score of 0, and minimum complexity of 0.44.

The affinities of the sequences for known metabolic functions
were also annotated using BLASTx with cut-off e-value of 1E-
5 against SEED subsystems v.2.0 (Overbeek et al., 2005) using
MG-RAST server v.3.3 (Meyer et al., 2008) and KEGG metabolic
pathways (Kanehisa et al., 2008). In addition, to understand the
role of prokaryotic communities in nutrient cycles, the identified
prokaryotes were compared manually with a curated database on
functional genes (FunGene) involved in various biogeochemical
cycles (Fish et al., 2013).

Analysis of Phage Metagenome
In addition to initial viral particle purification step prior to
sequencing and DNase treatment of the purified phage prior to
DNA extraction, in order to exclude any bacterial contamination
from the phage contigs, genes encoding the 5S, 16S, and 23S
rRNAs (from prokaryotic genomes) were identified in phage
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contigs using hmm_rRNA on WebMGA server based on an
HMM search using HMMER v.3 (Finn et al., 2011).

Since analysis of the phage metagenome was also performed
on contigs instead of reads, the relative abundance of contigs
was corrected by the average depth of the reads on each contig
as mentioned earlier. For phage taxonomic analysis, the filtered
phage contigs were compared against NCBI RefSeq viral genome
database by using tBLASTx v. 2.2.28 program with e-value of
1E-5 cut-off. The generated BLAST output file was imported
on MEGAN v.5 for interpretation by lowest common ancestor
(LCA) method using the default parameters as mentioned above
(results not shown). Instead, the abundance of phages from
the GSL was explored with respect to metagenomes of marine,
freshwater, and lake sediment samples. Raw reads of aquatic
viromes available on Metavir (Roux et al., 2011) were mapped
to assembled phage contigs with length longer than 20 kbp
as putative complete phages using Bowtie v.2 (Langmead and
Salzberg, 2012). Contig abundances were obtained by counting
the number of reads mapped to each contig and correcting
by contig length. The obtained abundance matrix with identity
percentages was normalized and plotted as a heatmap in which
samples and contigs were clustered according to their Euclidean
distance using R v.3.0.1.

Prophage Identification and Analysis
To achieve a more detailed understanding of the phage-
host interactions, mobile genetic elements including prophages,
plasmids, and transposons were investigated in the prokaryote
contigs. Following gene prediction in the prokaryote contigs,
integrated prophages were detected using Prophinder (Lima-
Mendez et al., 2008) to identify mobile genetic elements.
Simultaneously, in order to relate the prophages to their
host, prokaryote contigs were compared against ACLAME (A
CLAssification of Mobile genetic Elements) database (Leplae
et al., 2004) using a BLASTn search with e-value 1E-5 cut-off,
followed by extraction of the prophage hit regions (excluding
viruses and plasmids) from the BLAST output results. These
prophage regions were compared with prophages found using
Prophinder and the shared prophages with their corresponding
prokaryotic hosts were extracted to generate the taxonomic
cladogram using MEGAN with default parameters mentioned
earlier. In addition, nutrient cycling of the prokaryotic hosts
was manually annotated based on the KEGG database and used
to generate the prophage-host interaction network using iTOL
online tool.

Clustered Regularly Interspaced Short Palindromic

Repeat (CRISPR)
Clustered regularly interspaced short palindromic repeat
(CRISPR) is an anti-viral mechanism in archaea and bacteria
wherein genomic sequences from the predatory viruses are
integrated in the host genome providing immunity to these
viruses (Horvath and Barrangou, 2010). Therefore, CRISPR
spacer sequences can provide a direct link between viruses
and their prokaryotic hosts (Kunin et al., 2008; Heidelberg
et al., 2009; Anderson et al., 2011) and CRISPR spacers may
be viewed as a database of fragments derived from phage and

plasmid genomes. In addition, phage genome can acquire
some prokaryotic genes during an infection event of the host
and therefore, homology of phage and prokaryotic genes can
indicate phage-host associations. In our study, the assembled
bacteria contigs were compared against phage contigs as the
database by using tBLASTx v. 2.2.28 setting a 1E-5 e-value
cut-off to find their homology. Afterward, all CRISPR arrays
in the prokaryote contigs with homology to phage contigs
were identified using CRISPR Recognition Tool (CRT) v.1.1
(Bland et al., 2007). Putative protospacer targets were also
identified using CRISPRTarget (Biswas et al., 2013), following a
BLASTn search of the spacer input against ACLAME, GenBank
Environmental, GenBank Phage, and RefSeq plasmid, RefSeq
viral databases with the default settings.

RESULTS

Characteristics of the Environmental
Sample
Following sample collection from 27-ft deep brine layer, the
environmental quality parameters, nutrients, and metals of the
sediment sample were measured as summarized in Table 1.
Measurement of nutrient and metal concentrations in the
sediment can be an indicator of microbial activities involved
in different nutrient cycles. Salinity was measured as the total
salt concentration, comprised mostly of Na+ and Cl− ions.
The measured salinity of the GSL was 15% (150 g/l), which is
approximately 5 times the average salinity of the ocean and 300
times the average salinity of fresh water (Kerr et al., 2003). In
addition, significantly low dissolved oxygen levels in the deep
brine layer and high concentration of total phosphorus (TP) and
total nitrogen (TN) make the water of the Great Salt Lake an
extreme environment, which selects for a microbiota adapted to
high salt concentrations.

Total organic carbon (TOC) concentration was also measured
in the sediment sample, and it showed a high carbon amount
of 20.8 mg.g−1 (2%) compared to the average TOC of 0.5% in
the deep ocean (Seiter et al., 2004). Moreover, a considerable
amount of ammonia (NH3) was measured in the sediment
sample compared to the EPA aquatic life water quality criteria
for ammonia (Unites States Environmental Protection Agency,
Office of Water, 2013), which results in a very low total organic
carbon to total nitrogen (C/N ratio) that can mobilize nitrogen in
the sediment due to its excess amount.

Prokaryote and Phage Metagenomes
Contig Assembly
The high-throughput sequencing generated 15.1million reads for
each of the bacteria and phage DNA samples. Following quality
and length control, 1.26 million (8.34%) and 1.27 million (8.39%)
reads from the bacteria and phage samples were removed,
respectively. The filtered and interleaved paired-end reads were
de novo assembled using CLC Genomics Workbench resulting
in 40,223 contigs with average length of 1,575 bp, N50 of 1,573
bp, and average coverage of 20× for bacteria reads; and 45,689
contigs with average length of 1,595 bp, N50 value of 1,615 bp,
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TABLE 1 | Environmental quality parameters, nutrients, and trace metals

present in Great Salt Lake.

Parameter Average Standard deviation*

Specific conductivity (µS/cm) 188,400 11,000

Salinity (ppt) 150 5.5

pH 7.4 0.1

Dissolved oxygen (mg/l) 0.03 N/A

Total organic carbon (TOC) (mg/g) 20.8 2.6

Total nitrogen (TN) (mg/l) 4.20 0.56

NH3-N (mg/l) 2.29 0.8

NO−
3 -N (mg/l) 0.40 0.06

Total phosphorus (TP) (mg/l) 4.47 0.27

Inorganic phosphorus (mg/l) 0.697 0.1

Orthophosphate (mg/l) 0.94 0.3

Mn (mg/kg) 0.208 N/A*

Mo (mg/kg) 0.174

Zn (mg/kg) 0.077

Fe (mg/kg) 0.036

Ni (mg/kg) 0.031

Se (mg/kg) 0.010

Co (mg/kg) 0.005

Cu (mg/kg) 0.003

Pb (mg/kg) 0.001

*Except for the ICP-MS measurement, the physicochemical characteristics were

measured in triplicate.

and average coverage of 13× for phage reads. Average coverage
of the contigs was calculated by multiplying the read quantity
by the average read length and dividing by the average contig
length. These contigs contained 51.7 and 43.9% of the shotgun
metagenomics reads in the bacterial and phage metagenomes,
respectively.

Although typical prokaryotic genes (such as 16S ribosomal
RNA) were never detected in the phage genomic DNA prior to
sequencing, to ensure the absence of any cellular DNA in the
phage sequences, genes encoding the 5S, 16S, and 23S rRNAs
were identified in phage contigs. A total of 0.1% of the phage
contigs were detected to have prokaryotic rRNA genes and
therefore excluded from the phage contigs for further analysis.

Prokaryote and Phage Contig Analysis
Genetic elements such as phages reproduce inside prokaryote
cells using the cell’s replication machinery, thus most of the
phages is expected to have GC content similar to that of their
host. However due to horizontal gene transfer, phages tend to
have an average 4% higher AT content compared to their host
and therefore GC content in the phages is generally lower than
their hosts (Rocha and Danchin, 2002). As shown in Figure 1A,
GC content of bacterial contigs had a normal distribution of 47
± 8% with an average of 46.4%, while phage contig GC contents
were normally distributed at 43± 10% with an average of 42.5%.

Prophages replicate vertically with the prokaryotic
chromosome and therefore are subject to “amelioration”
toward the oligonucleotide usage profile of the host that they
are infecting (Pride et al., 2006). Although virulent phages are
not integrated as prophages and replicate independently of the

bacterial chromosome, they also present a similar trend (Rocha
and Danchin, 2002). Therefore, comparison of oligonucleotide
usage profiles of phage and bacterial contigs can be used to
predict the phage-host associations (Edwards et al., 2016).
Tetranucleotide analysis plots standardized (z-score) tetramer
frequencies of phage and bacterial contigs against each other
and uses linear regression analysis to determine similarity. As
illustrated in Figure 1B, tetranucleotide distribution plot of
phage and bacterial contigs showed a consistent pattern with a
regression value (r-square) of 0.98 from plotting both phage and
bacterial tetranucleotide occurrences, which can provide a signal
for prediction of phage-host interactions.

In addition, to understand the phage-host interaction, further
criteria including contigs’ GC content, length, and coverage
were employed to sort the major assembly pieces. These criteria
associated with phage contigs were plotted against the bacterial
contigs to determine mutual scaffolds shared by bacteria and
phages with similar GC content and coverage. This coverage
binning approach was previously used in a study conducted by
Albertsen et al. (2013) for multiple metagenomes. As shown in
Figure 2, phage and bacterial contig coverage in log10 scale were
compared along with contigs’ GC content and length. Several
overlapping phage and bacterial contigs with similar GC content
and coverage were determined suggesting that phages were well-
adapted to the codon usage of their prokaryotic hosts.

Microbial Community Structure
Prokaryotic Community Structure and Diversity
Microbial communities and specifically prokaryotes in
natural ecosystems are involved in nutrient mobilization
and regeneration, primary production, and energy fluxes. In
addition, the prokaryotic populations in the sediment play key
roles in biogeochemical cycles and their infection by phages
can affect various nutrient cycles in which these organisms are
involved. Investigating microbial diversity is therefore essential
to understand the ecology and microbial interactions of Great
Salt Lake.

For a better understanding of prokaryote diversity, following
tBLASTx analysis against NCBI non-redundant (nr) nucleotide
database with 1E-5 e-value cut-off, 72.3% of the contigs matched
the bacterial domain, while archaea (1%), eukaryotes (6.4%),
viruses (13.8%), and unassigned with no annotation (6.4%)
comprised the rest of the contigs. The prokaryotic taxonomic
rRNA analysis revealed that Proteobacteria (46.2%), Firmicutes
(20.3%), Bacteroidetes (9%), Actinobacteria (5.3%), Chloroflexi
(5.2%), Cyanobacteria (2.7%), and Planctomycetes (1.7%) were
the most dominant bacterial phyla present in the sediment
sample. Prokaryote taxonomic diversity and population found in
the prokaryote contigs are presented in Figure S2, Tables S1, S4.

Bacteriophage Community Population and Diversity
Since unassembled reads in viral metagenomes are often
characterized by a majority of unknown sequences that have
no homologs in the database (Mokili et al., 2012), assembled
reads present in phage contigs were used for taxonomic
characterization to facilitate their annotation. Classification of
viral metagenome contigs using lowest common ancestor (LCA)
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FIGURE 1 | (A) GC content distribution of bacteria and phage contigs (B) Standardized (z-score) tetramer word frequencies of phage and bacteria contigs with the

regression line with shaded confidence region.

FIGURE 2 | Overlapped bacteria (open circles) and phage (solid circles) showing contigs with similar GC content and coverage suggesting that

phages were well-adapted to the codon usage of their prokaryotic hosts. All circles represent contigs, scaled by their length and colored by GC content. The

regression line with shaded confidence region is shown and arrows are illustrating some of the overlapped contigs.

analysis with the RefSeq viral database revealed Siphoviridae
(32%), Myoviridae (24%), and Podoviridae (13%) as the most
dominant viral families in the sediment sample. In addition
to these dominant phage families, other phages such as
unclassified dsDNA phages (6%), unclassified archaeal dsDNA
virus (6%), and unclassified Caudovirales (3%) were among
matched hits in the phage contigs. Among Siphoviridae
viral family, unclassified lambda-like phages was the most

dominant phage with 6% among the family and 2% in the
entire phage community. In addition, analysis of Myoviridae
family showed that unclassified T4-like phages and T4-like
phages in the subfamily of Tevenvirinae was composing 7
and 8% of the Myoviridae family, respectively. Furthermore,
Cellulophaga phage was among the most dominant phages in
Podoviridae comprising 8% of the family and 1% of total phage
community.
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Despite the growing knowledge for the ecological role played
by bacteriophages and an increase in phage sequence information
in public databases, little is known about their dynamics in
natural ecosystems. It is therefore imperative to be able to
classify these organisms in order to determine their dynamics.
As a result, this study developed a higher resolution insight
into the viral biogeography by mapping assembled phage
contigs with length longer than 20 kbp as putative complete
phages from the GSL to phage sequences from freshwater
lakes, lake sediments, and marine ecosystems to determine the
biogeographical distribution patterns of these phage genome

fragments (Figure 3). In the generated heatmap, cell color
represents the relative percentage of identity betweenGSL contigs
and other publicly available phage metagenomes. From the high
resolution abundance heatmap, it was interesting to observe that
these novel unclassified Caudovirales GSL phages tend to be also
abundant in marine environments as well despite Great Salt Lake
being a hypersaline land-locked lake.

Predicted Gene Abundance and Analysis
Gene prediction and ORF identification in phage and bacterial
contigs were performed to identify possible events of horizontal

FIGURE 3 | Heatmap generated by comparison of putative complete phages from Great Salt Lake and the metagenomes of marine and freshwater

lakes publicly available. Cell color represents the relative percentage of identity (log10) of reads in viromes mapped to GSLs phage genome fragments.
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gene transfer between the phages and their prokaryotic hosts.
GSL metagenome predicted genes were classified into one of
22 Clusters of Orthologous Groups (COG) functional categories
according to best hit classification through RPS-BLAST against
the COG reference database. Out of the 122,016 bacterial and
102,594 viral predicted genes, 26,319 and 24,495 could be
annotated with e-value cut-off of 1E-3. Figure 4 shows the
frequency of phage and bacterial genes in various COG classes.
The category J (translation, ribosomal structure, and biogenesis)
and category Q (secondary metabolites biosynthesis, transport,
and catabolism), were significantly different for phage and
bacterial predicted genes. Both categories have down-regulated
genes (Chhabra et al., 2006) suggesting that some of the genes
in these categories are responsible for the expression inhibition
of host genes. In addition, genes classified in category Q have a
role in response to environmental changes (Makino et al., 2003),
which were significantly less available in the bacterial genes.

Prophage Identification
Identification of prophages in the bacterial contigs was applied
to determine phage-host interactions in the natural ecosystem.
Using Prophinder, a total of 69 prophages (33 intact and 36

questionable prophages) were found in the bacterial contigs.
From these 69 total identified prophages, 37 prophages were
joined to recognizable host DNA in the bacterial contigs and
so were assigned to their prokaryotic hosts. Prokaryotic host
DNAs were not found in the bacterial contigs for the other
32 putative prophages, and they were therefore excluded from
further analysis. The nutrient cycling processes of the prokaryotic
hosts were based on the KEGG database and were manually
annotated. The taxonomy of prophages in the bacterial contigs
was plotted on a circular cladogram relating the prophages
and their prokaryotic hosts involved in different nutrient cycles
(Figure 5), and it showed that carbon cycle was the most
susceptible nutrient cycling pathway to prophage induction in
the presence of environmental stresses. The numbers of different
nutrient cycling pathways that can be affected by prophage
induction are plotted in the Venn diagram (Figure S3) and the
prophage-host interaction showing the identified prophage, their
prokaryotic hosts are presented in Table S2 in detail.

Crisprs Identification
One limitation of metagenomics analyses is that when bacteria
and viruses are sequenced together, it may be difficult to

FIGURE 4 | Comparison of bacterial and viral functional gene profile classification based on COG classification scheme. The asterisks are showing the

significantly different categories (translation and secondary metabolites biosynthesis) between phage and bacterial predicted genes. Functional classes: D = cell cycle

control, cell division, chromosome partitioning; M = cell wall/membrane/envelope biogenesis; N = cell motility; O = post-translational modification, protein turnover,

and chaperones; T = signal transduction mechanisms; U = intracellular trafficking, secretion, and vesicular transport; V = defense mechanisms; A = RNA processing

and modification; B = chromatin structure and dynamics; J = translation, ribosomal structure and biogenesis; K = transcription; L = replication, recombination and

repair; C = energy production and conversion; E = amino acid transport and metabolism; F = nucleotide transport and metabolism; G = carbohydrate transport and

metabolism; H = coenzyme transport and metabolism; I = lipid transport and metabolism; P = inorganic ion transport and metabolism; Q = secondary metabolites

biosynthesis, transport, and catabolism; R = general function prediction only; S = function unknown.
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FIGURE 5 | Network of prophage and their prokaryotic hosts. The dendrogram is based on NCBI taxonomy, showing the phage taxa that were found as

integrated prophages in the bacteria contigs with respect to their hosts. The network is showing the interaction of the prophages and their prokaryotic hosts and the

color of the line indicates the nutrient cycle that these prokaryotic hosts are involved in and, consequently, the susceptibility of these cycles due to presence of

infecting temperate phages.

distinguish between the two types of sequences. Conversely,
when phages are isolated and sequenced directly, it is
challenging to identify the specific hosts from the viral
sequence (Edwards et al., 2016). However, such information
is critical for the analysis of the relationship between phage
and host. In order to approach this problem, similarities
between bacterial CRISPR spacers and the infecting mobile

elements were analyzed to study these interactions in the natural
ecosystem.

Initially, in order to associate the CRISPRs with phage
sequences, the bacterial contigs as query were compared with
phage contigs as database using BLASTn with an e-value 1E-
5 cut-off. A total of 6,025 bacterial contigs with more than
70% identity in sequence with phage contigs were extracted.
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Using CRISPR Recognition Tool (CRT), 96 CRISPR arrays were
recognized from all bacterial contigs with an average repeat
length of 25 bp and spacer length of 40 bp. These identified
CRISPR arrays were explored to determine targets of CRISPR
RNAs using CRISPRTarget. Interestingly, the identified genome
spacers showed similarity with eight of the protospacers on
the marine phage metagenome from TARA database (Sunagawa
et al., 2015). These were shown in the previous section to
have considerable homology with the phage contigs in the GSL
sample. This connection indicates that previous infections of
GSL prokaryotic hosts with relatives of these phages must have
occurred.

DISCUSSION

In this study, we used phage and bacterial metagenome
sequencing to better understand the microbial interactions
between the phage and their prokaryotic hosts. The nutrient
concentrations in the sediment were measured to explore the
microbial activities involved in different nutrient cycles. As
mentioned earlier, considerable concentration of organic carbon
was measured in the sediment sample. Organic carbon deposited
in sediment is mainly derived from freshly deposited plant
litter and decomposed forms such as humus (Kristensen and
Holmer, 2001). In addition, bacterial growth and metabolic
activities of methanotrophs, methanogens, and photosynthetic
phytoplanktons contribute to the high concentration of TOC
in sediment sample through fixation of CO2. As discussed on
prokaryotic community structure, our metagenomic analysis
shows the presence of halophilic and halotolerant methane-
producing and methanotroph bacteria in the GSL sediments
supporting the presence of such bacterial carbon sources in
the sediment. Furthermore, high concentrations of nutrients
can increase phytoplankton growth and consequently increase
of debris sedimentation. As a consequence of the increased
productivity that results in oxygen depletion, sediments in the
anoxic environment of the lake will contain a larger amount
of organic matter (Lazar et al., 2012). The nitrifiers including
Nitrospirae, Nitrosomonas, and Nitrobacter, and denitrifiers
including Bacillus, Pseudomonas, Clostridium, Halomonas, and
Rhodobacter were among the most abundant phyla found in the
prokaryotic contigs, which considerably affect the nitrogen cycle.
In addition, ammonia concentrations following the appearance
of brine fly larvae and brine shrimp in the GSL in early summer
(Wurtsbaugh, 1992) when algal populations decline due to
grazing and nitrogenous wastes from the invertebrates increase.
Furthermore, ammonium (NH+

4 ) can arise from decomposition
of organic matter in the water column or from diffusion of
ammonium from the anaerobic sediment layer into the water
column (Chowdhury and Bakri, 2006). Furthermore, presence
of nitrogen fixing bacterial family such as Beijerinckiaceae as
well as dissimilatory nitrate reduction to ammonium (DNRA)
bacterial family such as Geobacteraceae in the analyzed bacterial
metagenome were contributing to increase the level of ammonia
in the sediment sample. The levels of trace metals observed at
the deep brine layer suggest that the sediment may be a hotspot

for nutrient cycles. Many enzymatic pathways of the nitrogen,
carbon, and sulfur cycles require cofactors which contain iron
or molybdenum. In particular, iron is a necessary requirement
and an integral component of many enzymes involved in
photosynthesis, electron transport, and nutrient acquisition
(Geider and La Roche, 1994). Furthermore, molybdenum is a
required component of enzymes involved in nitrogen cycling
pathways such as nitrate assimilation and nitrogen fixation
(Glass et al., 2015). For instance, nitrogenase, a critical multi-
component enzyme in nitrogen fixation typically consists of
iron and molybdenum-iron containing subunits (Howard and
Rees, 1996). As discussed in the following gene analysis, these
critical enzymes involved in various nutrient cycles were found
in both prokaryote and phage metagenomes, which suggests a
phage-mediated gene transfer process.

More than 450 different genera were classified in the
sediment sample, while the most abundant genera, in order
of abundance, are Desulfococcus, Halanarobium, Desulfovibrio,
Desulfatibacillum, and Streptomyces, which belong to taxa
involved in various biogeochemical cycles. Desulfococcus plays
an important role in cycles of sulfur compounds in sea
water (Das et al., 2006). Halanaerobium is an obligatory
anaerobic halophile, and several strains of Halanaerobium
such as H. praevalens were previously isolated from GSL and
showed complex organic matter fermentation and production
of intermediary metabolites for other trophic groups such as
sulfate-reducing and methanogenic bacteria (Ivanova et al.,
2011). Presence ofDesulfovibrio andDesulfatibacillum, as sulfate-
reducing anaerobic bacterial genera, was consistent with the
anoxic condition of the brine layer sediment. Streptomyces is
an important organism in carbon recycling that has a crucial
role in the environment since it carries out a broad range of
metabolic processes such as degradation of insoluble biological
material including lignocellulose and chitin (Bentley et al.,
2002). Proteobacteria of the genus Rhodobacter are metabolically
versatile, capable of aerobic and anaerobic respiration, and
anoxygenic photosynthesis when grown anaerobically in the light
(Han et al., 2004).

Caudovirales are tailed bacteriophages, which are found
to dominate in marine and other aquatic environments
(Weinbauer, 2004; Winter et al., 2014). In a recent study,
Antunes et al. (2015) studied viral communities in deep sea
anoxic brine of Red Sea and found Siphoviridae and Myoviridae
to be dominant viral family members yet appearing distinct
from sample to sample. We found that Siphoviridae (32%) in
our analysis was the most dominant viral family indicating
that perhaps high salt concentration does not put a selective
pressure on viral communities. However, these results should
be further confirmed with comprehensive analysis involving
time series metagenomics of samples collected from different
salinity gradients. As mentioned in the results section, we found
lambda-like, T4-like, and Cellulophaga phages as some of the
most abundant genera among various phage families. In a
metagenomic study by Ray et al. (2012) at the Arctic Mid-
Ocean Ridge, high abundance of lambda-like phage sequences
in both hydrothermal plume and surrounding seawater was
also found showing significant ecological role of this phage
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genus in various ecosystems. Furthermore, T4-like phages were
previously identified in significant number of sequences in
metagenomic study on two freshwater viral communities (Roux
et al., 2012). This suggests that viral communities in the
hypersaline ecosystem studied in our research does not appear
genetically distinct from other aquatic ecosystems. In addition, a
previous study conducted with Holmfeldt et al. (2013) revealed
that Cellulophaga phage genus was widespread and ubiquitous
fraction among marine viral diversity.

For the COG analysis, category A is attributed to RNA
processing and was measured in negligible match hits (10
and 15 match hits for bacterial and viral genes, respectively).
As chromatin forms chromosomes within the nucleus of
eukaryotic cells, category B belongs only to eukaryotes and
was detected in minor match hits (8 and 5 match his in
bacterial and viral genes, respectively) in our samples. Based
on Fisher’s exact test, there were significant differences in the
functional gene profiles between COG gene categories (p <

0.05). There was an over-representation of genes classified into
the “replication, recombination, and repair” category (category
L) with 4,341 and 5,022 match hits for bacterial and viral
genes, respectively. The most frequent gene among all bacterial
predicted genes (occurrence = 416), and the second most
frequent gene in the viral predicted genes (occurrence =

354) was related to replicative DNA helicase (COG0305), an
enzyme that participates in initiation and elongation during
chromosome replication with unwinding DNA and exhibiting
DNA-dependent ATPase activity. In addition, bacterial (314
match hits) and viral (340 match hits) metagenomes showed
a high representation of the DNA modification methylase
(COG0863) gene, which is a part of the restriction-modification
systems and responsible for producing a species-characteristic
methylation pattern that can be used to protect the bacteria from
foreign DNA, such as that borne by bacteriophages.

The COG analysis allowed summarizing the functional gene
data and showing the differences in functional trends of bacteria
and phage samples. In addition to COG analysis, the predicted
genes were also categorized into SEED Subsystems through
MG-RAST pipeline. The common proteins in bacterial contigs
which were also found in phage contigs were extracted (Table
S3). The presence of these enzymes in the bacteria and phage
contigs suggests that phage-mediated gene transfer influences
environmental processes.

CONCLUSIONS

The Great Salt Lake is one of the most unique hypersaline
environments on the planet and has a high diversity in
bacteria and bacteriophage species, and many of the bacteria
are involved in various nutrient cycles. Metagenomics analyses

of bacteria and phage sequences revealed the relationship
between the phage and their prokaryotic hosts through their
GC content, contig coverage, scaffold length, and tetranucleotide
frequency. Furthermore, the presence of prophages and their
interaction with the prokaryotic host showed the susceptibility
of Great Salt Lake environment to possible prophage induction
under different environmental stress factors. In addition, gene
prediction in the bacteria and phage contigs showed shared
functional genes in the samples, which suggests that gene
transfer between bacteria that is meditated by phage transduction
and phage-like gene transfer agents (Lang and Beatty, 2007;
Stanton, 2007). Lastly, identification of CRISPRs in the bacterial
contigs confirms prevalence of previous infections among the
prokaryotic community by phages similar to those in marine
environments. The phage-host interactions in hypersaline
ecosystems are complex and our study gives an enhanced glimpse
of phage and prokaryote abundance and diversity as well as their
interactions in the hypersaline environment of Great Salt Lake.
We also gained interesting information on prophages and how
they can affect the prokaryote diversity and nutrient cycling,
which are valuable pieces of information for environmental
microbiology and ecology.
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