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Abstract: Lighting and display technologies are evolving at tremendous rates nowadays; new
device architectures based on new, microscopic building blocks are being developed. Besides
high light-emission efficiencies, qualities including low cost, low environmental impact, flexibility,
or lightweightness are sought for developing new types of devices. Electrospun polymer fibers
represent an interesting type of such microscopic structures that can be employed in developing new
functionalities. White-light-emitting fiber mats were prepared by the electrospinning of different
dye-doped polymer solutions. Two approaches were used in order to obtain white-light emissions:
the overlapping of single-dye-doped electrospun fiber mats, and the electrospinning of mixtures of
different ratios of single-dye-doped polymer solutions. Scanning electron microscopy (SEM) was used
to investigate the morphologies of the electrospun fibers with diameters ranging between 300 nm
and 1 µm. Optical absorption and photoluminescence (PL) were evaluated for single-dye-doped
submicronic fiber mats, for overlapping mats, and for fiber mats obtained from different compositions
of mixtures. Depending on the ratios of the mixtures of different dyes, the luminance was balanced
between blue and red emissions. Commission Internationale de L’Eclairage (CIE) measurements
depict this fine-tuning of the colors’ intensities, and the right composition for white-light emission of
the submicronic fiber mats was found.

Keywords: electrospinning; dye-doped polymer; submicronic fibers; white-light emission;
tunable luminescence

1. Introduction

The electrospinning technique is a simple procedure to obtain polymeric and subsequently
metallic, semiconducting, or ceramic fibers from solutions or melts [1–4]. The process was proven
to be a low-cost, flexible, and scalable method to produce microfibers and nanofibers. Differently
arranged (randomly or aligned) fibers with various morphologies can be obtained depending on the
geometry of the electrospinning set-up [5–8]. A fine control of the electrospinning process parameters
consequently results in a fine-tuning of the fibers’ properties [9,10], such as dimension, morphology
(including nanostructuring), and composition (including doping with different compounds).

Polymer microfibers and nanofibers produced by the electrospinning technique are in high
demand because of their multiple applications, particularly in the biomedical field [11–16].
Besides medical applications, the polymer electrospun fibers are used also for filters [17,18],
for cosmetics [18], in the clothing and textile industry [19,20], for electrical conductors [21], and for
sensor devices [22]. For optical applications, such polymeric fibers are used for ultrafast photonics [23],
for random lasers [24], for up-conversion [25], for white-light-emitting diodes [26], for dye-sensitized
solar cells [27], for their nonlinear properties [28], and for optical fibers [29].
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Functionalization of the polymer nanofibers may be done using nanoparticle addition or further
chemical or electrochemical deposition of various compounds on the surface of the electrospun
nanofibers [21,30,31]. Bundles of such nanofibers were proven to be able to mimic human muscle
movements [32,33].

Interesting optical properties of the polymer fibers may be achieved by the electrospinning of
dye-doped polymeric solutions [34,35]. Dyes are fluorescent chemical compounds that can re-emit
light upon light excitation. Typically, they contain several combined aromatic groups or planar or
cyclic molecules [36]. Dyes are commercially available and have been used in many applications,
particularly in spectroscopy and medicine. Fluorescent dyes are mainly used in life sciences for
non-destructive tracking or analysis of biological molecules [37,38], but they find a wide use in the
industry for textile dyeing and as optical brighteners in laundry detergents [39,40], advanced cosmetic
formulations [41], safety equipment and clothing, fine arts and design (posters and paintings) [42],
synergists for insecticides, and experimental drugs [43]. Organic light-emitting diodes (OLEDs)
and solar panels that collect more light (wavelengths) also have a more commercially available use
nowadays. Dye-doped polymers have been studied in detail from the point of view of emission tuning
with morphology and with composition [44–46].

By combining the wavelengths of dyes’ emissions that cover the entire visible spectral domain,
white-light-emitting fibers can be produced. Up to 19% of worldwide electricity is consumed by
lighting; therefore, increased efforts are being made to reduce the electricity dedicated to illumination,
such as through the race to replace incandescent bulbs with less-energy-consuming LED lights [47–49].
Light adjusts people’s daily rhythms, and improving lighting can improve people’s well-being (at
home) and productivity (in the workplace) [50]. In order to understand how to make this improvement,
we have to understand how the human eye and light work. Because humans are trichromats (having
in the middle part of the retina three types of cones—the color receptor cells: blue, green, and red),
the perceived colors from the visible spectrum are made by mixing various percentages of blue, green,
and red [51].

Sunlight has been researched since the beginning of optical science, and numerous efforts have
been made for its standardization [52]. The complexity of daylight does not reside only in the mixture
of the various colors, but also in the fact that there are changes in the intensities of different components
depending on the season, month, place, and even time of day; that is, the morning hours’ light is
an intense light suited for working, containing an enhanced blue-green component, while the light
at dawn is a soothing light with an increased orange-red component. Thus, although commercial
LEDs emit differently from sunlight, we perceive white light (of different types) when we use artificial
lighting [53].

White-light-emitting low-dimensional structures have a wide range of applications, ranging from
spectroscopic lab-on-a-chip sensing devices to IT and communications [54,55]. Numerous types of
low-dimensional structures possessing white emission have been developed using different approaches
and methods of preparation [56,57]. One can differentiate between these structures either by type
of materials (ranging from polymers to oxides or composites) or by morphology and dimensions
(ranging from zero-dimensional quantum dots to quasi one-dimensional fibers or complex-shaped
structures) [58,59]. By tuning the composition and shape, one can easily define an application field in
which these intrinsic properties can be exploited.

The aim of this study is to present a simple and straightforward method to produce
white-light-emitting structures. Thus, electrospinning was employed to fabricate submicrometric
dye-doped polymer fiber mats. The photoemission of these submicronic fiber-based architectures
could be tuned depending on the mode in which the doping was performed. As a consequence of
the intensities’ values corresponding to each dyes’ emission maxima in the visible spectral domain,
different types of white lighting could be obtained, including sun-like distributions. Two approaches
were studied and are described in the paper, mats obtained by combining three single-dye-doped
types of fibers and mats of fibers obtained by electrospinning mixtures of solutions doped with several
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dyes simultaneously. In both cases, high luminescence tunability was obtained, and white light was
measured. The luminescent structures obtained in this way possess a specific design that can be
employed in a wide range of applications in which one can exploit the fibrous structure of the building
blocks, ranging from biological probes to high-surface-area/low-cost lighting devices. Being based
on polymer fibers, the structures have the advantages of being lightweight and highly flexible,
enabling their integration into different types of devices for which these characteristics are sought.
The electrospinning technique allows such fibers to be fabricated simply and inexpensively and ensures
they are readily scalable. Moreover, the structures are all organic, with low environmental impact.

2. Experimental Details

For obtaining the dye-doped polymer submicronic fibers, we used poly(methyl methacrylate)
(PMMA) with a Mw of 300,000 and chemical formula of (C5O2H8)n at a concentration of 12.5 wt %.
Dimethylformamide (DMF; anhydrous, 99.8%) was chosen as the solvent. The polymer solution
was prepared at room temperature and stirred overnight. Blue-green- and orange-red-emitting dyes
were used as dopants in order for the emitted lights’ wavelengths to cover a large area within the
visible spectrum. Thus, the polymer solutions were doped with coumarin 7 (C7), coumarin 6 (C6),
fluorescein (F), rhodamine 6G (Rh 6G), sulforhodamine B (SRh B), and sulforhodamine 101 (SRh 101).
The chemical formula and optical properties of each dye used for doping are listed in Table 1. The dyes
had 10−3 M concentrations in the polymer solutions. All chemical compounds were purchased from
Sigma-Aldrich (St. Louis, MO, USA) and were used without any further purification.

Table 1. Chemical formulas, molecular structures, and optical properties of the dyes used for doping
the polymer solutions.

Dye Chemical Formula Molecular
Structure

Absorption
Wavelengths

Emission
Wavelengths

Coumarin 7 C20H19N3O2
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Table 1. Cont.

Dye Chemical Formula Molecular
Structure

Absorption
Wavelengths

Emission
Wavelengths

Sulforhodamine 101 C31H29ClN2O6S2
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During the fibers’ production through the electrospinning process, the fluid was pumped at a
rate of 0.5 mL/h through a syringe with an automatic pump (New Era Pump System). The syringe
needle was positively charged using a high-voltage supply (DC power supply: 30 kV Spellman SL300,
New York, NY, USA). The resulting electric field caused solution jets to be pulled from the end of the
droplet formed on the needle tip (the droplet formed a Taylor cone under the influence of the electric
field) reaching, as fibers, the grounded metal collector consisting of a copper frame.

The electrodes were positioned at distances between 15 and 20 cm. The high voltage of 20 kV
produced the electrically charged jet of the polymer solution, which dried and solidified into a polymer
fiber along the trajectory towards the collector. Using high voltages resulted in the drawing of very
fine fibers (submicrometric or even nanoscale) from a liquid (polymer solution or melt) with high
aspect ratios and with the fiber diameter inversely proportional to the applied voltage. The set-up
used to produce the dye-doped polymer fibers is illustrated in Figure 1.
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Figure 1. Schematic illustration of the experimental setup used for electrospinning of the dye-doped
polymer solutions.

Imaging of the solutions and fiber mats collected on copper frames was done at a 365 nm
wavelength using a UVIlite lamp LF106L (Cambridge, UK) (6 W, filter 50 × 150 mm, 700 µW/cm2).

The characterization of the dye-doped polymer submicronic fibers from the point of view of
structure and morphology was performed using scanning electron microscopy (SEM) (ZEISS EVO
50 XVP). For SEM imaging, small pieces of the mats were placed on sticky carbon discs. Because of
the method used, the density of the fibers observed in the lower-magnification images differed from
one sample to another. Prior to the imaging using the scanning electron microscope, the samples were
sputtered with a thin layer of gold using an ANATECH Hummer VI DC sputtering system.

In order to evaluate the optical properties of the electrospun nanofibers, the absorption
and transmission spectroscopy measurements were made using a UV-vis-NIR CARY 5000
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spectrophotometer, and the photoluminescence (PL) was evaluated using a FLS920 EDINBURGH
INSTRUMENTS spectrofluorimeter (equipped with a 450 W Xe lamp and double monochromators in
both excitation and emission). The chromaticity measurements were made using a Minolta CS-2000
spectroradiometer (Konica Minolta, Tokyo, Japan).

3. Results and Discussion

3.1. Single-Dye-Doped Polymer Fibers

Submicronic fiber mats were produced using copper frames as collectors during the
electrospinning process. Images of the single-dye-doped polymer solutions used for the electrospinning
method and their corresponding self-supporting electrospun fiber mats under either visible or UV
light are presented in Figure 2.
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Figure 2. Images of the polymer solutions and the corresponding electrospun submicronic fiber mats
collected on copper frames in visible light (upper) and UV light (lower).

There are many parameters that have to be controlled during the electrospinning process. One has
to control the ambient parameters (temperature, humidity, air currents, etc.), the solution parameters
such as the polymer concentration (MW and solvent), and also the set-up parameters (the collector
geometry that results in different fiber alignments, the distance between electrodes, the applied
voltage, the flow rate, and the needle diameter). By varying these parameters, the tailoring of the
fibers’ morphological properties (diameter, texture, and pattern) becomes possible.



Polymers 2018, 10, 737 6 of 18

The PMMA matrix was chosen as the carrier polymer because the hydrophobic properties
of PMMA would ensure the fibers’ integrity from both morphological and optical points of view.
Besides its favorable optical properties, our experiments have shown that PMMA also offers the
mechanical strength necessary for the collection of suspended fibers with submicronic diameters and
lengths on the centimeter scale (sample size was 3 cm × 3 cm).

Lower- and higher-magnification SEM images of the single-dye-doped polymer fibers produced
by electrospinning are presented in Figure 3 for all the dyes that were used. The lower-magnification
SEM images obtained at 1000× illustrate the random placement of the nanofibers and the uniformity
of the diameters’ distributions, which are difficult to observe in the higher-magnification SEM images.

Figure 3. Cont.
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10,000×) of the electrospun polymer fibers doped with (a,a’) coumarin 7, (b,b’) coumarin 6, (c,c’)
fluorescein, (d,d’) rhodamine 6G, (e,e’) sulforhodamine B, and (f,f’) sulforhodamine 101.

The fibers’ diameters ranged between 300 nm and 1 µm.
The thicknesses of the electrospun mats are very important parameters, particularly for the

intensities of absorption and luminescence. However, it is difficult to precisely measure such
thicknesses because of the fact that the electrospun mats are fluffy (aired), containing lots of empty
space, and because their thicknesses cannot be assimilated with the thicknesses of a certain number of
overlapped fibers.

Because of the way an electrospun fiber mat is formed in the optically transparent regime (i.e., at
low fiber densities), it is difficult to define a meaningful geometrical thickness, as up to 90–95% of the
mat can be empty space. This is further complicated by the flexibility of the fibers, which makes the
mats compressible in an uncertain way.

However, given the optical nature of the application at hand, a relevant characteristic is the optical
transmission of the fiber mats in the visible range. This is directly linked to the true geometrical
thickness but is far easier to measure. As it depends on the fiber density, this “thickness” can be
controlled by varying the collection time. All the samples were produced using the same collection
time, which means that they should have had approximately the same transmission values and
fiber densities.

In order to demonstrate the similarity of the samples regarding the measured thicknesses, we
evaluated the transmission spectra in the interval 600–800 nm in which the transmittance could be
compared, because in this wavelength interval, there were no absorption bands of the dyes.

Information regarding the optical transmission values of the samples are presented in the
Supplementary Materials, Figure S1.

Previous studies have shown that the presence of different dyes in polymer solutions leads to
changes in the morphologies of the electrospun nanofibers as a result of the different sizes of dye
molecules [45]. In order to avoid fabricating fibers with different morphologies, the concentration of the
polymer in the solution was increased compared to prior investigations [44,45]. Thus, for a 12.5 wt %
concentration of PMMA in DMF, uniform submicronic fibers were obtained by electrospinning for
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all single-dye-doped polymer solutions. It could be observed that all the fibers had smooth surfaces
(e.g., surfaces of Rh 6G-doped fibers are presented in Figure 4). Rh 6G was chosen as an example
because its molecule has an average size when compared with the other dyes used in this study.
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6G (Rh 6G)-doped polymer fibers.

However, for the C6-doped polymer fibers, we observed the rare occurrence of a beads-on-string
morphology (Figure 5), likely formed at the beginning of the electrospinning process during the
period when a stabilization of the process takes place. The appearance of such a specific polymer
fiber morphology for the electrospinning of the C6-dye-doped solution is consistent with the previous
studies [45].
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Figure 5. Beads-on-string morphology observed for coumarin 6 (C6) sample: 1000× (a), and
10,000× (b).

The appearance of beads on fibers is strongly related to the viscosity and surface tension (among
other parameters) [60,61]. In the C6-doped PMMA fibers, the appearance of beads was likely related to
the intrinsic properties of C6, leading to the highest probability for the occurrence of such morphology.
It is well known that C6 fluorescence in solvents depends critically on concentration and on the pattern
of substitution for the amine group [62]. Relatively large shifts in both absorption and fluorescence
were reported not only in solutions but also in polymers [63]. C6 is known for its high degree of
sensitivity to its local environment, which may result in alterations to the morphological and optical



Polymers 2018, 10, 737 9 of 18

host’s properties, including viscosity [64,65]. Thus, the presence of C6 may have affected the viscosity
and the surface tension of the polymer solution more so than for the other dyes, leading to the rare
appearance of beads during the electrospinning process.

The optical absorbance and PL spectra of the single-dye-doped fiber mats were measured and
plotted, and the results are presented in Figure 6a,b.
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As expected, the optical absorptions of the single-dye-doped fiber mats covered the spectral
domain 400–600 nm with increasing intensities from the blue region towards the red region, while the
emissions covered the spectral domain 450–650 nm with higher intensities in the blue-green region
and significantly lower intensities of the emission in the orange-red region of the visible spectra.
The decreasing of the PL intensities was in total agreement with studies from the literature related
to the efficiencies of the dyes when dissolved in different solvents [66–68]. There is a strong relation
between PL and the molecular structure of dyes, indicating different efficiencies. This further leads
to different PL intensities, although the dyes had the same concentration (10−3 M) in the solution of
PMMA (12.5 wt % in DMF).

Depending on the conditions and solvent, fluorescein may dimerize. A dimer–monomer
equilibrium appeared, thus leading to the appearance of different peaks in the absorption spectra [69].
Moreover, different forms (cationic, neutral, anionic, and dianionic) of the fluorescein’s molecule may
be found in a dye-doped solution [70]. Therefore, we may observe more peaks in both absorption and
emission spectra of a F-doped polymer fiber mat. Absorption peaks appeared also at wavelengths of
less than 350 nm, in the UV region of the spectrum.

The 420 nm excitation with C7-doped fibers revealed the overlapping of two peaks appearing at
485 and 505 nm, whereas for C6-doped fibers, two peaks at 495 and 515 nm appeared under 440 nm
excitation. The appearance of the shoulder in PL may have been due to the protonated form of the dye,
which was previously reported for coumarins [66]. The 490 nm excitation with F-doped fibers revealed
a broad PL spectrum formed by an overlapping of peaks between 515 and 575 nm. The Rh 6G-doped
fibers exhibited a peak at 560 nm under 510 nm excitation, while under 550 nm excitation, the SRh
B-doped fibers presented a PL peak at 580 nm and the SRh 101-doped fibers presented an emission
peak at 590 nm.

Next, the emissive properties of the overlapping single-dye-doped fibers’ layers were evaluated.
By varying the thickness of the layers, we were able to tune the emission spectra of the overlapped
fiber mats and thus able to enhance the blue and red contributions to the spectra or to obtain a balanced
combination of the peaks. The downside of such an approach is that there are a limited number
of layers that can be used and that too many layers overlap, further resulting in the obstruction of
light and the screening of the first layers’ emissions. PL excited at 420 nm for different overlapping
combinations of three single-dye-doped fiber mats, C6, Rh 6G, and SRh 101, are presented in Figure 7.
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The volumes of the dye-doped solutions electrospun for the different overlapping fiber mats
were varied, leading to a variation in the thicknesses of the layers, until a balanced PL spectrum was
achieved. Thus, the balance in sample 2 was achieved by overlapping C6, Rh 6G, and SRh 101 mats in
a 1/5/10 ratio, while sample 1 was formed by overlapping C6, Rh 6G, and SRh 101 submicronic fibers
in a 10/5/5 ratio and sample 3 was formed by overlapping C6, Rh 6G, and SRh 101 submicronic fibers
in an equal 10/10/10 ratio.

3.2. Dye-Doped Polymer Fibers Obtained from Mixed Solutions

Copying the complexity of white light requires a more versatile approach; therefore, we used
mixed single-dye-doped polymer solutions in different percentages in order to be able to tune the
emissions of the electrospun fiber mats.

Table 2 presents the whole range of mixed solutions used for testing the emissive properties of the
polymer fiber mats. Nine mixtures were prepared using single-dye-doped polymer solutions. Mixtures
a, b, and c were prepared without the F solution, and a pronounced gap appeared in the PL spectra
in the range 520–540 nm (observed in Figure 7 for overlapping mats). Therefore, although having a
complicated overlapping of peaks in the PL spectrum due to the presence of various aggregates, as
previously explained, fluorescein was found to be a good solution for leveling the spectrum in the
yellow region. Thus, six additional mixtures containing six different dye-doped polymer solutions in
different ratios (including fluorescein) were prepared. The spectra of mixtures d, e, and f were only
slightly different from the spectrum of mixture 3. Therefore, only three mixtures were chosen to be
further analyzed by optical and morphological measurements, namely, mixtures 1, 2, and 3, which
illustrate the possibility of balancing the intensities between red and blue emissions.

Table 2. Composition of dye-doped polymer solution mixtures.

Solution
Percentage of Single-Dye Solution

C7 C6 FL Rh 6G SRh B SRh 101

Mix a 20 20 - 20 20 20
Mix b 16.66 33.33 - 33.33 8.33 8.33
Mix c 12.5 25 - 25 12.5 25
Mix 3 10 20 20 20 10 20
Mix d 12.5 22.5 22.5 22.5 10 10
Mix e 17 22.5 22.5 22.5 7.5 7.5
Mix f 5 25 25 25 5 5
Mix 2 15 30 30 10 7.5 7.5
Mix 1 12.5 25 40 7.5 7.5 7.5

PL spectra of the fiber mats produced by the electrospinning of different combinations of
single-dye-doped polymer solutions (mixtures 1, 2, and 3) are presented in Figure 8a. The spectra
illustrate the possibility to balance the luminescence between blue and red emissions, depending
on the ratios of the different dye-doped solutions. Commission Internationale de L’Eclairage (CIE)
coordinates of the fibers obtained by electrospinning of different mixtures are presented in Figure 8b.
The CIE measurements depicted the fine-tuning of the intensities of colors emitted by the fiber
mats composing the white light. Thus, the emissions of the submicronic fibers obtained from the
C7/C6/F/Rh6G/SRhB/SRh101 mixtures had the CIE coordinates of (0.27, 0.29) for the composition
10/20/20/20/10/20 (mixture 3), (0.38, 0.44) for the composition 15/30/30/10/7.5/7.5 (mixture 2),
and (0.44, 0.44) for the composition 12.5/25/40/7.5/7.5/7.5 (mixture 1).

The excitation wavelength for all the fibers obtained by the electrospinning of mixed solutions
was 420 nm, corresponding to the excitation wavelength of C7, the dye with the smallest values for
both the excitation and the emission wavelengths. The electrospinning of the mixture formed by
C7/C6/F/Rh6G/SRhB/SRh101 in a ratio of 15/30/30/10/7.5/7.5 (mixture 2; presented in Figure 8a)
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resulted in a submicronic fiber mat that exhibited white-light emission. The UV image of the
white-light-emitting fiber mat (mixture 2) compared with the green-emitting and red-emitting fiber
mats is presented in Figure 9.Polymers 2018, 10, x FOR PEER REVIEW  12 of 17 
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Figure 8. (a) Photoluminescence (PL) spectra of submicronic fibers produced by electrospinning
from different mixtures of dye-doped polymer solutions, and (b) their corresponding coordinates on
Commission Internationale de L’Eclairage (CIE) 1931 color space chromaticity diagram.

It could be observed both for the overlapping fiber mats and for the fiber mats obtained by
electrospinning mixtures of single-dye-doped polymer solutions that for equal amounts of different
dyes, the red contribution to the spectra had a higher intensity. The increased intensity of the red
contribution appeared as a result of the fact that the red component was excited by both the wavelength
of excitation and by the light emitted by the green-yellow components of the mixtures.
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Figure 9. Blue-green (coumarin 7 (C7))-, white-light (mixture 2)-, and orange-red (sulforhodamine 101
(SRh 101))-emitting flexible and thin fiber mats under UV light excitation (365 nm).

Morphology studies have showed that electrospinning mixtures of dye-doped polymer solutions
in different combinations results also in submicronic fibers with smooth surfaces, uniform dimensional
distribution, and diameters comparable to those of single-dye-doped electrospun polymer fibers.
The diameters of the fibers obtained by electrospinning mixtures of solutions also ranged between
300 nm and 1 µm. The SEM images of the submicronic fibers are presented in Figure 10.

The dye-doped polymer fibers produced by electrospinning presented similar optical properties
over a long period of time. The PL of the electrospun fibers was very stable. The fibers showed
identical PL signals after storage under normal atmospheric conditions. Surface enrichment of the dye
is commonly observed in dye-doped polymeric systems [71]. The fibers may have presented a possible
segregation of the dyes on their surfaces during their formation, but this was difficult to be confirmed
experimentally because of the fact that the solidification of fibers takes place over a very short period
of time.
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Figure 10. Scanning electron microscopy (SEM) images of submicronic fibers obtained by 
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4. Conclusions 

We present a simple method to fabricate flexible, white-light-emitting nanofibers using the 
electrospinning methods of dye-doped polymers. Different mixtures of single-dye-doped polymer 
solutions were used in order to tune the emissions of electrospun nanofibers. The present study 
shows that electrospun nanofibers obtained from mixtures of single-dye-doped solutions present 
white-light emissions and may have potential applications as new light sources or sensory materials 
for smart textiles. White-light-emitting electrospun submicronic fibers were successfully prepared 
through the electrospinning of mixtures of single-dye-doped PMMA solutions in DMF using a single 
capillary spinneret. The emission intensities of colors composing the white light changed as the 
composition of the mixtures changed, increasing either the blue-green component or the orange-red 
component of PL. The white-light-emitting submicronic fibers obtained from the 
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