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Abstract: Kaposi’s sarcoma associated herpesvirus (KSHV) is etiologically associated with human
endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV
infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and
KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin
endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the
interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate
(HS), integrins (α3β1, αVβ3 and αVβ5), and EphA2 receptor tyrosine kinase (EphA2R). This review
summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways
to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and
initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform
for the manipulations of host signal pathways which results in the simultaneous induction of FAK,
Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and
adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in
the various steps of the early stages of infection such as entry and trafficking towards the nucleus.
The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins are also recruited to
assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also
induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and
modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately
followed by the host innate responses such as the DNA damage response (DDR), inflammasome
and interferon responses. Overall, these studies form the initial framework for further studies
of simultaneous targeting of KSHV glycoproteins, host receptor, signal molecules and trafficking
machinery that would lead into novel therapeutic methods to prevent KSHV infection of target cells
and consequently the associated malignancies.

Keywords: KSHV entry; integrins and EphA2R receptors; macropinocytosis; clathrin endocytosis;
signal induction; KSHV trafficking

1. Introduction

To control and/or eliminate any viral infection causing a spectrum of human and animal diseases
by vaccines and/or anti-viral agents, comprehensive information regarding the replication, biology,
and pathogenesis of the causative viral agent is essential. Foremost in this requirement is the thorough
understanding of the complex multistep process of virus entry into target cells. To establish a successful
infection, viruses need to rapidly counteract a number of hindrances in the host cells, such as the
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barrier of plasma membrane, underlying actin cytoskeleton, dense packed cytoplasm, induction
of intrinsic and innate cellular protective immune responses including apoptosis, autophagy, DNA
damage responses (DDR), and restriction on viral gene transcription and translation. Viruses not only
depend on their gene products to overcome these obstacles but have also evolved to hijack host cell
molecules including the host cell’s preexisting signal pathways to tackle these hindrances and to create
a favorable milieu that facilitates the establishment of infection.

More than 100 herpesviruses of the family Herpesviridae infect many different species across
the animal kingdom and have evolved in parallel with their respective hosts for millions of years [1].
Herpesviruses are characterized by their complex linear double stranded DNA genome (~110–230 Kb)
that is enclosed in an icosahedral capsid of ~100–125 nm, surrounding layers of several tegument
proteins, which in turn is enclosed in a double layered membrane (envelope) bearing several virally
coded glycoproteins. An important attribute of all herpesviruses is that after primary infection and
lytic replication in the host cell resulting in progeny virion formation, all of them establish a latent
infection in several specific host cells with limited latent gene expression. Periodic reactivation of the
latent state results in reinfection of new cells with the continuation of latent infection.

Herpesviruses are classified as α-, β- and γ-subfamilies of herpesviruses based on the cell
tropism and genome similarities [2]. The α-subfamily includes the human herpes simplex virus
type-1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV). The β-subfamily consists of the
human cytomegalovirus (HCMV), HHV-6 variants A and B, and HHV-7, while the γ-subfamily consists
of the Epstein–Barr virus (EBV) and the Kaposi’s sarcoma-associated herpesvirus (KSHV) or human
herpesvirus-8 (HHV-8). Most humans are infected with HSV-1, EBV, VZV, CMV, HHV-6, and HHV-7
during early life. HSV-2 is predominately acquired during the sexually active phase of life. KSHV is
believed to be transmitted through saliva in young siblings in some parts of the world such as French
Guiana [3] or sub-Saharan Africa [4] where the disease is endemic, and through sexual contacts in risk
groups such as homosexual men in low prevalence countries [5]. Reactivation of these viruses under
immunocompromised conditions results in severe life-threatening diseases including neoplasms by
EBV and KSHV.

Target cell infection by herpesviruses is initiated by the binding and interaction of viral envelope
glycoproteins with several cell surface molecules (receptors). These interactions lead into either fusion
of the viral envelope with the host cell membrane or entry of enveloped viral particles via endocytosis
and subsequent fusion of the viral envelope with the endocytic membrane resulting in the release
of viral dsDNA containing capsid surrounded by a number of tegument proteins, and potentially a
number of viral and host microRNAs (miRNA) and long non-coding RNA (lncRNA). Cytoplasmic
capsid is rapidly transported towards the nuclear periphery by the dynein motors via the microtubules
and the capsid is disassembled near the nuclear pore by a mechanism not fully understood resulting
in the entry of viral DNA into the nucleus.

Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) or Human Herpesvirus-8 (HHV-8)

KSHV, a member of the γ2-lymphotropic-oncogenic herpesviruses, is implicated in the etiology
of several human cancers such as Kaposi’s sarcoma (KS) [6,7], primary effusion B-cell lymphoma (PEL)
or body-cavity based B-cell lymphoma (BCBL) [8], and B-cell proliferative multicentric Castleman’s
disease [9,10]. KSHV has also been shown to be the cause of KSHV inflammatory cytokine syndrome
(KICS) [11,12]. KSHV’s ~160 Kbp DNA genome [13,14] is closely related to γ-1 EBV, and the γ-2
herpesvirus saimiri (HVS) and Rhesus monkey rhadinovirus (RRV) [15]. KSHV encodes more than
100 open reading frames (ORF), 17 viral microRNAs (vmiRNA) and several viral long non-coding
RNAs (vlncRNA), and ORFs 4–75 are named by their homology with HVS ORFs [16,17]. The KSHV
genome consists of three gene blocks that are conserved with other herpesviruses as well as gene
blocks encoding more than 20 genes unique to KSHV, which are named K genes.

KSHV has a broad cellular tropism as it infects a variety of in vivo target cells such as
endothelial cells, B cells, monocytes, epithelial cells and keratinocytes, and establishes latency [10].
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Although B cells are a major reservoir for KSHV persistence in the body, these B cells are extremely
difficult to infect with KSHV in the laboratory, thus posing a hindrance to studies on B cell infection.
In a recent study, it was observed that MC116, an EBV negative American Burkitt’s lymphoma B cell
line, can be infected by cell-free recombinant strain KSHV.219 (rKSHV.219) resulting in latency [18].
A study has also shown that KSHV can infect human primary tonsillar B cells and these B cells are
non-cytolytically controlled by CD4+ T cells [19]. KSHV also infects human and mouse fibroblast cells,
owl monkey kidney cells, BHK-21 (baby hamster kidney) cells and CHO (Chinese hamster ovary)
cells [20,21]. However, KSHV does not infect the rodents in vivo and hence there are no small or
primate animal models that will faithfully emulate human KSHV infection and pathogenesis.

Studies have shown that KSHV utilizes its multiple glycoproteins to bind to the host cell
membrane followed by interaction with specific entry receptors to induce a cascade of signal pathways
to promote endocytosis. KSHV enters the cells in a cell type specific manner, and recent studies
demonstrate that it hijacks the host cellular ESCRT machinery (endosomal sorting complexes required
for transport) for the enveloped virion containing endosome trafficking and release of capsid near
the nuclear pore area resulting in the delivery of viral DNA into the nucleus. All these events
collectively also lead to the simultaneous induction of the host innate immune responses against the
invading pathogen.

In this review, we summarize the studies available to date to portray the various stages of the
complex pathways of KSHV entry, trafficking and delivery of viral genome into the nucleus early
during infection of human microvascular dermal endothelial cells (HMVEC-d) and human foreskin
fibroblast (HFF) cells. We have given emphasis to: (a) different endocytic entry pathways of KSHV;
(b) KSHV envelope glycoproteins and their interactions with the host cell surface associated receptors
and lipid rafts (LR); (c) resulting induction of pre-existing host cell signal pathways; and (d) the
influence of the induced signal pathways on the: (i) consequent membrane and actin dynamics;
(ii) intracellular KSHV traffic utilizing the host cell membranes and actin; and (iii) recruitment of
trafficking machinery and their role in KSHV infection. As virus entry and infection is intimately
associated with the host innate cellular responses, we also discuss briefly the responses elicited during
the early stages of KSHV entry and recognition of the viral genome.

2. KSHV Utilizes Diverse Endocytic Pathways for Entry into the Target Cells

KSHV enters human B cells, fibroblast, epithelial, and endothelial cells by endocytosis and
utilizes macropinocytosis and clathrin-mediated endocytosis to enter HMVEC-d and HFF cells,
respectively [22–26]. Enveloped viral particles are detected inside the endocytic vesicles as early
as 5 min post-infection (p.i.) in HMVEC-d and HFF cells which penetrate through the endocytic
membranes in an acid pH-dependent manner to enter the cytosol, and the capsid then reaches near the
nuclear periphery within 15 min p.i. via the host microtubules [24]. Apart from KSHV, HSV-1 has also
been shown to utilize macropinocytosis as the mode of entry in some of the target cells [27,28].

2.1. Macropinocytic Mode of Entry

Macropinocytosis, a particular form of endocytosis, is the major route of productive KSHV
infection in endothelial HMVEC-d and HUVEC cells (umbilical vein endothelial cells) (Figure 1).
The role of macropinocytosis was revealed by studies that used macropinocytosis inhibitors such
as 5-(N-ethyl-N-isopropyl)-amiloride (EIPA-sodium-proton exchange inhibitor) and rottlerin to
demonstrate the significant inhibition of both KSHV entry and gene expression [24]. These studies
also showed the co-endocytosis of macropinocytosis marker dextran with KSHV, and envelope
labeled virus-DiI-KSHV (lipophilic dye, DiI-1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine
perchlorate) colocalization with Rab5 and Rab7 during KSHV entry in both endothelial cell types by
immunofluorescence microscopy and flow cytometry [24]. These observations were strongly supported
by control experiments with the clathrin pathway marker transferrin and KSHV co-endocytosis,
wherein no appreciable colocalization was observed in the endothelial cells.
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Figure 1. Schematic diagram depicting the entry of KSHV by macropinocytosis and subsequent
trafficking in human microvascular dermal endothelial cells (HMVEC-d) and the various signal
cascades induced by KSHV early during infection to aid in the various steps of infection. (1) The
initial attachment of KSHV is with HS in the non-lipid raft (NLR) region of the membranes which
concentrates the virus particles. This is immediately followed by the interactions with α3β1, αVβ3
and αVβ5 integrins and xCT molecules. (2) Within 1–5 min of infection, this interaction induces the
phosphorylation of FAK, Src, PI3-K as well as recruitment of the adaptor proteins c-Cbl and CIB1,
c-Cbl mediated monoubiquitination of α3β1 and αVβ3, and rapid translocation of KSHV into the lipid
raft (LR) along with the α3β1, αVβ3, and x-CT receptors but not αVβ5. KSHV interactions with the
receptors also lead to the production of ROS, which in turn amplifies FAK, Src and the Rho-GTPase and
Rac1. (3) In the LR, KSHV interacts with EphA2R, which amplifies the signal cascades. (4) Infection
induced ESCRT-0 protein Hrs associates with the membrane and ROCK1 and induces a local pH
change. Activated c-Cbl interacts with myosin IIA and results in bleb formation, its retraction and
macropinosome formation that enclose the viral particles with virus associated integrins and EphA2R
in the luminal face of the vesicles and CIB1, Crk, and p130Cas in the cytoplasmic side. (5) Virus
containing early and late endosomes is associated with Rab5 and Rab7, respectively, as well as with
integrins, EphA2, CIB1, Crk, p130Cas and ESCRT-I-III proteins. The KSHV lipid envelope membrane
fuses with the endosomal membrane mediated by the viral glycoproteins to release the capsid and
the enclosed dsDNA viral genome into the cytoplasm. (6) RhoA-GTPase mediated Dia-2 dependent
acetylation of microtubules helps in the rapid transport of capsid towards the nucleus and the capsid
disassembles near the nuclear pore resulting in the delivery of viral DNA into the nucleus (7). (8) Viral
gene expression is initiated by the infection induced host ERK1/2, NF-κB and Nrf2 transcription factors
that translocate to the nucleus from the cytoplasm (9 and 10). Studies summarized in this review
demonstrate that: (i) KSHV infection induced FAK, Src, PI3-K, Rho-GTPase and ROS play roles in
KSHV entry by endocytosis and actin remodeling; (ii) PI3-K, RhoA-GTPase and Dia 2 molecules play
roles in microtubule acetylation, reorganization and transport of capsid to the nuclear vicinity; and (iii)
ERK1/2, NF-κB and Nrf2 play roles in viral and host gene expression and modulation.
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Membrane blebbing is an important event during KSHV macropinocytic entry and use of
blebbistatin, a potent inhibitor of membrane blebbing, inhibits the entry of KSHV significantly [29].
Studies also reveal that the LRs direct the clustering of KSHV bound receptors EphA2R and integrins
to direct macropinocytosis towards productive infection [30]. The EphA2R also synergizes with the
adaptor CIB1 molecule to sustain signal amplification and promote macropinocytosis [31]. A recent
study has also demonstrated the macropinocytic route of KSHV entry dependent upon Hepatocyte
growth factor-regulated tyrosine kinase substrate (Hrs), an ESCRT-0 component of the ESCRT
machinery, which translocates to the plasma membrane near the virus induced blebs and assists in viral
entry via Rho-associated protein kinase 1 (ROCK1) mediated phosphorylation of Sodium/hydrogen
exchanger 1 (NHE1) and modulates a local pH change essential for macropinocytosis [32]. Another
recent finding revealed the role of ESCRT-I protein Tsg101 in KSHV trafficking and transition from
early to late endosomes [33], thus defining novel roles of host proteins that are involved during viral
entry and infection.

Although several studies have shown that KSHV enters the endothelial cells by macropinocytosis,
they all have been performed in tissue culture experiments and their validation in vivo is still a difficult
task as there is no animal model for studying KSHV till date.

2.2. Clathrin-Mediated Endocytic Mode of Entry

Clathrin-mediated endocytosis is another major route involving the uptake of materials into
the cell from the surface using clathrin-coated vesicles. It is one of the most common routes of
viral internalization and this pathway is utilized by several viruses such as hepatitis C virus [34],
Ebola virus [35], influenza A virus, vesicular stomatitis virus, etc. [28]. KSHV enters HFF cells via
clathrin mediated endocytosis. Use of chlorpromazine, a clathrin pathway inhibitor, significantly
inhibits KSHV entry into HFF cells, whereas the caveolae inhibitor and LR inhibiting agents have no
effect on entry [24,25]. KSHV interacts with HFF cell surface HS, integrins (α3β1, αVβ3 and αVβ5),
and EphA2R in the non-LR region, and interactions with EphA2R result in the formation of an active
signaling complex of integrins, FAK, Src and PI3-K, c-Cbl and myosin IIA which subsequently activates
the downstream pathways (Figure 2). Within minutes of infection, KSHV induced PI3-K activates
c-Cbl which polyubiquitinates EphA2R and recruits the accessory protein Eps15 and an adaptor
protein AP-2 which promote the activation, recruitment and assembly of clathrin resulting in the
formation of clathrin coated pits (CCP). These signaling complexes aid in KSHV internalization into
clathrin coated vesicles. Subsequently, KSHV infection induced pre-existing host cell signal pathway,
as discussed in the later sections here, aids in KSHV trafficking into the early and late endosome,
acidification of endosome, nuclear entry of viral DNA and viral gene expression [36] in a manner
similar to macropinocytic entry in endothelial cells. KSHV also enters BJAB cells, a KSHV and EBV
negative B-cell lymphoma cell, and HEK293 (human embryonic kidney) cells through the clathrin
endocytic pathway [22].
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Figure 2. Schematic diagram depicting the clathrin mediated endocytosis of KSHV and trafficking in
human foreskin fibroblast (HFF) cells. (1) The initial attachment of KSHV is with HS in the NLR regions
of the plasma membrane which is followed by interactions with α3β1, αVβ3, and αVβ5 integrins and
with EphA2R. The association of EphA2R with integrins leads to the formation of an active signaling
complex which leads to the induction of FAK, Src, and PI3-K signal molecules. (2) PI3-K activated c-Cbl
then polyubiquitinates EphA2R and recruits the accessory proteins Eps15 and adaptor protein AP-2,
which is followed by (3 and 4) assembly of clathrin, formation of clathrin coated pits, internalization of
KSHV into clathrin coated vesicles along with the activated signaling platforms and the associated
molecules leading to the dynamin dependent release of the vesicles. (5) The internalized vesicles
then recruit Rab5 and Rab7, and the virion envelope membrane fuses with the endosomal membrane
mediated by the viral glycoproteins to release the capsid, which is transported (6) near the nuclear pore
area resulting in genome entry into the nucleus. As in HMVEC-d cells, (i) KSHV infection induced
FAK, Src, PI3-K, Rho-GTPase and ROS play roles in KSHV entry and actin remodeling; (ii) PI3-K,
RhoA-GTPase and Dia 2 molecules play roles in microtubule acetylation, reorganization and transport
of capsid to the nuclear vicinity; and (iii) ERK1/2, NF-κB and Nrf2 play roles in viral and host gene
expression and modulation (7).

3. KSHV Infection Is Initiated by Its Binding to Receptors on the Host Cell Membrane

3.1. Interactions with Cell Surface Proteins and Viral Entry Are Mediated by KSHV Envelope Glycoproteins

The KSHV envelope glycoproteins play key roles not only in virion binding to the host cell plasma
membrane associated molecules (receptors) and subsequent entry during primary target cell infection,
but also in the complex process of nuclear assembly of enveloped viral particles, re-envelopment in
the cytoplasmic vesicles and egress of the progeny virus during a lytic infection. KSHV envelope
has several glycoproteins such as gB (ORF8), gH (ORF22), gL (ORF47), gM (ORF39), and gN (ORF53)
that are conserved with other herpesviruses [15,37,38]. It also encodes for some unique lytic cycle
associated glycoproteins such as ORF4, gpK8.1A, gpK8.1B, K1, K14 and K15, and among which ORF4
and gpK8.1A are associated with the viral envelope [39–42].
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The major envelope glycoprotein involved in the initiation of virus binding and entry is KSHV gB
consisting of disulfide linked polypeptides of 75-kDa and 54-kDa [39,41,43]. KSHV gB mediates viral
binding and entry by its interaction with host cell surface HS, and entry receptors α3β1, αVβ3 and
αVβ5 integrins in HMVEC-d and HFF cells [41–45]. gB has a high mannose carbohydrate structure
and binds to DC-SIGN (Dendritic cell specific intracellular adhesion molecule-3 (ICAM-3) grabbing
non-integrin) molecule of B-cells [46]. KSHV-gB interaction with integrins activates the associated
signal molecules such as FAK, Src, PI3K, and Rho-GTPase [47]. Apart from its role in virus entry, gB is
also shown to be critical for KSHV maturation and egress [48]. The KSHV gpK8.1 gene encodes two
alternatively spliced messages yielding glycoproteins gpK8.1A and gpK8.1B, the former being the
main form expressed on infected cells and assembled on the virion envelope [37,49,50]. Similar to gB,
KSHV gpK8.1A also possesses the ability to bind to the HS molecule [51,52].

Like other herpesviruses, KSHV glycoproteins gH and gL form a non-covalently linked gH/gL
complex where gL plays an important role in complex formation by promoting intracellular gH
trafficking [53–55]. gH and ORF4 have also been shown to interact with HS, and blocking gH/gL
with anti-gH and anti-gL antibodies inhibits KSHV entry but not KSHV binding [55]. Recent studies
also showed that gH/gL interacts with the KSHV entry receptor EphA2R and are crucial for KSHV
entry [54]. The KSHV gM and gN glycoproteins form a heterodimeric complex and are involved
in virus penetration and egress. Similar to the gH/gL complex, the KSHV gN is essential for gM’s
post-translational modification and trafficking to the cell surface [56].

3.2. Heparan Sulfate (HS) Is Utilized by KSHV as the Initial Binding Receptor

KSHV, like other herpesviruses, relies on two types of host cellular receptors, the binding and
the entry receptors. HS is an ubiquitously expressed host cell membrane proteoglycan that facilitates
charge based KSHV attachment and concentration on the cell surface which subsequently causes
conformational changes in the virus glycoproteins to gain access to the adjacent entry receptors.
Preincubation of virus with soluble heparin, but not with soluble chondroitin sulfate A and C, results
in the inhibition of KSHV binding, subsequent signal induction and infection, thus demonstrating the
specific role of HS in KSHV attachment to the cells [41] (Table 1). The Ext1 enzyme required for HS
glycosylation is absent in several B cell lines and primary B cells resulting in their refraction to KSHV
infection. The role of HS was further strengthened by the results demonstrating KSHV infection in the
BJAB cells expressing HS and the absence of infection in the cells lacking HS [21] (Table 1).

KSHV envelope glycoproteins gB, gpK8.1A, ORF4 and gH bind HS to facilitate speedy
concentration of KSHV on the cell surface [43,44,51,54]. Pretreatment of KSHV with soluble heparin,
enzymatic removal of cell surface HS by heparinase I and III or pretreatment with soluble gB and
gpK8.1A inhibits KSHV infection [43,51,52]. The KSHV gB extracellular domain possesses a conserved
heparin binding domain (HBD) motif HIFKVRRYRK at amino acids 108–117, and KSHV gpK8.1A has
an atypical HBD whereas it is missing in gH [41,55].
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Table 1. Summary of cell surface receptors utilized by KSHV and induced signal molecules, the methods used to block them and their effects on KSHV entry
and infection.

KSHV Receptors Inhibitor/Treatment Cell Type Effect References

Heparan sulfate Pre-incubation of virus with soluble heparin HMVEC-d, HFF, BJAB, HEK293, THP1 Blocks virus binding to the cell [21,41,43–45,51,54,55,57,58]

α3β1 integrin Pre-treatment of cells with anti- α3β1 antibodies;
Pre-incubation of virus with soluble α3β1 integrin HMVEC-d, HFF, THP1 Blocks virus entry and no effect

on virus binding [44,45,57]

αVβ3 integrin Pre-treatment of cells with anti-αVβ3 antibodies;
Pre-incubation of virus with soluble αVβ3 integrin HMVEC-d, HFF, THP-1 Blocks virus entry and no effect

on virus binding [45,57,59]

αVβ5 integrin Pre-treatment of cells with anti-αVβ5 antibodies;
Pre-incubation of virus with soluble αVβ5 integrin HMVEC-d, HFF, THP-1 Blocks virus entry and no effect

on virus binding [44,59]

xCT Pre-treatment of cells with anti-xCT antibodies HMVEC-d
Blocks virus gene expression
and no effect on virus binding
and entry

[44]

CD98 Pre-treatment of cells with anti-CD98 antibodies HMVEC-d
Blocks virus gene expression
and no effect on virus binding
and entry

[44]

DC-SIGN Pre-treatment of cells with Mannan; Pre-treatment
of cells with anti-DC-SIGN antibodies B cells, THP-1 Blocks virus binding and entry [23,57,60]

EphA2R
Pre-treatment of cells with anti-EphA2R
antibodies; Pre-incubation of virus
with soluble EphA2

HMVEC-d, HFF Blocks virus entry and no effect
on virus binding [35,61]

Signal Molecules Induced by KSHV Inhibitor/Treatment Cell Type Effect References

FAK Focal Adhesion Kinase (FAK)-related
Non-kinase (FRANK) DU17 mouse embryonic fibroblasts Blocks virus entry [62]

Src SU6656 HEK293 Blocks virus entry [63]

PI3K LY294002 HMVEC-d, HFF Blocks virus entry [64]

RhoA Clostridium difficile toxin B HMVEC-d, HFF Blocks virus entry [63]

PKCζ myr-ζ HFF Blocks viral gene expression [64]

CIB1 shCIB1 HMVEC-d Blocks virus entry [31]

p130Cas shCas HMVEC-d Blocks nuclear viral genome
delivery [65]

Hrs shHrs HMVEC-d Blocks virus entry [32]

Tsg101 siTsg101 HMVEC-d
Blocks cytoplasmic KSHV
trafficking and nuclear viral
genome delivery

[33]
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3.3. Integrins on Endothelial, Fibroblast and Monocyte Cell Surfaces Play a Role as KSHV Entry Receptors

Integrins are a widely expressed family of cell adhesion receptors which mediates a variety of
functions such as the attachment of cells to the extracellular matrix, outside to inside signaling events,
tissue remodeling, etc. Integrins are utilized for attachment and/or cell entry by several enveloped and
non-enveloped viruses. Among all the herpesviruses, studies with KSHV were the first to show the
utilization of integrins as entry receptors of herpesviruses in adherent cells [44]. An integrin binding
RGD (Arg-Gly-Asp) motif is present at amino acids 27–29 of KSHV envelope glycoprotein gB [44]
which is the minimal peptide sequence of many integrin ligands known to interact with a subset of
cellular integrins. Studies have established the roles of α3β1, αVβ3 and αVβ5 integrins during KSHV
infection in HFF, HMVEC-d, HEK293, Vero cells and monocytes [30,44,45,57,59].

Although some studies do show discrepancies regarding the integrin subtypes used by KSHV
in different target cells [22,59], experimental methodologies and differences in the cells used could
account for these discrepancies. Studies using RGD peptides and antibodies against RGD-gB peptides
have shown the important role of integrins as entry receptors for KSHV. Pretreatment of HMVEC-d,
HFF cells, human fibrosarcoma cell line HT-1080 and monkey kidney cell line CV-1 cells with anti-αV
and anti-β1 integrin antibodies inhibits the cell attachment mediated by KSHV-gB [44,45,59] (Table 1).
Functional blocking anti-α3 and β1 integrin antibodies inhibited ~50% of infection in HMVEC-d and
HFF cells. Overexpression of α3 integrin in CHO cells increases the infection; however, as the infection
is not as robust as in HMVEC-d and HFF cells, this suggests the participation of other receptors in
KSHV infection that are not present in the CHO cells [45]. KSHV attachment sites have been shown to
be present in specific cellular microdomains that consist of actin-based filopodia, lamellipodia, ruffled
membranes, microvilli, intercellular junctions, and integrins αVβ3, αVβ5 and α3β1 [66]. Interaction
of KSHV disintegrin domains of gB with α9β1 integrin is believed to also lead into virus entry in
the HFF cells [67]. Although the anti-α9 and β1 integrin antibodies reduced the entry of KSHV,
inhibition by β1 integrin antibodies could also be blocking virus interactions with α3β1 integrin.
Studies demonstrate that the localization of these integrins in the host cell lipid raft of HMVEC-d
cells is important for KSHV infection. KSHV-dependent clustering of integrins α3β1, αVβ3, αVβ5
and CD98 has been reported and the initial binding of KSHV to the cell surface is suggested to be via
αVβ3 [66]. Further studies are needed to clarify this suggestion.

Collectively, these studies demonstrate that KSHV infection involves complex virus–host cell
surface interactions leading to formation of a multi-molecular complex of integrins that play roles in
infection [30].

3.4. Role of xCT and DC-SIGN Molecules in KSHV Infection

Host cell surface membrane glycoprotein CD98 associated 12 transmembrane glutamate/cysteine
exchange transporter xCT molecule has been identified as a potential KSHV fusion-entry receptor [68].
It is interesting to note that CD98 has been shown to regulate the various cellular processes such as
integrin activation, amino-acid transport, cell adhesion, and cell proliferation, and CD98 interacts with
integrin α3 to regulate fusion between cells and cell fusion by viruses [58,69,70]. The xCT molecule
has been identified in the KSHV infection induced multimolecular signaling complex formed during
macropinocytosis of virus in HMVEC-d cells and pretreatment of KSHV with heparin and soluble
α3β1 integrin inhibits α3β1-xCT complex formation during infection [30,45]. Further studies are
essential to identify the envelope glycoproteins of KSHV mediating the interactions with xCT.

Several viruses, such as human immunodeficiency virus (HIV), hepatitis C virus, Dengue virus
and Bunyaviruses, utilize DC-SIGN on the dendritic cell (DC) surface [71–74]. Activated macrophages
and B cells express DC-SIGN while the endothelial cells express its isomer, DC-SIGNR [23,60,75].
During infection of human myeloid DCs, macrophages, and activated B cells, KSHV has been shown
to utilize DC-SIGN. Pretreatment of cells with anti-DC-SIGN antibodies or with mannan, the natural
ligand of DC-SIGN, as well as pretreatment of KSHV with soluble DC-SIGN has been shown to inhibit
virus binding and infection [23,60]. Due to increased expression of DC-SIGN, B cells are suggested to
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be more susceptible to infection; however, only a partial block of KSHV infection by anti-DC-SIGN
antibodies suggests the role of additional binding receptors such as HS and/or other receptors in cells
in which DC-SIGN is used as binding and entry receptor. In addition to the integrins (α3β1, αVβ3, and
αVβ5), DC-SIGN has also been reported to be a KSHV entry receptor in the human monocytic cell line
THP-1 since blocking DC-SIGN reduces KSHV entry without affecting virus binding to these cells [57]
(Table 1). A recent study also suggests the role played by DC-SIGN as KSHV receptor in DC cells,
as inhibition of viral interaction with DC-SIGN strongly reduced KSHV entry as well as ~60% reduction
in KSHV-mediated STAT3 phosphorylation [76].

3.5. Role of Ephrin Type-A Receptor 2 (EphA2R) in KSHV Infection

EphA2R, a tyrosine kinase contributing to neo-vascularization and oncogenesis, plays a pivotal
role in KSHV infection of cells of endothelial and fibroblast origin. The receptor has been implicated
as a center for signaling events and control of macropinocytosis and clathrin dependent endocytosis
in different cells [77,78]. Use of soluble EphA2 ligand or preincubation of KSHV virions with soluble
EphA2, EphA2R knockdown and overexpression studies have revealed that KSHV glycoprotein gH
and gL interacts with EphA2R to gain entry into the cell (Table 1). The gH/gL binding with EphA2R
induces EphA2R phosphorylation and internalization of the virus, thus suggesting that EphA2R is a
specific cellular receptor for KSHV [61].

Studies highlight the important role of EphA2R during KSHV macropinocytosis in HMVEC-d
endothelial cells. KSHV binding and interaction with HS, various integrins and xCT first occurs in
the non-lipid raft (NLR) region. This interaction is followed by infection induced c-Cbl mediated
rapid translocation of KSHV along with α3β1 and αVβ3 integrins and xCT receptors to the LR region.
KSHV interacts with the LR associated EphA2R which then associates with and aids in the formation
of the active signaling complex between the integrins, c-Cbl and myosin IIA to induce the formation
of macropinocytic membrane blebs. EphA2R also binds to several signaling molecules, including
FAK, Src, and the c-Cbl-myosin IIA complex in the LRs to allow the retraction of membrane blebs
and macropinocytosis of KSHV into early macropinosomes which subsequently traffic towards the
nucleus for a productive infection [79]. EphA2R has also been shown to play a crucial role in KSHV
entry through clathrin mediated endocytosis in HFF cells [36].

4. KSHV Interactions with Cell Surface Receptors Induce a Cascade of Host Preexisting Signal
Pathways That Aid in Virus Entry and Trafficking

4.1. Early during Infection, KSHV Induces FAK, Src, PI3-K and Rho-GTPase to Facilitate Its Entry
and Infection

The interaction of KSHV glycoproteins with host cell binding and entry receptors triggers the
induction of intracellular tyrosine kinases to induce internalization which is supported by the fact
that inhibition of tyrosine phosphorylation blocked virus entry but not virus binding [19,20]. KSHV
interactions with the integrins induce autophosphorylation of Focal adhesion kinase (FAK) which then
interacts with downstream molecules such as Src, PI3-K and c-Cbl to modulate trafficking (Figure 1).

FAK (focal adhesion kinase) is a multi-domain non-receptor tyrosine kinase protein which
upon activation by ligand–integrin interaction induces several host cell processes such as adhesion,
proliferation, migration, endocytosis and apoptosis [80,81]. KSHV induces the signaling cascade within
minutes of infection by the autophosphorylation of FAK at tyrosine 397, a major phosphorylation
site required for the outside-in signaling of integrins [80,82]. This FAK induction has been
demonstrated in KSHV infected HMVEC-d, HFF, HEK293, and FAK+/+ mouse DU17 fibroblast
cells [43,44,47,63,64,83]. Purified KSHV gB also induces FAK autophosphorylation, and within minutes
of infection, KSHV-induced FAK colocalizes with cytoskeleton associated vinculin and paxillin proteins
as well as Src, PI3-K and RhoA-GTPase signal molecules in the infected cells [43,47].

Studies on FAK+/+ mouse DU17 fibroblasts and FAK−/− DU3 cells show that phosphorylation
of FAK and FAK induced signaling are important for KSHV entry [62,64] (Table 1). Although similar
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levels of KSHV binds to FAK−/− DU3 and FAK+/+ DU17, internalization of KSHV DNA is reduced by
>70% in FAK−/− DU3 cells, and FAK expression in FAK−/− DU3 augments viral DNA internalization.
In contrast, expression of FAK dominant negative mutant FAK-related nonkinase (FRNK) in FAK+/+

DU17 cells results in significant reduction in KSHV entry. KSHV infection induces the FAK related
Pyk2 phosphorylation and the Pyk2 molecule is known to compensate some of the functions of
FAK [61]. However, KSHV enters the Pyk2 positive FAK−/− DU3 cells in much lower levels and viral
entry is reduced in DU3 cells expressing the autophosphorylation mutant of Pyk2 [61]. These studies
demonstrate that as FAK activation is vital for many processes such as outside-in signaling, actin
modulation, and endocytosis, KSHV has evolved to take advantage of the signaling cascades initiated
by FAK to facilitate it entry and infection.

Induction of FAK and Pyk2 in turn results in the activation of Src kinases such as the Src,
Lyn, Fyn, Yes, Lck, Blk, and Hck leading into the activation of various signal pathways including
PI3-K and Rho-GTPases. The autophosphorylation site of FAK (Tyr 397) creates a binding site for
the SH2 domain of Src kinases, and the phosphorylated Src colocalizes with FAK and induces a
variety of intracellular signaling by phosphorylating PI3-K and other downstream targets such as
Rho-GTPases [63]. KSHV infection induces a vigorous Src response within minutes and colocalizes
with FAK. Src activation is required for the regulated entry of KSHV in target cells as KSHV fails to
enter Src-negative mouse fibroblast cells and LR disruption increases Src kinase activity and KSHV
entry [83]. The coordinated activities of Src and RhoA, and feedback activation of Src by RhoA is also
required for the internalization of KSHV in the epithelial HEK293 cells [63].

The membrane associated PI3-K is a heterodimeric protein that consists of the p85 regulatory
subunit and the catalytic p110 subunit, and activation of PI3-K by FAK/SRC and other pathways
results in the phosphorylation of p85 at the tyrosine residues. PI3-K activation is observed within the
first 5 min of KSHV infection which decreases after 15 min p.i. [64]. Inhibition of PI3-K by wortmannin
and LY294002 blocked virus entry which demonstrates that KSHV induces PI3-K to facilitate its entry
into the target cells [64]. PI3-K p85 phosphorylation induction by KSHV-gB is blocked by preincubation
of the protein with heparin as well as by the inhibition of Src with SU6656 while the induction of Src
phosphorylation by KSHV infection is not inhibited by the PI3-K inhibitors. These results demonstrate
that KSHV induced Src activation is upstream to the induction of PI3-K [47]. Absence of PI3-K
induction in FAK negative DU3 cells by KSHV and activation of p85 in FAK positive DU17 cells
demonstrate that FAK and Src play critical roles in PI3-K induction during infection and activation of
FAK, Src and PI3-K are all needed for virus entry.

KSHV induction of PI3-K in turn initiates the activation of Rho-GTPases and downstream effector
molecules as well as the adaptor cCbl protein all of which play roles in the endosome formation and
endosome trafficking of KSHV [63]. Rho-GTPase family RhoA, Rac, and Cdc42 proteins regulate
signal pathways that control the modulation of cytoskeleton, actin and membrane dynamics [80,84,85].
KSHV infection and addition of purified KSHV gB induce the cytoskeletal rearrangement in the target
cells that is dependent upon the induction of the FAK-Src-PI3-K-Rho-GTPase cascade which results
in the formation of actin dependent lamellipodia, filopodia and stress fibers in the cells [24,63,64,86].
Expression of dominant-negative RhoA molecule and inhibition of RhoA by Clostridium difficile toxin
B (CdTxB) results in inhibition of KSHV entry [63]. A sustained feedback activation of Src and the
regulation of KSHV endocytosis depends upon the infection induced RhoA and Dia-2 (a formin family
member) molecules [63].

4.2. Early during Infection, KSHV Induces c-Cbl, CIB1, EphA2R, Cas, and Crk to Facilitate Its Entry
and Trafficking

c-Cbl is a multifunctional adaptor protein with E3 ubiquitin ligase activity that regulates the signal
pathways by ubiquitinating target proteins to govern their cellular localization, phosphorylation, and
interaction with other signal molecules [87,88]. c-Cbl has been shown to regulate KSHV target cell
infection and the role of c-Cbl’s in promoting macropinocytosis was reported for the first time during
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KSHV macropinocytic entry in HMVEC-d cells [29,30]. In a PI3-K dependent manner, c-Cbl tyrosine
phosphorylation is induced by KSHV as early as 1 min p.i. in HMVEC-d cells, which is needed for
bleb formation, actin and myosin-IIA dependent plasma membrane protrusions, as well as for the
bleb mediated macropinocytosis of KSHV [88]. As early as 5 min p.i., KSHV infection induced the
recruitment of activated c-Cbl and myosin IIA to the bleb regions [29]. c-Cbl-myosin IIA interaction and
c-Cbl mediated myosin IIA ubiquitination is essential for bleb mediated macropinocytosis of KSHV in
HMVEC-d cells as knockdown of c-Cbl results in the inhibition of virus entry by macropinocytosis [29].

Soon after KSHV binding to the HS and integrins, infection induced PI3-K activates c-Cbl, which
in turn mediates differential ubiquitination of viral entry receptor to regulate the virus entry pathways
and their fate [30]. In HMVEC-d and HUVEC cells, the c-Cbl mediated ubiquitination of KSHV entry
receptor β1 integrins has been shown to initiate viral particle internalization [30,89]. Other studies
show that c-Cbl selectively monoubiquitinates KSHV entry receptors integrin β1 and β3 molecules to
facilitate KSHV macropinocytosis in HMVEC-d cells leading towards a successful infection whereas it
polyubiquitinates integrin β5 to direct clathrin mediated KSHV endocytosis and for directing KSHV
towards lysosomal degradative pathways [30]. In HFF cells, c-Cbl gets engaged with EphA2R to
facilitate polyubiquitination (K63 type) of the EphA2R to promote clathrin mediated endocytosis of
KSHV as siRNA against c-Cbl inhibits KSHV association with clathrin and the EphA2 receptor [79].
CIB1 (Calcium and integrin binding protein-1), a 22-kDa ubiquitously expressed protein, amplifies
the EphA2R associated signaling and promotes KSHV macropinocytosis [31]. Knockdown of CIB1
results in a significant reduction in KSHV-induced bleb formation, activation of EphA2R, Src, and
ERK1/2, macropinocytosis of virus particles, endosome trafficking, and viral gene expression [31].
CIB1 plays an important role in scaffolding EphA2R with cytoskeletal myosin IIA and alpha-actinin 4
during KSHV entry [31]. A significant increase in KSHV entry in HEK293 cells overexpressing CIB1
correlated with the reduction in KSHV entry by ~70% in CIB1 knockdown HMVEC-d cells. Studies
have shown that CIB1 is an enhancer of FAK, ERK1/2, and PAK1 kinase actions [90,91], and calcium
is an important divalent cation that regulates membrane blebbing, integrin signaling and vesicular
trafficking [92]. KSHV is also known to induce calcium immediately (~30 s) via Src induction and
Src association with plasma membrane associated L-type calcium channel Cav1.2 after infection in
HUVEC cells [93]. Calcium also plays an important role in herpes simplex virus and Coxsackie virus
entry associated signaling events [94,95]. Further studies are essential to decipher the potential role of
calcium influx during CIB1 mediated cell signaling which may further enhance understanding of the
complex KSHV entry process in host cells.

Upon its activation (phosphorylation), host cell scaffold docking p130Cas protein associates with
several adaptor-effector complexes. Yersinia pseudotuberculosis protein invasin interacts with cell surface
β1 integrin to induce FAK and Src that recruits p130Cas and Crk which in turn activates Rac leading
to actin-mediated phagocytosis [96]. During adeno virus infection, αVβ5 integrin-PI3-K-p130cas has
been shown to facilitate viral endocytosis [97]. Studies demonstrate that p130Cas plays a critical role
during KSHV infection in HMVEC-d cells [65]. KSHV integrin α3β1 and αVβ3 interaction induced
signal molecules promote the recruitment of CIB1, p130Cas, and Crk molecules to the integrin-KSHV
interacting sites on the NLR regions of the plasma membrane. Virus interaction with EphA2R in the
LR region induces the association of EphA2R with CIB1 resulting in the phosphorylation of p130Cas,
assembling of the EphA2R-CIB1-c-Cbl-Crk signalosome which in turn activates the GEF-C3G (guanine
nucleotide exchange factor phospho-C3G) molecule which probably directs the GTPase signaling to
accelerate the KSHV containing macropinosome trafficking (Figure 1). Live cell imaging of KSHV
infection of control and p130Cas knockdown HMVEC-d cells show that in the absence of p130Cas,
KSHV is directed toward lysosomal degradation and thus demonstrating the critical role of p130Cas in
KSHV infection [65].
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5. Lipid Rafts (LR) of Infected Cells Regulate KSHV Entry and Trafficking

LRs are dynamic assemblies of sphingolipids (sphingomyelin and glycosphingolipids) and
cholesterol in the outer leaflet of the plasma membrane involved in major signaling events by
promoting receptor clustering and various protein-protein and protein-lipid interactions [98]. Studies
show that the LRs play a critical role in KSHV de novo infection. KSHV induced activated c-Cbl
induces the selective translocation of KSHV along with α3β1 and αVβ3 integrins and xCT receptors
into the LR region of the plasma membrane to associate and activate the entry receptor, EphA2R,
resulting in the enhancement of EphA2 kinase action that amplifies the downstream signals [30,79].
Simultaneously, CIB1 is also translocated to the LR to aid the EphA2R initiated signal amplification
and sustains EphA2R phosphorylation, and finally associating with Src, c-Cbl, PI3-K, alpha-actinin 4,
and myosin IIA to enhance EphA2R crosstalk with the cytoskeleton to recruit macropinosome complex
formation [31]. Disruption of LRs by methyl-beta-cyclodextrin (MβCD) or nystatin did not affect
KSHV binding but resulted in an increase in KSHV entry, a significant reduction in the nuclear entry of
KSHV genome and therefore reduced viral gene expression. Further studies revealed that disruption
of LRs increases the induction of p-Src by KSHV without affecting FAK or ERK1/2 activation but
greatly reduces the activation of PI3-K, Rho-GTPase, and NF-κB, and subsequently abolishing RhoA
mediated acetylation and microtubule aggregation which are important events during entry stages of
infection, trafficking of KSHV in cytoplasm and nuclear delivery of viral genome [83]. These studies
together demonstrate the role of LRs during KSHV entry in HMVEC-d cells and suggest that LRs serve
as the regulatory hub platform for KSHV interactions with entry receptors and the infection induced
signalosome assembly [31].

6. KSHV Induces Signal Pathways to Regulate Its Trafficking in the Cytoplasm Early
during Infection

6.1. KSHV Infection Induces RhoA-GTPase to Modulate the Acetylation of Microtubules to Facilitate
Intracellular Capsid Movement

KSHV entry and trafficking into the target cell is a rapid process, as it penetrates the host cytosol
to deliver its genome into the nucleus as early as 15 min p.i. which peaks by 90 min p.i. [24,63,64,99].
KSHV utilizes the host cell microtubule network which is tightly associated with Rho-GTPases.
RhoA, Rac, and Cdc42 Rho-GTPases regulate a variety of signaling pathways and consequently
different cellular processes including cytoskeleton rearrangement and morphological changes. KSHV
interactions with cell surface integrins induces PI3-K-Rho-GTPase dependent modulation of actin
leading into the formation of filopodia, lamellipodia and stress fibers (RhoA) in HMVEC-d, HUVEC
and HFF cells [64,99,100]. Dominant negative RhoA-GTPase expression and pretreatment of cells with
a specific inactivator of Rho-GTPases, Clostridium difficile toxin B (CdTxB), significantly blocks KSHV
entry (Table 1). Studies demonstrating the inhibition of Src by CdTxB and inhibition of RhoA by Src
inhibitors suggest that KSHV-induced Src is involved in RhoA activation, which in turn is involved in
a feedback sustained activation of Src [64,99].

KSHV infection induces the aggregation and thickening of microtubules (MT) in the infected
cells [99]. KSHV capsids colocalize with the microtubules which is eliminated by blocking with
PI3-K inhibitor which blocks the Rho-GTPases and by the nocodazole mediated destabilization of
microtubules [99]. It is interesting to note that the inactivation of Rho-GTPases by CdTxB also blocked
microtubular acetylation and subsequently the delivery of viral DNA to the nucleus. These studies
demonstrate that KSHV infection induced Rho-GTPase is involved in microtubule acetylation and
aggregation [99]. Expression of the constitutively active RhoA mutant increases the nuclear delivery
of KSHV genome and, in contrast, expression of a dominant negative mutant of RhoA results in
the decrease of KSHV genome nuclear delivery [99]. Activation of Rho-GTPases by Escherichia coli
cytotoxic necrotizing factor results in an augmented nuclear delivery of KSHV DNA [99].
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KSHV capsid is rapidly transported towards the nucleus on the RhoA-GTPase acetylated
microtubules via the dynein proteins. Inhibition of dynein motor proteins by sodium
orthovanadate blocked the nuclear delivery of KSHV genome and thus viral gene expression
(infection) [99]. RhoA-GTPases activate Diaphanous 1 and 2 molecules leading to rearrangement
of the cytoskeleton [99]. KSHV infection induces the activation of Dia-2 via RhoA-GTP and Dia2
co-immunoprecipitates and colocalizes with activated Src in the infected cells, which are inhibited by
Src inhibitors [99]. Reduction of KSHV entry in cells expressing dominant negative RhoA demonstrate
that activated RhoA-dependent Dia2 acts as a link between RhoA and Src in infected cells and mediates
the sustained Src activation and that KSHV-induced Src and RhoA play roles in facilitating not only in
virus entry but also in the nuclear delivery of viral DNA via the acetylation of microtublues.

Together with the studies of LR inhibition abolishing the KSHV induced PI3-K and
Rho-GTPase activation, RhoA mediated acetylation and microtubule aggregation, nuclear entry
of viral genome and viral gene expression demonstrate that KSHV has evolved to induce the
integrin-EphA2R-signal pathways not only to modulate endocytic entry, but also to modulate the
microtubule acetylation/stabilization and thus to promote the rapid trafficking of viral capsids
toward the nucleus [99]. These studies also demonstrate for the first time the modulation of the
microtubule dynamics by virus-induced host cell signaling pathways to aid in the trafficking of viral
DNA containing capsid.

Confocal microscopy has revealed that the KSHV cargos internalized due to the synergistic effect
of EphA2R and CIB1 in HMVEC-d cells colocalizes with Rab5 in the early macropinosome while the
shRNA against EphA2R leads to the abolishment of KSHV trafficking into Rab5 positive endosomes.
A similar finding has also been reported in HFF cells which confirm the strict requirement of these
KSHV trafficking pathways [36].

Another study shows that reactive oxygen species (ROS) is induced by KSHV early during
infection via its binding to the cell surface receptors and pretreatment of the virus with soluble
heparin abolished ROS induction [101]. The ROS production also plays an important role in the
entry of the virus as the use of ROS inhibitor N-acetyl cysteine (NAC) blocked KSHV infection
by blocking virus entry, translocation of αVβ3 integrin into lipid rafts, actin-dependent membrane
perturbations, membrane bleb formation, and phosphorylation of the EphA2R, FAK, Src, and Rac1,
and in contrast, treatment with H2O2 induced the activation of EphA2R, FAK, Src, and Rac1 [102].
This study demonstrates that KSHV induces ROS to promote its entry and to amplify the initially
induced host signal cascade (Figure 1). One of the downstream targets of ROS is nuclear factor
E2-related factor 2 (Nrf2), a transcription factor with important anti-oxidative functions. It has been
shown that KSHV induces Nrf2 through complex mechanisms involving multiple signal molecules,
which is important for its ability to manipulate host and viral genes, creating a microenvironment
favorable to KSHV infection [103].

6.2. KSHV Utilizes the ESCRT Complex Proteins for Its Entry and Trafficking

The endosomal sorting complexes required for transport (ESCRT) proteins include ESCRT-0, -I,
-II, and -III, which together with the VPS4 ATPase function in a sequential manner to mediate the
endosomal trafficking and sorting of internalized and ubiquitinated receptors [104]. Since the initial
discovery that HIV-1 utilizes the ESCRT pathway to bud from the plasma membrane [105,106], many
other viruses have been shown to utilize this pathway for their egress. Apart from viral egress, the
role of ESCRT proteins has also been documented in virus entry. For example, a recent publication
demonstrates the role of Tsg101 (ESCRT-I component), Vps24 (ESCRT-III component), and Vps4B
(ATPase component) during Crimean-Congo hemorrhagic fever virus entry into target cells [107].
Studies on Rota virus [108] and old world arena viruses [109] also reveal the important roles of these
proteins in virus entry and infection.

The ESCRT-0 component Hrs is shown to play an important role during KSHV entry in HMVEC-d
cells by macropinocytosis [32]. Knockdown of Hrs results in a significant inhibition of KSHV entry
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and subsequent gene expression in HMVEC-d cells. IFA and proximity ligation assay (PLA) also
demonstrate for the first time that Hrs translocates from the cytosol to the plasma membrane of KSHV
infected cells where it modulates the local pH change to facilitate KSHV macropinocytosis [32].

A recent study demonstrates that the ESCRT-I complex protein Tsg101 plays an important role
during KSHV trafficking. Tsg101 interacts with all the crucial group of signal proteins that are known
to be associated with KSHV macropinocytosis and associates with trafficking of the KSHV via Rab5
and Rab7 associated early and late endosomes, respectively [33]. siRNA mediated knockdown reveals
that Tsg101 did not affect KSHV entry but significantly inhibits the transition of KSHV from early
to late endosomes and consequently significant reduction in the nuclear delivery of KSHV genome
leading to a drastic reduction in viral gene expression [33] (Table 1). The fate of the virus and further
studies are needed to fully elucidate the role of Tsg101 and other ESCRT complex proteins during
KSHV entry and productive infection.

7. Early during Infection, KSHV Induces the Signal Pathways to Regulate the Host Transcription
Factors NF-κB, ERK1/2 and Nrf2 to Facilitate Infection

KSHV viral genome entry into the nucleus is a rapid process and viral genome enters within
15 min of infection of HMVEC-d and HFF cells [57], and viral gene expression starts between 15 and
30 min p.i. Studies with live and UV-inactivated KSHV suggests the cell surface receptor interaction
initiates the induction of ERK1/2 and NF-κB during the early time of infection and KSHV viral gene
expression is required for sustained induction [110,111]. To initiate its gene expression as well as
modulate various host genes, KSHV utilizes its cell surface receptor interactions to induce a robust
level of NF-κB, ERK1/2 and Nrf2 transcription factors. ERK1/2 induction can be observed as early
as 5 min p.i. by high and low multiplicity of infection of both live and UV-inactivated KSHV in the
absence and presence of fetal calf serum in the cell culture medium, and PI3-K and PKC-ζ are the
upstream mediators of ERK1/2 induction pathway [64]. KSHV infection also induces the ERK1/2
regulated host transcription factors c-Jun, STAT1, MEF2, c-Myc, ATF-2, and c-Fos early during infection.
MEK inhibitor U0126 inhibits viral gene expression [110] as well as the activation of host c-Fos, c-Jun,
c-Myc, and STAT1 molecules.

KSHV also induces NF-κB at 5 min p.i. in HMVEC-d and HFF cells with rapid translocation
of p65-NF-κB into the infected cell nuclei which is blocked by Bay11-7082 inhibiting the IκB
phosphorylation [111]. Sustained moderate levels of NF-κB induction persist subsequently with
p38 MAPK activation occurring at later time points. Inhibition of NF-κB did not affect virus entry but
blocks Jun D, Jun B, phospho-c-Jun, cFos, and FosB activation as well as viral gene expression [111].
Studies demonstrate that the nuclear factor E2-related factor 2 (Nrf2), a transcription factor, functions
as an important host factor involved in the establishment of de novo KSHV infection. Studies also
show that ROS is essential for Nrf2 activation during early stages of KSHV infection of HMVEC-d
cells and Nrf2 plays a crucial role in the viral gene expression [103,112]. Nrf2 knockdown or inhibition
with the chemical Brusatol blocks viral gene expression [112].

Collectively, these studies demonstrate that KSHV interaction with the cell surface receptors
induces ERK1/2, NF-κB and Nrf2 very early during infection for the initiation of viral gene expression
and host cell genes to undoubtedly overcome the host cell restrictions on viral gene expression.

8. Nuclear Delivery of KSHV dsDNA Genome Induces Host Nuclear Innate Responses

Entry of KSHV’s dsDNA genome into the nucleus of the infected cells elicits host innate responses
and we discuss briefly the responses here.

8.1. Nuclear DNA Damage Response (DDR) Induction Early during KSHV Infection

The DNA damage response (DDR) is an extensive regulatory signaling mechanism present in
all mammalian cells to sense and repair different types of cellular DNA damage [113]. DDR acts as a
signal transduction cascade, and lesions in the DNA are detected by the DDR sensor proteins, which
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in turn activate kinases, leading to amplification of the signals through a series of downstream effector
molecules. The host’s repair machinery, in addition to the cellular DNA damage, also recognizes the
exogenous genetic material, such as the viral DNA genome entering the nucleus during infections.
However, several studies show that many DNA viruses also manipulate the key signaling events of
the DDR pathway for their own advantage [114].

KSHV modulates DDR signaling during de novo infection of primary endothelial cells. Viral
genome entry into the nuclei, as early as 13–30 min p.i., induces the phosphorylation of DDR-associated
proteins such as ataxia telangiectasia mutated (ATM) and H2γX, and H2γX colocalizes with the KSHV
genome [115]. Inhibition of ATM kinase activity and siRNA mediated knockdown of H2AX results in
>80% reduction in the viral gene expression demonstrating a role for the DDR proteins in the viral life
cycle early during infection [115].

8.2. Nuclear Innate Immune Response Induction Early during KSHV Infection

Previous studies have shown that cytoplasmic foreign molecules, including pathogens and
dsDNA, are recognized by cytoplasmic sensors such as NLRP3 and AIM2, which results in the
homotypic sensor interactions with the adaptor protein ASC which in turn interacts with procaspase-1
(the inflammasome platform) to induce caspase-1 activation, cleavage of pro-IL-1β and IL-1β cytokine
maturation. Studies with KSHV for the first time demonstrate that the innate sensing resulting
in inflammasome formation also occurs in the nucleus. Soon after viral genome entry into the
nucleus, KSHV genome is recognized by the interferon gamma-inducible protein 16 (IFI16) [116].
IFI16 is a predominantly nuclear protein involved in transcriptional regulation. Recognition of
nuclear replicating episomal KSHV, EBV, and HSV-1 genomes by IFI16 results in the formation of the
IFI16-ASC-procaspase-1 inflammasome in the nucleus, which is transported to the cytoplasm leading
into caspase-1 activation and pro-IL-1β/IL-18 cleavages [108–110]. Independent of ASC, KSHV and
HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm, phosphorylation
and nuclear translocation of IRF3, IFN gene expression and IFN-β production [116]. These studies
show that IFI16 acts as the nuclear pathogen sensor.

A recent study demonstrated that the host cell BRCA1 protein, a transcription factor and DNA
damage response protein, complexed with IFI16 regulates the nuclear innate sensing of KSHV, EBV
and HSV-1 genomes by IFI16 and IFI16-ASC-procaspase-1 inflammasome formation [117]. The study
also shows that BRCA1 is responsible for the cytoplasmic IFI16-STING signalosome activation and
induction of IFN-β during de novo KSHV infection [117]. A concurrent study also shows that nuclear
to cytoplasmic trafficking of IFI16 during herpesvirus infection is Ran-GTP dependent and mediated
by the acetylation of IFI16 by the histone acetyl transferase p300. The acetylation of IFI16 is essential for
the IFI16-ASC interaction and inflammasome activation. This post-translational modification of IFI16
is also essential for the cytoplasmic association of IFI16 with STING resulting in IRF-3 phosphorylation,
nuclear pIRF-3 localization and interferon-β production [118]. Further studies are needed to define
how KSHV overcomes these innate nuclear responses.

9. Conclusions

KSHV has successfully evolved with a striking survival strategy that reflects the biological
complexity of the virus and host interactions. The studies summarized here demonstrate that for a
successful infection of endothelial and fibroblast cells, KSHV has evolved to interact with key cell
surface molecules which not only initiate its infection but also set the stage: (a) for the induction of
various host cell signal pathways to coordinate and regulate the various endocytic mechanisms such
as macropinocytosis and clathrin mediated endocytosis to aid in the rapid entry of viral particles into
different cell types; (b) to modulate the various host cell functions for its speedy traffic in the dense
cytoplasm towards the nucleus, including the efficient use of the host ESCRT machinery to commute
through the cytoplasm; and (c) to induce the cytoplasmic ERK1/2, NF-κB and Nrf2 transcription
factors very early during infection to initiate viral gene expression soon after the entry of viral genome
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into the nucleus. Further studies are needed to explore the viral strategies to overcome the host innate
immune response molecules during entry and nuclear delivery of the viral genome. As these studies
demonstrate that KSHV entry and infection are due to the combined effects of various receptors,
associated signaling, cytoskeletal proteins and adaptor molecules, these provide a clear framework for
further exploration of combinations of drugs and/or small molecules that can simultaneously target
the receptors and the signal molecules to inhibit the target cell infection by KSHV.
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