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Background: In previous questionnaire surveys of miners, sleep disorders

were found among underground workers. The influence of the special deep-

underground environment and its potential mechanism are still unclear.

Therefore, this study intends to utilize LC-MS metabolomics to study

the potential di�erences between di�erent environments and di�erent

sleep qualities.

Methods: Twenty-seven miners working at 645–1,500m deep wells were

investigated in this study, and 12 local ground volunteers were recruited as

the control group. The Pittsburgh Sleep Quality Index (PSQI) was used to

examine and evaluate the sleep status of the subjects in the past month, and

valuable basic information about the participants was collected. PSQI scores

were obtained according to specific calculation rules, and the corresponding

sleep grouping and subsequent analysis were carried out. Through liquid

chromatography-mass spectrometry (LC-MS) non-targeted metabolomics

analysis, di�erences in metabolism were found by bioinformatics analysis in

di�erent environments.

Results: Between the deep-underground and ground (DUvsG) group, 316

di�erential metabolites were identified and 125 di�erential metabolites were

identified in the good sleep quality vs. poor sleep quality (GSQvsPSQ)

group. The metabolic pathways of Phenylalanine, tyrosine and tryptophan

biosynthesis (p = 0.0102) and D-Glutamine and D-glutamate metabolism (p =

0.0241) were significantly enriched in DUvsG. For GSQvsPSQ group, Butanoate

metabolism was statistically significant (p = 0.0276). L-Phenylalanine, L-

Tyrosine and L-Glutamine were highly expressed in the deep-underground

group. Acetoacetic acid was poorly expressed, and 2-hydroxyglutaric acid was

highly expressed in good sleep quality.

Conclusions: The influence of the underground environment on the

human body is more likely to induce specific amino acid metabolism

processes, and regulate the sleep-wake state by promoting the production of

excitatory neurotransmitters. The di�erence in sleep quality may be related

to the enhancement of glycolytic metabolism, the increase in excitatory
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neurotransmitters and the activation of proinflammation. L-phenylalanine, L-

tyrosine and L-glutamine, Acetoacetic acid and 2-hydroxyglutaric acid may be

potential biomarkers correspondingly.
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Introduction

The consumption of the earth’s shallow resources has been

accelerated due to the rapid population growth, which brought

unprecedented challenges to the sustainable development (1,

2). Researchers worldwide are progressed to make efforts in

directions, such as space, underground, deep sea, or even the

pole, where researches and explorations are conducted for

survival and constant development (1, 3, 4). However, little is

known with regard to the underground biology, especially in a

deep environment over 1,000 m.

Thus far, deep-underground medicine (DUGM) was put

forward by an expert team led by Academician Xie Heping after

full discussion and demonstration from 2015 to 2017 (2). Deep-

underground medicine refers to study of the physiological,

pathological and psychological effects of living organisms

in deep underground, especially those with behavioral-

cognitive ability, and their response mechanism under different

underground environmental conditions. Furthermore, DUGM

also contains the coping strategies of harmful factors, as well

as the safe and efficient use of underground beneficial factors

to serve human social activities. The DUGM integrated the

research data collected from the open deep-underground space,

tunnels and the simulation capsule (1, 2).

Previous studies have confirmed the changing patterns

of various living organisms in this special deep-underground

environments, including protozoa (Paramecium tetraurelia and

Synechococcus lividus) (1, 5), Saccharomyces cerevisiae (6),

mammalian cells (V79, FD-LSC-1) (4, 7), and Drosophila

melanogaster (8, 9). Planel, Kawanishi, and Castillo described

that cell proliferation was slowed down (5, 10, 11). Morciano

found that Drosophila melanogaster’s life span was prolonged

and its reproductive capacity was decreased (8). More recently,

Antonelli and Carbone pointed out that the cell’s response

ability to DNA damage was reduced (12–14). However, follow-

up studies reported a dissimilar phenomenon under below

background radiation (BBR). Wadsworth et al. (15) observed no

significant effect on growth of Bacillus subtilis and Escherichia

coli. In addition, Van Voorhies et al. (16) depicted faster rates

of larval growth and early egg laying in C. elegans in the BBR

environment. It seems that the deep-underground environment

can inhibit cell proliferation, enhance antioxidant capacity (5,

10–14), and somehow promote larval growth and early laying

(16), or it may eventually have no obvious influence (15).

To explain this inconsistency, the biological effects of deep-

underground environments still need further study.

The DUGM involves not only cells, animals and plants,

but also human beings themselves, which are naturally the

core of this subject. Miners are the pioneers in the current

deep-underground environment (17). At present, research

mainly focuses on the occupational risk factors or subjective

investigation of miners (17–22). In previous questionnaire

surveys of miners in deep-underground wells, we noticed

that 68–76% of miners complained about sleep disorders

(23, 24), which was notably related to complicated underground

environmental factors. The underground environmental traits

include low background radiation, high temperature, high

humidity, high atmospheric pressure, high carbon dioxide

concentration, distinctive rock composition (high radon

concentration) (1, 2, 25), and lower oxygen concentration

(26), and may also involve environmental microorganisms

(27, 28) or other unknown features. Other reports about sleep

disorders in miners also confirmed our findings (29–31).

However, there has been no previous study on the influence of

sleep quality combined with a deep-underground environment

on the changes in metabolites in miners. With this aim,

we conducted metabolomics of urine obtained from deep

miners of the Jiapigou Minerals Limited Corporation of China

National Gold Group Corporation (CJEML) to explore potential

biological effects and possible sleep-related metabolic diversities

and mechanisms.

Materials and methods

Study subjects

Twenty-seven subjects worked in a maximum depth of

1,500m fromCJEMLwere included in this study duringOctober

2019, whereas 12 local aboveground workers were recruited

as control.

The volunteers in the deep-underground group (DU)

required those who had been working underground for at least 1

month, and the volunteers in the aboveground group required

that they had not been in the underground environment for

nearly 1 month or never. The exclusion criteria were that the

participating miners failed to complete the questionnaire and
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collect urine samples. Written informed consent was obtained

from all participants, and all personally identifiable information

was concealed.

Questionnaire survey

The Pittsburgh Sleep Quality Index (PSQI) (32), was

used to investigate the actual sleep status of the subjects

in the past month. In this study, two investigators received

standardized training in advance, and were responsible for

the corresponding questionnaire survey. The questionnaire

collected essential information about the characteristics of

people in the above ground and deep-underground groups,

including age, depth of the workplace, duration and other

basic information related to working environment and sleep

quality. After collecting all relevant information of volunteers,

all questionnaire information was collated and summarized, the

PSQI score was obtained according to specific calculation rules,

and corresponding sleep grouping and subsequent analysis were

performed. The PSQI was an important basis for the subsequent

analysis and grouping of this study.

Urine collection

The first morning urine samples of volunteers were collected

in sterile containers of approximately 30 to 50ml before their

underground work. Then, the samples were temporarily stored

in a 4◦C low-temperature refrigerator, and centrifuged in a

4◦C low-temperature centrifuge at 1,000 revolutions per minute

(rpm) for 20min, and then the supernatant was stored in a 15ml

centrifuge tube. Each sample was split into two centrifuge tubes.

Subsequently, the samples were immediately stored in dry ice

and stored in a −80◦C ultralow temperature refrigerator. Urine

was used to conduct liquid chromatography-mass spectrometry

(LC-MS) non-targeted metabolomics analysis.

UPLC-triple-TOF-MS analysis

The metabolomics analysis was performed by OE biotech

Co., Ltd. (Shanghai, China). The analytical instrument used

in this experiment was a LC-MS system composed of an AB

ExionLC ultrahigh performance liquid chromatograph (UPLC,

Waters Corporation, Milford, USA) in tandem with an AB

Triple TOF 6,600 high resolution mass spectrometer (AB SCIEX

Framingham, MA).

The combined system was used to analyze the metabolic

profiling in both electrospray ionization (ESI) positive (ESI+)

and ESI negative (ESI−) ion modes. An ACQUITY UPLC BEH

C18 column (100mm× 2.1mm, 1.7µm) was employed in both

positive and negative modes. Data acquisition was performed

in full scan mode (m/z ranged from 70 to 1,000) combined

with information-dependent acquisition (IDA) mode. For IDA

analysis, the range of m/z was set as 50–1,000, and the collision

energy was 30 eV. The quality control samples (QCs) were

injected at regular intervals (every 8 samples) throughout the

analytical run to provide a set of data from which repeatability

can be assessed.

Data preprocessing

The LC-MS raw data obtained were analyzed by Progenesis

QI software (Waters Corporation, Milford, USA) with the

following parameters. Precursor tolerance was set at 5 parts

per million (ppm), fragment tolerance was set at 10 ppm, and

retention time (RT) tolerance was set at 0.02min. Internal

standard detection parameters were deselected for peak RT

alignment, isotopic peaks were excluded for analysis, and noise

elimination level was set at 10.00, and the minimum intensity

was set to 15% of the base peak intensity. The Excel file was

obtained with three dimensional data sets including m/z, peak

RT and peak intensities, and RT-m/z pairs were used as the

identifier for each ion. By removing any peak with a missing

value (ion strength = 0) exceeding 50% in the sample, the

resulting matrix was further reduced. The internal standard was

used for data quality control (reproducibility).

Metabolites were identified by Progenesis QI (Waters

Corporation, Milford, USA) Data Processing Software, based on

public databases (such as https://www.hmdb.ca/, https://www.

lipidmaps.org/) and self-built databases of OE biotech Co., Ltd.

(Shanghai, China).

The raw data from OE biotech Co., Ltd. (Shanghai, China)

were further processed under strict conditions. Ion peaks with

missing values (ion strength = 0) exceeding 20% in the group

were deleted, and then metabolites lower than the detected value

or undetected were replaced with the lowest concentration. In

addition, the identified compounds were screened according to

qualitative score of the compounds. The screening standard was

40 points (out of 60 points). If the score was <40 points, the

qualitative results were considered inaccurate and eliminated.

Furthermore, the coefficient of variation of each metabolite or

characteristic ion peak in QC samples was limited to < 30%.

Finally, the ESI+ and ESI− ion peak data were merged into a

new matrix, which was the basis of all subsequent analyses.

Statistical analysis

Raw data were further analyzed by R (v.4.0.5) and SIMCA

14.1. Principal component analysis (PCA) and orthogonal

partial least-squares-discriminant analysis (OPLS-DA) were

carried out to visualize the metabolic alterations among

experimental groups after unit variance (UV) scaling. Hotelling’s
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T2 range, shown as an ellipse in score plots of the models,

defined the 95% confidence interval of the modeled variation.

Variable importance in projection (VIP) ranks the overall

contribution of each variable to the OPLS-DA model, and

those variables with VIP larger than 1 are considered relevant

for group discrimination. A permutation test (n = 200) was

conducted to guard against overfitting. The quality of the model

was evaluated by its explicative (R2) and predictive (Q2) abilities.

First, a test of normality was conducted to determine the

distribution of the data. Then the Mann-Whitney U test was

applied since the assumption of normality was questionable.

The differential metabolites were selected on the basis of the

combination of a statistically significant threshold of VIP values

obtained from the OPLS- DAmodel and p-values from a Mann-

Whitney U test, where metabolites with VIP values larger than

1.0 and p-values < 0.05 were considered potential differential

metabolites. Since the potential “information-rich” molecular

features were preserved in this study, the unadjusted p-value was

finally used (33, 34). The final qualified differential metabolites

also needed tomeet the condition of fold change (FC) larger than

1.2 or FC < 0.83.

Potential biomarker identification

The identification of those ion peak characteristics selected

by the OPLS-DA analysis was conducted by querying their exact

mass against those presented in the online Human Metabolome

Database (HMDB) v.4.0 (http://www.hmdb.ca/), Lipid Maps

Database (https://www.lipidmaps.org) and the Metlin Database

(https://metlin.scripps.edu). The following adducts were

included: [M+H], [M+K], [M+Na], and [M+NH4] for ESI+

ionization mode, and [M-H] as well as [M+FA-H] for ESI−

ionization mode. Neutral H2O loss was also taken into account

for both ionization modes. Metabolite annotation was also

supported by comparing the obtained LC-MS fragmentation

spectra with those spectra experimentally proposed in these

databases. Finally, the potential metabolic biomarkers were

determined by combining the statistical significance of

differential metabolites with the enrichment of the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway.

Results

Basic characteristics of the study subjects

Thirty-nine participants were recruited in this study,

including 27 deep-underground workers as the experimental

group and 12 ground volunteers as the control group. Table 1

illustrates the clinical characteristics of these study subjects.

There was no significant difference in age, sex, PSQI score,

alcohol intake, complaints of sleep disorder, self-evaluation

of sleep quality, sleep time, other diseases, or night shift. In

addition, different depths of the underground workplace were

initially considered, but most of them (92.6%) were below

1,200m. More importantly, the distribution of sleep quality

was shown according to the PSQI score, and sleep quality was

divided into two grades: good sleep quality (0–5), and poor sleep

quality (>5).

Metabolomics analysis

The original dataset (including ESI+ and ESI−) contains

6,181 measured variables. According to the strict data

preprocessing method mentioned in the previous section,

the following new matrices were obtained, including 1,389

metabolites. Different groups were compared to determine

the influence of different environments and sleep quality

on metabolites.

Urine metabolic profile and di�erential
metabolite expression

Quality control samples assembled an exceedingly well-

defined cluster as presented in the PCA score plot andHotelling’s

T2. However, it should be noted that there were 4 outliers in the

PCA of environmental factors, and 3 outliers in the PCA of sleep

quality. Considering the potential information and sample size,

we finally choose to retain the abnormal results. The results of

PCA are shown in Figures 1A,B, and the results of OPLS-DA

are shown in Figures 2A,B. OPLS-DA revealed a clear separation

between deep-underground and ground and a clear separation

between good sleep quality and poor sleep quality. At the same

time, a 200 times permutation tests and the cross validation

(CV) method were used to estimate the quality of the model.

The fitting qualities of the two groups were both satisfactory.

Parameters of OPLS-DA were observed, R2(Y) = 0.873, Q2(Y)

= 0.554 and CV-ANOVA p < 0.001 in the deep-underground

vs. ground (DUvsG) group, and parameters R2(Y) = 0.964,

Q2(Y) = 0.593 and CV-ANOVA p < 0.01 in the good sleep

quality vs. poor sleep quality (GSQvsPSQ) group. The detailed

parameters of the permutation test, R2(Y)-intercept and Q2(Y)-

intercept, are also shown in Figures 2C,D. R2(Y) measures the

goodness of fit while Q2(Y) measures the predictive ability of

the model (35). Q2(Y) > 0.5 is admitted for good predictability,

and Q2(Y)-intercept < 0.05 is considered that the model is

not overfitted.

Qualified differential metabolites required VIP > 1.0, p <

0.05, and FC> 1.2 or FC< 0.83. Visualization of the p-value and

FC value was achieved by volcano plots, which was conducive to

screening of differential metabolites. As shown in Figures 3A,B,

we found 316 differential metabolites in the DUvsG group and

125 differential metabolites in the GSQvsPSQ group. The results
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TABLE 1 Basic characteristics of participants.

Ground Deep-underground p-value

(N = 12) (N = 27)

Age, ya 41.17± 5.01 43.0± 7.73 0.458

Male sex, N (%) 12 (100%) 27 (100%) -

Depth, N (%)

0m 12 (100%) - -

600–1,200m - 2 (7.4%) -

>1,200m - 25 (92.6%) -

PSQIc 0.957

0–5 5 13 -

6–10 4 7 -

11–15 2 4 -

>15 1 3 -

Smoker, N (%) 2 (16.7%) 13 (48.1%) 0.063

Drinker, N (%) 5 (41.7%) 18 (66.7%) 0.133

Complaints of sleep disorders 3 (25.0%) 7 (25.9%) 0.640

Self-evaluation of sleep quality 0.770

Very Good 3 6 -

Good 8 16 -

Poor 1 4 -

Very poor - 1 -

Sleep time (h)b 6.88± 1.48 6.93± 1.99 0.937

Other disease, N (%) 2 (16.7%) 1 (3.7%) 0.219

With night duty, N (%) 2 (16.7%) 13 (48.1%) 0.063

a,bThe data were normally distributed, and the mean± standard deviation (SD) was adopted.
cPSQI refers to the Pittsburgh Sleep Quality Index.

of differential metabolites among groups are shown in Table 2.

When all differential metabolites were combined, we found

that 11 metabolites were repeatedly observed between DUvsG

and GSQvsPSQ, but these metabolites did not appear in the

KEGG enrichment pathway. It seems that there was no common

pathway between the two groups.

To show the relationship between samples and the

differential metabolites as intuitively as possible, hierarchical

clustering was adopted for all significant differential metabolites.

According to the descending order of FC values, a total

of 30 differential metabolites at both ends were analyzed.

The results of the heatmap are shown in Figures 4A,B.

The Pearson product-moment correlation coefficient, also

known as the Pearson correlation coefficient, was used to

measure the linear correlation between two quantitative

variables. Correlation analysis directly showed the correlation

and compactness of significant differential metabolites (only

30 metabolites are displayed in the figure). Figures 5A,B

shows the relationship of differential metabolites in each

paired group.

Pathway analyses

Metabolic pathway enrichment analysis was based on

the KEGG database, which was favorable for comprehending

the metabolic pathway mechanism involved in differential

metabolites. A hypergeometric test was used to determine

the pathway items that were significantly enriched in

the metabolites with significant expression differences

compared with the whole background. Figure 6 shows

the results of KEGG pathway analysis by column and

bubble chart.

According to the ascending order of p-values calculated

by hypergeometric analysis, the metabolic pathways of

Phenylalanine, tyrosine and tryptophan biosynthesis (p =

0.0102) and D-Glutamine and D-glutamate metabolism

(p = 0.0241) were significantly enriched between

the deep-underground and ground groups (DUvsG).

For GSQvsPSQ group, Butanoate metabolism was

statistically significant (p = 0.0276). The details are listed

in Table 3.
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FIGURE 1

(A) PCA of the environmental factor group (DUvsG), DUvsG refers to the group “Deep-underground vs. ground,” and QC refers to the “quality

control” samples. PCA refers to the principal component analysis; (B) PCA of the sleep quality group (GSQvsPSQ), GSQvsPSQ refers to the group

“Good sleep quality vs. poor sleep quality,” and QC refers to the “quality control” samples. PCA refers to the principal component analysis.
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FIGURE 2

(A) is the OPLS-DA of environmental factors group (DUvsG), and DUvsG refers to the group “Deep-underground vs. ground”; (B) is the OPLS-DA

of sleep quality group (GSQvsPSQ), and GSQvsPSQ refers to the group “Good sleep quality vs. poor sleep quality;” (C) is the results of 200 times

permutation test in DUvsG group; (D) is the results of 200 times permutation test in GSQvsPSQ group. The quality of the model was evaluated

by its explicative (R2) and predictive (Q2) abilities. OPLS-DA refers to the orthogonal partial least-squares-discriminant analysis.

Metabolite identification

Based on the metabolic pathways and metabolites involved,

we identified the most discriminating metabolomics variables in

DUvsG and GSQvsPSQ. Regarding the environmental factors,

compared the deep-underground with the ground conditions,

the origin of dissimilarity was most likely related to L-

Phenylalanine, L-Tyrosine and L-Glutamine, and they were

highly expressed in the underground group. With regard

to sleep quality, the results indicated that sleep quality was

most likely related to Acetoacetic acid and 2-hydroxyglutaric

acid. Acetoacetic acid was highly expressed in the group with

good sleep quality, while 2-hydroxyglutaric acid was highly

expressed in the groupwith poor sleep quality. The identification

of the most discriminant metabolomics variables in terms

of environmental differences and sleep quality differences is

illustrated in Supplementary Table 1.

The receiver operating characteristic (ROC) curve was a

curve drawn with the true positive rate (sensitivity) as the

ordinate and the false positive rate (1- specificity) as the abscissa.

The ROC curves of environmental factors and sleep quality are

depicted in Figure 7. The cutoff value, sensitivity, specificity and

area under the curve (AUC) of metabolites in group DUvsG

were as follows: L-Glutamine (20.233, 0.917, 0.704, and 0.821),

L-Tyrosine (181.598, 0.750, 0.667, and 0.728), L-Phenylalanine

(93.875, 0.667, 0.815, and 0.806), and the united ROC of the

above three metabolites (0.586, 0.750, 0.889, and 0.840). The

cutoff value, sensitivity, specificity and AUC of metabolites

in group GSQvsPSQ were as follows: 2-hydroxyglutaric acid

(67.371, 0.611, 0.810, and 0.701), Acetoacetic acid (52.581, 0.556,

0.810, and 0.709), and the united ROC of above two metabolites

(0.484, 0.611, 0.857, and 0.757).

Discussion

In recent years, the study of the biological impact of deep-

underground laboratories has received increasing attention

from international research teams (9, 25, 36–39). This study

attempts to reveal the potential effects related to sleep quality
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FIGURE 3

(A) is the volcano plot of the environmental factor group (DUvsG), and DUvsG refers to the group “Deep-underground vs. ground”; (B) is the

volcano plot of the sleep quality group (GSQvsPSQ), and GSQvsPSQ refers to the group “Good sleep quality vs. poor sleep quality.” The points

circled in green are the finally defined di�erential metabolites of potential biomarkers.
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TABLE 2 The results of di�erential metabolites in di�erent groups.

Groupa

Expression Up regulationb Down regulation Total

Total ESI+ ESI− Total ESI+ ESI−

DUvsG 162 111 51 154 106 48 316

GSQvsPSQ 44 38 6 81 58 23 125

aDUvsG refers to the group “Deep-underground vs. ground,” GSQvsPSQ refers to the group “Good sleep quality vs. poor sleep quality”.
b“ESI+” refers to “electrospray ionization positive” ion modes, and “ESI−” refers to “electrospray ionization negative” ion modes.

and underground environmental factors through metabolomics

research. Notably, we are the first group to report urine

metabolomics of deep-underground miners. In this study, the

involved miners routinely worked at depths of 645-1500m, and

63% of themwere below 1,400m.We found that moremetabolic

variances were attributable to the differences between the

underground and ground environments rather than the main

effects of sleep quality. Admittedly, sleep quality is also affected

by many factors, such as shift, aging, high temperature and

hypoxia exposure (30, 40–44), but it is difficult to quantify for

intricate underground workers. At least as important, smoking

(45) and alcohol intake (46) have significant effects on sleep.

In addition, both drinking and smoking habits are all related

to caffeine intake, while higher caffeine intake is usually related

to the poor subjective sleep quality (47). In this study, although

there is no statistical difference between the underground and

ground group, the numerical difference between smoking and

drinking is obvious, which is worth considering. However,

metabolomics analysis can also provide enough information to

explore the characteristics and interactions behind it.

Through demographic classification, we divided 39 people

into (1) the deep-underground group and the aboveground

group; and (2) good sleep quality and poor sleep quality.

Additionally, we conducted subgroup analysis according to

ground and underground, and the results were basically

consistent with the current analysis. In order to avoid the jumble

of the displayed results, we did not make a separate description

in this article.

Unsupervised PCA and supervised OPLS-DA are used for

dimensionality reduction analysis to explore the differences

between groups, and permutation tests and cross validation are

used to evaluate whether the model is overfitting. The final

results [R2(Y)= 0.873 and Q2(Y)= 0.554 in DUvsG; and R2(Y)

= 0.964 and Q2(Y) = 0.593 in GSQvsPSQ] show preferable

explicative and predictive abilities between groups. These results

showed that the model has high compatibility and predictive

power, which provides an effective guarantee for this research

to study the influence of environmental factors and sleep

quality. Under strict filtering criteria, there were 316 differential

metabolites in the DUvsG group and 125 differential metabolites

in the GSQvsPSQ group. As intuitively displayed in the volcano

plots, the differences between the deep-underground group and

ground group may be far > the variances between groups with

different sleep quality. According to the results of heatmaps, the

DUvsG group presents a better effect in distinguishing different

groups, which is consistent with our previous inference.

When we analyzed the significant differential metabolites

for KEGG pathway enrichment, we found three enriched

pathways. In the group DUvsG, we observed that Phenylalanine,

tyrosine and tryptophan biosynthesis and D-Glutamine

and D-glutamate metabolism are prominent pathways, of

which L-Phenylalanine, L-Tyrosine and L-Glutamine are

considered key metabolites. Butanoate metabolism was the

significantly enriched pathway in GSQvsPSQ group, of which

Acetoacetic acid and 2-hydroxyglutaric acid were defined

as chief metabolites. According to ROC, the AUC values of

the 5 metabolites in the two comparisons were relatively

high. It is worth mentioning that the sensitivity, specificity

and AUC of L-Glutamine reached 0.917, 0.704, and 0.821,

respectively, while the specificity of L-Phenylalanine was as

high as 0.815. In contrast, the AUC values of potential sleep

quality biomarkers were slightly lower but still higher than 0.7.

Therefore, L-Glutamine and L-Phenylalanine can be potential

and important biomarkers when distinguishing the ground and

the deep-underground. Acetoacetic acid and 2-hydroxyglutaric

acid are potential biomarkers to distinguish between good sleep

quality and poor sleep quality, but they need to be considered.

Amino acid metabolism plays an important role in the

central nervous system. Amino acids can regulate neuronal

activity through a variety of mechanisms, ranging from the

synthesis of neurotransmitters (such as precursor amino

acids phenylalanine, tyrosine and tryptophan) to direct

neurotransmission and neuromodulation (such as the

excitatory neurotransmitter glutamate and the inhibitory

neurotransmitter glycine) (48, 49). Phenylalanine, tyrosine

and tryptophan biosynthesis signaling pathways are related to

oxidative stress, immune response and inflammation regulation,

and can also be used as energy compensation in extreme

environments such as hypoxia (50). Phenylalanine can be

converted into tyrosine, and tyrosine can further produce

dopamine, norepinephrine and epinephrine. These excitatory

neurotransmitters participate in the sleep-wake cycle and are

important neurotransmitters that cause insomnia (51, 52).

Furthermore, Glutamate is the most important and abundant
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FIGURE 4

(A) Heatmap of the environmental factor group (DUvsG), and DUvsG refers to the group “Deep-underground vs. ground”; (B) Heatmap of the

sleep quality group (GSQvsPSQ), and GSQvsPSQ refers to the group “Good sleep quality vs. poor sleep quality.” The abscissa represents the

sample name, and the ordinate represents the di�erential metabolite. The color from blue to red signifies the expression abundance of

metabolites from low to high, specifically, the redder indicats the higher expression abundance of di�erential metabolites. At the same time,

information about di�erent groups (deep-underground vs. ground, and good sleep quality vs. poor sleep quality) is labeled at the top.

excitatory neurotransmitter in the mammalian central nervous

system (CNS) (53, 54). It promotes neurons to release chemical

signals, which play a negative role in the regulation of sleep

quality. In neurons, glutamate is synthesized from glutamine

by glutaminase. After glutamate is released, it is taken up

by astrocytes and converted into glutamine by glutamine

synthetase. Subsequently, glutamine is transported and recycled

in neurons. This glutamate–glutamine cycle is an indispensable

component of the glutamatergic neurotransmission system (55).

Allen et al. (56) mentioned that the level of glutamate/glutamine

in the thalamus may be abnormally increased indicating

an increase in glutamatergic activity, which may lead to

awakening, night disturbance and sleep shortening. In this

study, the concentrations of L-Phenylalanine, L-Tyrosine and

L-Glutamine in deep-underground group were approximately

1.5 times those in the ground group. Combined with previous
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FIGURE 5

(A) is the Pearson correlation coe�cient of the environmental factor group (DUvsG), and DUvsG refers to the group “Deep-underground vs.

ground”; (B) is the Pearson correlation coe�cient of the sleep quality group (GSQvsPSQ), and GSQvsPSQ refers to the group “Good sleep quality

vs. poor sleep quality.” Red indicats a positive correlation, and blue indicats a negative correlation. The size of the dot represents the size of the

correlation coe�cient.
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FIGURE 6

(A) is the KEGG pathway column chart of the environmental factor group (DUvsG), and DUvsG refers to the group “Deep-underground vs.

ground”; (B) is the KEGG pathway bubble chart of DUvsG; (C) is the KEGG pathway column chart of the sleep quality group (GSQvsPSQ), and

GSQvsPSQ refers to the group “Good sleep quality vs. poor sleep quality”; (D) is the KEGG pathway bubble chart of GSQvsPSQ. Each bar or dot

represents a KEGG pathway. The left ordinate denotes the pathway names, and the abscissa indicates the enrichment ratio or the negative

logarithm to the base 10 of p-value. Specifically, enrichment ratio indicated the ratio of the di�erential metabolites annotated to this pathway to

the metabolites annotated to a certain pathway by this species. The higher the enrichment rate, the more reliable the enrichment significance of

di�erential metabolites in this pathway.

data (23, 24), the main complaints of miners are difficulty falling

asleep and dreaminess, which is consistent with the influence

of elevated metabolite levels. The high expression of excitatory

neurotransmitters in the CNS of underground miners may be

the core factor leading to sleep disturbance complaints.

Butanoate metabolism (ketone body metabolism) describes

the metabolic fate of many short-chain fatty acids or short-chain

alcohols, which are usually produced by intestinal fermentation

(57, 58). Many of these molecules are ultimately used in

the production of ketone bodies and short-chain lipids or

as precursors of the citrate cycle, glycolysis or glutamate

synthesis (57, 59). This means that Butanoate metabolism is

closely related to energy metabolism. Ketone acetoacetate and

β-hydroxybutyrate produced by fatty acid decomposition are

the chief metabolic fuels for the brain under conditions of

low glucose accessibility. Acetoacetic acid seems to play a
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TABLE 3 Pathway enrichment results of the KEGG database.

Groupa KEGG

Pathway p KEGG compound Metabolite name

DUvsG Phenylalanine, tyrosine and tryptophan biosynthesis 0.0102 C00079 L-Phenylalanine

C00082 L-Tyrosine

D-Glutamine and D-glutamate metabolism 0.0241 C00064 L-Glutamine

GSQvsPSQ Butanoate metabolism 0.0276 C00164 Acetoacetic acid

C02630 2-hydroxyglutaric acid

aDUvsG refers to the group “Deep-underground vs. ground,” GSQvsPSQ refers to the group “Good sleep quality vs. poor sleep quality”.

fundamental role in the regulation of sleep homeostasis through

the progress in central metabolism of ketones. A study carried

out on mice showed that central acetoacetic acid injection

significantly increased the slow-wave activity during NREM

sleep, and stifled glutamate release (60). 2-hydroxyglutaric acid

(2-hydroxyglutarate, 2HG) is also a part of the Butanoate

metabolic pathway, and 2HG is a metabolite derived from α-

ketoglutarate, which is related to changes in energy metabolism

(61). 2-Hydroxyglutarate exists in 2 isomers: L-2HG and D-

2HG. Their accumulation is associated with metabolic disorders

termed 2-hydroxyglutaric aciduria and certain cancers (62–

66). Williams et al. (61) found that L-2HG increased HIF-1α

stability, thus increasing its activity. Subsequently, the increase

in HIF-target gene expression contributes to the activation

of proinflammatory factors, including the adoption of high

glycolysis metabolism and the expression of HIF-1α -dependent

genes, especially the gene encoding interleukin 1β (IL-1β). The

low expression of Acetoacetic acid (FC = 0.6752) and the high

level of 2HG (FC = 1.2683) in the underground environment

seem to suggest that there is a change in high glycolytic

ability. Meanwhile, the excitatory effect of neurotransmitters

and the anti-inflammatory effect of the body may also

be enhanced.

In this study, however, there was no significant difference

in PSQI scores between the deep-underground group and the

ground group except for the change in metabolic substances.

The increased expression of L-Phenylalanine, L-Tyrosine and

L-Glutamine in the deep-underground group was related to

more complaints of sleep disorder, and the sample size of this

study may be a vital reason for limiting the statistical difference.

We speculate that under the stimulation of underground

environmental factors, the metabolism of amino acids will be

significantly enhanced, and the high arousal state of stimulation

will be maintained by increasing the production of excitatory

neurotransmitters, but this has not yet had a significant

impact on the actual sleep quality. In addition, in both the

DUvsG group and the GSQvsPSQ group, it seems that the

pathways of significant enrichment and metabolites involved

all indicate the regulation of excitatory neurotransmitters

and the existence of abnormal energy metabolism related

to hypoxia.

Most importantly, the underground environment is

extremely complex, and it is difficult for us to attribute it

to a single influence of a particular factor. Aforementioned

environmental parameters showed below background radiation,

higher temperature, higher humidity, higher atmospheric

pressure, higher carbon dioxide concentration, and lower

oxygen concentration in 1,470m underground (3, 23). These

parameters were all measured under the condition of ventilation

(3, 24), and there may be some differences in actual experience.

Besides, because of the challenging ventilation in a deep mine,

radiation was the only environmental factor that could be

kept at a constant level. As in this study, 14 underground

miners (51.9%) complained about the high temperature,

and 7 underground miners (25.9%) complained about poor

ventilation and lack of oxygen. While our team’s previous

research showed that these proportions were about 33.5% and

32.4% (23), respectively. Therefore, these important issues

should not be ignored when we consider the influence of

underground environmental factors on the organism.

A limitation of this study is the small sample size, which

leads to the unavoidable use of unadjusted p-values in the

multiple comparisons analysis, but this has also been used in

previous studies (33, 34). Notably, the periods of underground

work as well as the living and dietary habits were not thoroughly

taken into account in this study. Although we know that most of

them work for several years and have long-term underground

exposure, this has not been explicitly counted. In addition,

miners work underground for 8 h each day, but nearly 50%

of them work night shifts. As mentioned earlier, the impact

of night shifts on sleep can’t be ignored. Additionally, the

stimulus of smoking and alcohol intake on sleep quality was

also important, and these two influences can’t be excluded.

Admittedly, the depth of the deep-underground has not been

clearly described, nor can we give a clear definition. However,

we suppose that the definition of depth varies based on the

development level of human science and technology. To some

extent, we can consider that depths below 400–500m seem
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FIGURE 7

(A) is the ROC curve of the environmental factor group (DUvsG), and DUvsG refers to the group “Deep-underground vs. ground”; (B) is the ROC

curve of the sleep quality group (GSQvsPSQ), and GSQvsPSQ refers to the group “Good sleep quality vs. poor sleep quality”. Di�erent colors

correspond to a metabolite, and “united” refers to the curve obtained by calculating several metabolites that were mentioned before.
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to be the current shallow deep-underground space, and 500–

1,500m is the secondary deep-underground space. Furthermore,

1,500–4,800m is deep-underground space, and ultradeep-

underground space is almost difficult for human beings to reach

directly during the present period. With increasing depth, the

difference in environmental parameters will also be greater,

and all current efforts are exploratory strategies to advance

deeper into the earth. In addition, this study lacks further

functional verification, which is limited by a deep-underground

environment and economic factors, which leads to the inability

to provide more credible evidence based on multiomics, cell

or animal model experiments. This study is only a pilot study

of deep-underground medicine research, and the results and

conclusions can only provide potential references. However,

the enriched pathways and differential metabolites suggested by

this study will also be an important exploration direction for

further study.

Conclusions

This pilot study has also made some important discoveries.

The influence of the deep-underground environment on the

human body is more likely to induce specific amino acid

metabolism processes, which is related to the high expression

of excitatory neurotransmitters in the central nervous system,

and all of these seem to have suggestive guiding effects

on sleep-arousal regulation. According to the sleep quality

grouping, we observed enhanced glycolysis metabolism, an

increase in excitatory neurotransmitters and proinflammatory

activation. The change in metabolites that affect sleep may

precede physical symptoms. L-phenylalanine, L-tyrosine and

L-glutamine, Acetoacetic acid and 2-hydroxyglutaric acid may

be potential biomarkers of the deep environment and sleep

quality, respectively.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were

reviewed and approved by West China Hospital of Sichuan

University Biomedical Research Ethics Committee. The

patients/participants provided their written informed consent

to participate in this study.

Author contributions

QW and JZh contributed to the statistical analyses,

data interpretation, and manuscript writing. XS, TM, and

YL were involved in the development of the statistical

framework and they reviewed the manuscript. YX, LW, JC,

and JWe collected and prepared samples. JWu, JZo, SL, and

JL were involved in the design of the study. SL and JL

supervised the entire project and revised the final manuscript.

All authors contributed to the article and approved the

submitted version.

Funding

This research was supported by grants from the 1.3.5

project for disciplines of excellence (Grant No. ZYJC21048)

provided by West China Hospital, Sichuan University;

the Open Fund of the Key Laboratory of Deep Earth

Science and Engineering, Ministry of Education (Grant

No. DESEYU 201902); the Research Fund of Health

Commission of Sichuan Province (Grant No. 20PJ029

and Grant No. 21PJ022); Sichuan Soft Science Project

(Grant No. 2022JDR0091); and the Fund of Sichuan

Provincial Science and Technology Department (Grant

No. 2021YJ0231).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.

2022.969113/full#supplementary-material

Frontiers in PublicHealth 15 frontiersin.org

https://doi.org/10.3389/fpubh.2022.969113
https://www.frontiersin.org/articles/10.3389/fpubh.2022.969113/full#supplementary-material
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wen et al. 10.3389/fpubh.2022.969113

References

1. Liu J, Ma T, Liu Y, Zou J, Gao M, Zhang R, et al. History, advancements,
and perspective of biological research in deep-underground laboratories: A brief
review. Environ Int. (2018) 120:207–14. doi: 10.1016/j.envint.2018.07.031

2. Xie HP, Liu JF, Gao MZ, Wan XH, Liu SX, Zou J, et al. [The Research
Advancement and Conception of the Deep-underground Medicine]. Sichuan da
xue xue bao Yi xue ban. (2018) 49:163–8. doi: 10.13464/j.scuxbyxb.2018.02.001

3. Liu J,Ma T, GaoM, Liu Y, Liu J,Wang S, et al. Proteomics provides insights into
the inhibition of Chinese hamster V79 cell proliferation in the deep underground
environment. Sci Rep. (2020) 10:14921. doi: 10.1038/s41598-020-71154-z

4. Duan L, Jiang H, Liu J, Liu Y, Ma T, Xie Y, et al. Whole transcriptome
analysis revealed a stress response to deep underground environment conditions
in Chinese hamster V79 lung fibroblast cells. Front Genet. (2021) 12:698046.
doi: 10.3389/fgene.2021.698046

5. Planel H, Soleilhavoup JP, Tixador R, Richoilley G, Conter A, Croute
F, et al. Influence on cell proliferation of background radiation or exposure
to very low, chronic gamma radiation. Health Phys. (1987) 52:571–8.
doi: 10.1097/00004032-198705000-00007

6. Satta L, Augusti-Tocco G, Ceccarelli R, Esposito A, Fiore M, Paggi P, et al.
Low environmental radiation background impairs biological defence of the yeast
Saccharomyces cerevisiae to chemical radiomimetic agents. Mutat Res. (1995)
347:129–33. doi: 10.1016/0165-7992(95)00031-3

7. Liu J, Ma T, Gao M, Liu Y, Liu J, Wang S, et al. Proteomic characterization of
proliferation inhibition of well-differentiated laryngeal squamous cell carcinoma
cells under below-background radiation in a deep underground environment.
Front Public Health. (2020) 8:584964. doi: 10.3389/fpubh.2020.584964

8. Morciano P, Iorio R, Iovino D, Cipressa F, Esposito G, Porrazzo A, et al. Effects
of reduced natural background radiation on Drosophila melanogaster growth and
development as revealed by the FLYINGLOW program. J Cell Physiol. (2018)
233:23–9. doi: 10.1002/jcp.25889

9. Zarubin M, Gangapshev A, Gavriljuk Y, Kazalov V, Kravchenko E.
First transcriptome profiling of D. melanogaster after development in a deep
underground low radiation background laboratory. PloS ONE. (2021) 16:e0255066.
doi: 10.1371/journal.pone.0255066

10. Kawanishi M, Okuyama K, Shiraishi K, Matsuda Y, Taniguchi R, Shiomi N,
et al. Growth retardation of Paramecium and mouse cells by shielding them from
background radiation. J Radiat Res. (2012) 53:404–10. doi: 10.1269/jrr.11145

11. Castillo H, Schoderbek D, Dulal S, Escobar G, Wood J, Nelson R, et al. Stress
induction in the bacteria Shewanella oneidensis and Deinococcus radiodurans
in response to below-background ionizing radiation. Int J Radiat Biol. (2015)
91:749–56. doi: 10.3109/09553002.2015.1062571

12. Antonelli F, Belli M, Sapora O, Simone G, Sorrentino E, Tabocchini MA, et al.
Radiation biophysics at the Gran Sasso laboratory: influence of a low background
radiation environment on the adpative response of living cells. (2000) 87:508–9.
doi: 10.1016/S0920-5632(00)00735-0

13. Carbone MC, Pinto M, Antonelli F, Amicarelli F, Balata M, Belli
M, et al. The Cosmic Silence experiment: on the putative adaptive role of
environmental ionizing radiation. Radiat Environ Biophys. (2009) 48:189–96.
doi: 10.1007/s00411-008-0208-6

14. Carbone MC, Pinto M, Antonelli F, Balata M. Satta LJNC-SIdFSB. Effects
of deprivation of background environmental radiation on cultured human cells.
(2010) 125:469–77. doi: 10.1393/ncb/i2010-10889-y

15. Wadsworth J, Cockell CS, Murphy AS, Nilima A, Paling S, Meehan E, et al.
There’s plenty of room at the bottom: low radiation as a biological extreme. Front
Astron Space Sci. (2020) 7:50. doi: 10.3389/fspas.2020.00050

16. Van Voorhies WA, Castillo HA, Thawng CN, Smith GB. The phenotypic and
transcriptomic response of the caenorhabditis elegans nematode to background
and below-background radiation levels. Front Public Health. (2020) 8:581796.
doi: 10.3389/fpubh.2020.581796

17. Minina V, Timofeeva A, Torgunakova A, Soboleva O, Bakanova
M, Savchenko Y, et al. Polymorphisms in DNA repair and xenobiotic
biotransformation enzyme genes and lung cancer risk in coal mine workers. Life.
(2022) 12:255. doi: 10.3390/life12020255

18. Wang W, Mu M, Zou Y, Li B, Cao H, Hu D, et al. Label-free Raman
spectroscopy characterizes signatures of inflammation and fibrosis in the silicosis.
Biochem Biophys Res Commun. (2022) 606:114–20. doi: 10.1016/j.bbrc.2022.03.107

19. Alrawad M, Lutfi A, Alyatama S, Elshaer IA, Almaiah MA. Perception
of occupational and environmental risks and hazards among mineworkers: a
psychometric paradigm approach. International journal of environmental research
and public health. (2022) 19:3371. doi: 10.3390/ijerph19063371

20. Lu ZH, Liu YW, Ji ZH, Fu T, YanM, Shao ZJ, et al. Alterations in the intestinal
microbiome and mental health status of workers in an underground tunnel
environment. BMCMicrobiol. (2021) 21:7. doi: 10.1186/s12866-020-02056-3

21. Ijaz M, Akram M, Ahmad SR, Mirza K, Ali Nadeem F, Thygerson SM.
Risk factors associated with the prevalence of upper and lower back pain in male
underground coal miners in Punjab, Pakistan. Int J Environ Res Public Health.
(2020) 170:4102. doi: 10.3390/ijerph17114102

22. Knight D, Ehrlich R, Cois A, Fielding K, Grant AD, Churchyard
G. Predictors of silicosis and variation in prevalence across mines among
employed gold miners in South Africa. BMC Public Health. (2020) 20:829.
doi: 10.1186/s12889-020-08876-2

23. Liu J, Liu Y, Ma T, Gao M, Zhang R, Wu J, et al. Subjective perceptions
and psychological distress associated with the deep underground: a cross-
sectional study in a deep gold mine in China. Medicine. (2019) 98:e15571.
doi: 10.1097/MD.0000000000015571

24. Xie H, Liu J, Gao M, Liu Y, Ma T, Lu Y, et al. Physical symptoms and mental
health status in deep undergroundminers: a cross-sectional study.Medicine. (2020)
99:e19294. doi: 10.1097/MD.0000000000019294

25. Štekl I, Hulka J, Mamedov F, Fojtík P, Cermáková E, Jílek K, et al. Low radon
cleanroom for underground laboratories. Front Public Health. (2020) 8:589891.
doi: 10.3389/fpubh.2020.589891

26. Li M, Pan D, Sun H, Zhang L, Cheng H, Shao T, et al. The hypoxia adaptation
of small mammals to plateau and underground burrow conditions. Animal Models
and Experimental Medicine. (2021) 4:319–28. doi: 10.1002/ame2.12183

27. Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG,
Doherty LA, et al. Effects of psychological, environmental and physical stressors on
the gut microbiota. Front Microbiol. (2018) 9:2013. doi: 10.3389/fmicb.2018.02013

28. Parkar SG, Kalsbeek A, Cheeseman JF. Potential role for the gut microbiota in
modulating host circadian rhythms and metabolic health. Microorganisms. (2019)
7:41. doi: 10.3390/microorganisms7020041

29. JoaquimAC, LopesM, Stangherlin L, Castro K, Ceretta LB, LongenWC, et al.
Mental health in underground coal miners. Arch Environ Occup Health. (2018)
73:334–43. doi: 10.1080/19338244.2017.1411329

30. Loudoun RJ, Muurlink O, Peetz D, Murray G. Does age affect the relationship
between control at work and sleep disturbance for shift workers? Chronobiol Int.
(2014) 31:1190–200. doi: 10.3109/07420528.2014.957307

31. Matamala Pizarro J, Aguayo Fuenzalida F. Mental health in mine workers: a
literature review. Ind Health. (2021) 59:343–70. doi: 10.2486/indhealth.2020-0178

32. Buysse DJ, Reynolds CF III,Monk TH, Berman SR, Kupfer DJ. The Pittsburgh
Sleep Quality Index: a new instrument for psychiatric practice and research.
Psychiatry Res. (1989) 28:193–213. doi: 10.1016/0165-1781(89)90047-4

33. Oto J, Fernández-Pardo Á, Roca M, Plana E, Solmoirago MJ, Sánchez-
González JV, et al. Urine metabolomic analysis in clear cell and papillary
renal cell carcinoma: a pilot study. J Proteomics. (2020) 218:103723.
doi: 10.1016/j.jprot.2020.103723

34. Martínez-Camblor P, Pérez-Fernández S, Díaz-Coto S. The role of
the p-value in the multitesting problem. J Appl Stat. (2020) 47:1529–42.
doi: 10.1080/02664763.2019.1682128

35. Triba MN, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon P,
et al. PLS/OPLS models in metabolomics: the impact of permutation of dataset
rows on the K-fold cross-validation quality parameters.Mol Biosyst. (2015) 11:13–
9. doi: 10.1039/C4MB00414K

36. Kennedy KJ, LeBlanc A, Pirkkanen J, Thome C, Tai TC, LeClair R, et al.
Dosimetric characterisation of a sub-natural background radiation environment
for radiobiology investigations. Radiat Prot Dosimetry. (2021) 195:114–23.
doi: 10.1093/rpd/ncab120

37. Thome C, Tharmalingam S, Pirkkanen J, Zarnke A, Laframboise T, Boreham
DR. The REPAIR project: examining the biological impacts of sub-background
radiation exposure within SNOLAB, a deep underground laboratory. Radiat Res.
(2017) 188:470–4. doi: 10.1667/RR14654.1

38. Wang Y, He Y, Wang J, Liu C, Li L, Tan X, et al. An endeavor of “deep-
underground agriculture”: storage in a gold mine impacts the germination of
canola (Brassica napus L.) seeds. Environ Sci Pollut Res Int. (2022) 29:46357–70.
doi: 10.1007/s11356-022-19125-x

39. Yun Y, Gui Z, Su T, Tian X, Wang S, Chen Y, et al. Deep mining
decreases the microbial taxonomic and functional diversity of subsurface oil
reservoirs. Sci Total Environ. (2022) 821:153564. doi: 10.1016/j.scitotenv.2022.
153564

Frontiers in PublicHealth 16 frontiersin.org

https://doi.org/10.3389/fpubh.2022.969113
https://doi.org/10.1016/j.envint.2018.07.031
https://doi.org/10.13464/j.scuxbyxb.2018.02.001
https://doi.org/10.1038/s41598-020-71154-z
https://doi.org/10.3389/fgene.2021.698046
https://doi.org/10.1097/00004032-198705000-00007
https://doi.org/10.1016/0165-7992(95)00031-3
https://doi.org/10.3389/fpubh.2020.584964
https://doi.org/10.1002/jcp.25889
https://doi.org/10.1371/journal.pone.0255066
https://doi.org/10.1269/jrr.11145
https://doi.org/10.3109/09553002.2015.1062571
https://doi.org/10.1016/S0920-5632(00)00735-0
https://doi.org/10.1007/s00411-008-0208-6
https://doi.org/10.1393/ncb/i2010-10889-y
https://doi.org/10.3389/fspas.2020.00050
https://doi.org/10.3389/fpubh.2020.581796
https://doi.org/10.3390/life12020255
https://doi.org/10.1016/j.bbrc.2022.03.107
https://doi.org/10.3390/ijerph19063371
https://doi.org/10.1186/s12866-020-02056-3
https://doi.org/10.3390/ijerph17114102
https://doi.org/10.1186/s12889-020-08876-2
https://doi.org/10.1097/MD.0000000000015571
https://doi.org/10.1097/MD.0000000000019294
https://doi.org/10.3389/fpubh.2020.589891
https://doi.org/10.1002/ame2.12183
https://doi.org/10.3389/fmicb.2018.02013
https://doi.org/10.3390/microorganisms7020041
https://doi.org/10.1080/19338244.2017.1411329
https://doi.org/10.3109/07420528.2014.957307
https://doi.org/10.2486/indhealth.2020-0178
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.1016/j.jprot.2020.103723
https://doi.org/10.1080/02664763.2019.1682128
https://doi.org/10.1039/C4MB00414K
https://doi.org/10.1093/rpd/ncab120
https://doi.org/10.1667/RR14654.1
https://doi.org/10.1007/s11356-022-19125-x
https://doi.org/10.1016/j.scitotenv.2022.153564
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wen et al. 10.3389/fpubh.2022.969113

40. Zhao XC, Han KY, Gao YY Li N, Wang L, Yu LL, et al. Effects of shift
work on sleep and cognitive function among male miners. Psychiatry Res. (2021)
297:113716. doi: 10.1016/j.psychres.2021.113716

41. Legault G, Clement A, Kenny GP, Hardcastle S, Keller N. Cognitive
consequences of sleep deprivation, shiftwork, and heat exposure for underground
miners. Appl Ergon. (2017) 58:144–50. doi: 10.1016/j.apergo.2016.06.007

42. Hossain JL, Reinish LW, Heslegrave RJ, Hall GW, Kayumov L, Chung SA,
et al. Subjective and objective evaluation of sleep and performance in daytime vs.
nighttime sleep in extended-hours shift-workers at an underground mine. J Occup
Environ Med. (2004) 46:212–26. doi: 10.1097/01.jom.0000117421.95392.31

43. Calderon-Jofre R, Moraga D, Moraga FA. The effect of chronic intermittent
hypobaric hypoxia on sleep quality and melatonin serum levels in chilean miners.
Front Physiol. (2021) 12:809360. doi: 10.3389/fphys.2021.809360

44. Xie H, Gao F, Ju YJCJoRM, Engineering. Research and Development of Rock
Mechanics in Deep Ground Engineering (2015).

45. Goettel M, Niessner R, Mueller D, Scherer M, Scherer G, Pluym N.
Metabolomic fingerprinting in various body fluids of a diet-controlled clinical
smoking cessation study using a validated GC-TOF-MS metabolomics platform.
J Proteome Res. (2017) 16:3491–503. doi: 10.1021/acs.jproteome.7b00128

46. Hatoum AS, Winiger EA, Morrison CL, Johnson EC, Agrawal A.
Characterisation of the genetic relationship between the domains of sleep and
circadian-related behaviours with substance use phenotypes. Addict Biol. (2022)
27:e13184. doi: 10.1111/adb.13184

47. Riera-Sampol A, Rodas L, Martínez S, Moir HJ, Tauler P. Caffeine
intake among undergraduate students: sex differences, sources, motivations, and
associations with smoking status and self-reported sleep quality. Nutrients. (2022)
14:1661. doi: 10.3390/nu14081661

48. Vallianatou T, Bèchet NB, Correia MSP, Lundgaard I, Globisch D. Regional
brain analysis of modified amino acids and dipeptides during the sleep/wake cycle.
Metabolites. (2021) 12:21. doi: 10.3390/metabo12010021

49. Dalangin R, Kim A, Campbell RE. The role of amino acids in
neurotransmission and fluorescent tools for their detection. Int J Mol Sci. (2020)
21:6197. doi: 10.3390/ijms21176197

50. Gandhi S, Chinnadurai V, Bhadra K, Gupta I, Kanwar RS. Urinary metabolic
modulation in human participants residing in Siachen: a 1H NMR metabolomics
approach. Sci Rep. (2022) 12:9070. doi: 10.1038/s41598-022-13031-5

51. Weinberg RP, Koledova VV, Subramaniam A, Schneider K, Artamonova A,
Sambanthamurthi R, et al. Palm Fruit Bioactives augment expression of Tyrosine
Hydroxylase in the Nile Grass Rat basal ganglia and alter the colonic microbiome.
Sci Rep. (2019) 9:18625. doi: 10.1038/s41598-019-54461-y

52. Ennis MA, Rasmussen BF, Lim K, Ball RO, Pencharz PB, Courtney-Martin G,
et al. Dietary phenylalanine requirements during early and late gestation in healthy
pregnant women. Am J Clin Nutr. (2020) 111:351–9. doi: 10.1093/ajcn/nqz288

53. Brandner S, Aicher S, Schroeter S, Swierzy I, Kinfe TM, Buchfelder M, et al.
Real-time imaging of glutamate transients in the extracellular space of acute human

brain slices using a single-wavelength glutamate fluorescence nanosensor. Sci Rep.
(2022) 12:3926. doi: 10.1038/s41598-022-07940-8

54. Wu Q, Akhter A, Pant S, Cho E, Zhu JX, Garner A, et al. Ataxia-linked
SLC1A3 mutations alter EAAT1 chloride channel activity and glial regulation of
CNS function. J Clin Invest. (2022) 132:e154891. doi: 10.1172/JCI154891

55. Hamed NO, Al-Ayadhi L, Osman MA, Elkhawad AO, Qasem H, Al-
Marshoud M, et al. Understanding the roles of glutamine synthetase, glutaminase,
and glutamate decarboxylase autoantibodies in imbalanced excitatory/inhibitory
neurotransmission as etiological mechanisms of autism. Psychiatry Clin Neurosci.
(2018) 72:362–73. doi: 10.1111/pcn.12639

56. Allen RP, Barker PB, Horská A, Earley CJ. Thalamic glutamate/glutamine in
restless legs syndrome: increased and related to disturbed sleep. Neurology. (2013)
80:2028–34. doi: 10.1212/WNL.0b013e318294b3f6

57. Stilling RM, van deWouwM, Clarke G, Stanton C, Dinan TG, Cryan JF. The
neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain
axis? Neurochem Int. (2016) 99:110–32. doi: 10.1016/j.neuint.2016.06.011

58. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid
production. Proc Nutr Soc. (2003) 62:67–72. doi: 10.1079/PNS2002207

59. Sun D, Mao S, Zhu W, Liu J. Proteomic identification of ruminal epithelial
protein expression profiles in response to starter feed supplementation in pre-
weaned lambs. Anim Nutr. (2021) 7:1271–82. doi: 10.1016/j.aninu.2021.06.014

60. Chikahisa S, Shimizu N, Shiuchi T, Séi H. Ketone body metabolism
and sleep homeostasis in mice. Neuropharmacology. (2014) 79:399–404.
doi: 10.1016/j.neuropharm.2013.12.009

61. Williams NC, Ryan DG, Costa ASH, Mills EL, Jedrychowski MP, Cloonan
SM, et al. Signaling metabolite L-2-hydroxyglutarate activates the transcription
factor HIF-1α in lipopolysaccharide-activated macrophages. J Biol Chem. (2022)
298:101501. doi: 10.1016/j.jbc.2021.101501

62. Ye D, Guan KL, Xiong Y. Metabolism, Activity, and targeting
of D- and L-2-Hydroxyglutarates. Trends Cancer. (2018) 4:151–65.
doi: 10.1016/j.trecan.2017.12.005

63. Struys EA. 2-Hydroxyglutarate is not a metabolite; D-2-hydroxyglutarate and
L-2-hydroxyglutarate are! Proceedings of the National Academy of Sciences of the
United States of America. (2013) 110:E4939. doi: 10.1073/pnas.1318777110

64. Dang L, Su SM. Isocitrate dehydrogenase mutation and (R)-2-
hydroxyglutarate: from basic discovery to therapeutics development. Annu
Rev Biochem. (2017) 86:305–31. doi: 10.1146/annurev-biochem-061516-044732

65. Shim EH, Livi CB, Rakheja D, Tan J, Benson D, Parekh V, et al. L-
2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in
renal cancer. Cancer Discov. (2014) 4:1290–8. doi: 10.1158/2159-8290.CD-13-
0696

66. Clausing M, William D, Preussler M, Biedermann J, Grützmann K, Richter S,
et al. Different effects of RNAi-mediated downregulation or chemical inhibition of
NAMPT in an isogenic IDH mutant and wild-type glioma cell model. Int. J. Mol.
Sci. (2022) 23:5787. doi: 10.3390/ijms23105787

Frontiers in PublicHealth 17 frontiersin.org

https://doi.org/10.3389/fpubh.2022.969113
https://doi.org/10.1016/j.psychres.2021.113716
https://doi.org/10.1016/j.apergo.2016.06.007
https://doi.org/10.1097/01.jom.0000117421.95392.31
https://doi.org/10.3389/fphys.2021.809360
https://doi.org/10.1021/acs.jproteome.7b00128
https://doi.org/10.1111/adb.13184
https://doi.org/10.3390/nu14081661
https://doi.org/10.3390/metabo12010021
https://doi.org/10.3390/ijms21176197
https://doi.org/10.1038/s41598-022-13031-5
https://doi.org/10.1038/s41598-019-54461-y
https://doi.org/10.1093/ajcn/nqz288
https://doi.org/10.1038/s41598-022-07940-8
https://doi.org/10.1172/JCI154891
https://doi.org/10.1111/pcn.12639
https://doi.org/10.1212/WNL.0b013e318294b3f6
https://doi.org/10.1016/j.neuint.2016.06.011
https://doi.org/10.1079/PNS2002207
https://doi.org/10.1016/j.aninu.2021.06.014
https://doi.org/10.1016/j.neuropharm.2013.12.009
https://doi.org/10.1016/j.jbc.2021.101501
https://doi.org/10.1016/j.trecan.2017.12.005
https://doi.org/10.1073/pnas.1318777110
https://doi.org/10.1146/annurev-biochem-061516-044732
https://doi.org/10.1158/2159-8290.CD-13-0696
https://doi.org/10.3390/ijms23105787
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Urine metabolomics analysis of sleep quality in deep-underground miners: A pilot study
	Introduction
	Materials and methods
	Study subjects
	Questionnaire survey
	Urine collection
	UPLC-triple-TOF-MS analysis
	Data preprocessing
	Statistical analysis
	Potential biomarker identification

	Results
	Basic characteristics of the study subjects
	Metabolomics analysis
	Urine metabolic profile and differential metabolite expression
	Pathway analyses
	Metabolite identification

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


