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A B S T R A C T

Basal Cell Carcinoma (BCC) and Actinic Keratosis (AK) are prevalent skin conditions with sig-
nificant health complications. The molecular mechanisms underlying these conditions and their
potential shared pathways remain ambiguous despite their prevalence. Therefore, this study aims
to elucidate the common molecular pathways and potential therapeutic targets for BCC and AK
through comprehensive computational network analysis. Linkage analysis was performed to
identify common liable genes between BCC and AK. Protein-protein interactions (PPIs), Topo-
logical properties, GO enrichment, pathway enrichment, and gene regulatory network analyses
were also performed to reveal potential molecular mechanisms and pathways. Furthermore, we
evaluated protein-drug interactions (PDIs) to identify potential therapeutic targets. Our analysis
revealed 22 common genes between BCC and AK: TP53, EGFR, CDKN2A, MMP9, PTGS2, VDR,
BCL2, MMP2, EZH2, TP63, FOXP3, MSH2, MMP14, FLG, MC1R, CDKN2B, TIMP3, TYR, SOX10,
IRF4, KRT17, and NID1. PPI network analysis highlighted TP53 and EGFR as central hubs, vali-
dated using RNA-seq data. Co-expression and physical interaction analysis revealed a strong
interplay between the common genes at the transcriptional and functional levels. GO analysis
identified skin cancer-relevant terms: "skin development", "immune system development", and
"response to radiation" as significantly enriched biological processes, while pathway enrichment
analysis highlighted several cancer-related pathways enrichment. Gene regulatory network
analysis revealed complex interactions between genes, miRNAs, and transcription factors, with
TP53, BCL2, and EGFR playing central roles. PDI network analysis identified ibuprofen as a po-
tential therapeutic agent targeting PTGS2 and BCL2, while other proteins VDR, MMP2, MMP9,
and TYR showed interactions with multiple drugs. This computational analysis provides valuable
insights into the shared molecular mechanisms of BCC and AK, revealing common pathways and
potential therapeutic targets for developing novel treatment strategies and repurposing existing
drugs for these prevalent skin cancers. Therefore, these findings may guide future research in
understanding and developing targeted therapies for both conditions.
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1. Introduction

Basal cell carcinoma (BCC) and actinic keratoses (AK) are the most prevalent malignant neoplasms in humans, also known as skin
cancer, and their incidence has risen over the past few decades [1,2]. Primarily, skin cancer is caused by mutations in the DNA of skin
cells [3]. The mutations allow the cells to multiply out of control, resulting in cancer. Secondly, UV (ultraviolet) radiation from
sunlight and tanning bed lights causes significant DNA damage in the top layer of skin cells, where skin cancer begins [4].

While histopathology mostly confirms the diagnosis, there are tumor simulators and basal cell carcinomas with deceptive clinical
appearances [5]. Nowadays, the incidence of BCC is growing [6]. On the other hand, AK, also known as solar or senile keratosis, is
epidermal dysplasia that grows on skin that has been exposed to the sun for an extended period, most generally on the forehead, bald
head, face, neck, or arms, and it is the most common pre-cancerous infection of the skin [7,8]. AKs appear as pink to red gritty macules
or papules on sun-damaged skin. Patients with a high number of AKs are more likely to develop skin cancer [9]. The prevalence rises
with age, and AK was observed in 25.3 % of outpatients in general practice in a recent Swiss survey [10]. Recent studies have revealed
a notable overexpression of several key genes, including FOXO3a, ATM, P65, TNF-α, and PINK1, in patients with basal cell carcinoma
(BCC) induced by radiation. This overexpression is linked to crucial biological processes such as cellular senescence and apoptosis,
which are essential for regulating cell life cycles and responses to stress [11]. Additionally, many of these genes exhibit interactions
with central hub proteins TP53 and EGFR, suggesting that they may play significant roles in the molecular pathways that govern tumor
development and progression in BCC [12]. Both BCC and AK are closely associated with exposure to UV radiation, a major risk factor
for the development of these skin conditions [13–15].

This study aims to employ computational network analysis techniques to investigate the potential common molecular targets and
signaling pathways shared between BCC and AK to identify novel therapeutic targets for the management of these prevalent skin
conditions.

Therefore, this study first retrieved the genes associated with BCC and AK from the NCBI Genbank database, focusing only on
human disease-related genes. The common genes between BCC and AK were then identified using a Venn diagram tool and validated
using the DisGeNet database. Protein-protein interaction (PPI) networks were constructed using IMEx Interactome and the STRING
database within the NetworkAnalyst 3.0 platform to examine the functional relationships among the common genes. Topological
properties of the PPI network, including Closeness Centrality, Clustering Coefficient, Betweenness Centrality, and Topological Coef-
ficient, were analyzed using Cytoscape and its Network Analyzer application. Gene ontology (GO) term analysis was performed using
WebGestalt, while KEGG and Reactome pathway enrichment was analyzed and visualized with Enrichr. Co-expression and physical
interaction analysis were carried out using GeneMANIA, and a gene regulatory network was constructed by integrating data from
miRTarBase, TRRUST, and the TF-miRNA coregulatory interaction database in NetworkAnalyst 3.0. Finally, the protein-drug inter-
action analysis was also performed using the DrugBank database within the NetworkAnalyst platform. The graphical representation of
this study has been presented in Fig. 1.

2. Materials and methods

2.1. Retrieval of genes from database

The genes associated with BCC and AK were retrieved from the NCBI Genbank database (https://www.ncbi.nlm.nih.gov/) [16].
Only the genes linked to the Homo sapiens species were included in the analysis. Genes were then categorized based on their known
functions and roles in disease pathogenesis and retained for further investigation. The NCBI Gene database was chosen for its
experimental and curated collection of gene information associated with specific diseases. This categorization allowed for the iden-
tification of genes directly responsible for human diseases, excluding those with indirect or unknown associations. This filtering

Fig. 1. Graphical representation of current study workflow where Protein-protein interactions (PPI), Gene Regulatory Network (GRN), Protein-drug
interactions (PDI), Co-expression, and Physical Interactions (C&I) have been thoroughly analyzed.
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process resulted in a refined list of genes directly implicated in BCC and AK, providing a focused dataset for investigation.

2.2. Data processing and validation

The common genes between BCC and AK were identified using a statistical test known as Fisher’s exact test, which determined the
significant association between genes of BCC and AK based on the sophisticated categorization technique [17]. Afterward, we utilized
those associated genes to identify overlapping genes using the web-based Venn diagram tool available at https://bioinformatics.psb.
ugent.be/webtools/Venn/ [18]. This tool allows users to upload gene lists or text files containing gene names and then calculates and
visualizes the intersections between the provided lists. The symmetric Venn diagram option was selected to generate the graphical
output of common genes between BCC and AK. Additionally, the identified common genes were further validated using the DisGeNet
database (https://www.disgenet.com/), a comprehensive database of gene-disease associations, to ensure the relevance of these genes
to skin cancer [19]. This two-step approach, combining the Venn diagram analysis and disease gene validation, enabled the identi-
fication of only the disease-relevant common skin cancer genes between BCC and AK.

2.3. Protein-protein interaction network analysis

The protein-protein interaction (PPI) network was constructed using the IMEx Interactome and STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) database within the NetworkAnalyst 3.0 platform (https://www.networkanalyst.ca/) [20].
IMEx Interactome utilizes literature-curated comprehensive data from InnateDB, while STRING is a database that provides details on
predicted and known protein-protein connections, including direct (physical) and indirect (functional) interactions [21,22]. The
highest confidence score (900) was used to analyze the STRING network. The use of IMEx Interactome and STRING on NetworkAnalyst
3.0 allowed for the comprehensive analysis of the PPI network, which is expected to provide insights into the functional relationships
and interactions between the proteins of interest, thereby enhancing the understanding of the underlying biological processes and
potential molecular mechanisms.

2.4. Examination of topological properties

The topological properties of the PPI network were analyzed using the Cytoscape software tool and its Network Analyzer appli-
cation [23,24]. Cytoscape is a widely used open-source platform for visualizing, analyzing, and modeling complex networks. The
Network Analyzer application within Cytoscape was utilized to calculate the topological metrics, including Closeness Centrality,
Clustering Coefficient, Betweenness Centrality, and Topological Coefficient. These topological properties provide insights into the
network structure and the importance of individual genes within the network. In particular, Betweenness Centrality determines the
number of shortest paths that pass through a gene, Closeness Centrality evaluates how close a gene is to every other gene in the
network, Clustering Coefficient shows how interconnected a gene’s neighbors are, and Topological Coefficient shows how much a gene
shares neighbors with other genes. Analyzing these topological features can help identify hub genes, which are genes that play a central
role in the overall network and may represent potential therapeutic targets or biomarkers.

2.5. Exploration of Co-expression and physical interaction

Co-expression and physical interaction analysis were performed using GeneMANIA (https://www.genemania.org), a compre-
hensive online resource that integrates multiple data sources to predict functional relationships between genes and proteins [25].
GeneMANIA utilizes a network-based approach to analyze gene lists, identifying genes that are likely to be functionally related based
on their co-expression patterns across various datasets, physical interactions, shared pathways, and other biological annotations to
gain insights into the potential functional relationships between genes identified in our study, providing a broader context for un-
derstanding their roles in the biological processes.

2.6. Analysis of GO and pathway enrichment

The gene set enrichment analysis was conducted using two complementary web-based tools: WebGestalt (https://www.webgestalt.
org/) and Enrichr (https://maayanlab.cloud/Enrichr/) [26,27]. WebGestalt provides a wide range of functionalities, including
over-representation analysis, network analysis, and hierarchical clustering, to translate gene lists into biological insights. We selected
Network Topology-based analysis (NTA) as the Method of Interest and network-based PPI BIOGRID as the Functional Database for
Homo sapiens for responsible genes using the WeGestalt tool. The enriched GO terms Graphs are shown in Fig. 5. In contrast, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways were analyzed using Enrichr. Enrichr offers a user-friendly
interface and a diverse collection of gene set libraries, enabling efficient and comprehensive analysis of gene sets [28]. The use of
these two complementary tools allowed for a thorough examination of the biological processes, pathways, and functional associations
represented by the gene lists, providing a robust and well-rounded interpretation of the results.

2.7. Gene regulatory network analysis

To elucidate the gene regulatory network underlying the observed biological phenomenon, we employed again NetworkAnalyst
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3.0. There are three types of gene regulatory networks: Gene-miRNA interaction, TF-gene interaction, and TF-miRNA co-regulatory
network [29,30]. This tool facilitated the construction of a regulatory network by integrating three distinct datasets: Gene-miRNA
interactions from miRTarBase v9.0, Gene-Transcription Factors (TFs) interactions from the TRRUST database, and miRNA-TF in-
teractions from the TF-miRNA coregulatory interaction database [31–33]. The miRTarBase v9.0 database provides a curated re-
pository of experimentally validated miRNA-target interactions, enabling us to identify potential regulatory relationships between
miRNAs and genes. The TRRUST database, a comprehensive collection of experimentally validated TF-target interactions, allowed us
to map the regulatory influence of TFs on gene expression. Finally, the TF-miRNA coregulatory interaction database provided insights
into the intricate interplay between TFs and miRNAs in regulating gene expression.

2.8. Exploration of protein drug interaction networks

The protein-drug interaction analysis was also conducted using NetworkAnalyst 3.0. The DrugBank database, a comprehensive
resource for information on drugs and their target proteins, was utilized as the data source for this analysis [34]. NetworkAnalyst 3.0
was selected as it provides a robust and user-friendly platform for exploring the complex relationships between proteins and their
interacting drugs. The tool enables the construction of interaction networks, allowing for the identification of key proteins and their
associated drugs, as well as the exploration of the underlying mechanisms of these interactions. By utilizing these tools, we aimed to
identify potential drug targets and understand the molecular mechanisms underlying drug-protein interactions, thereby providing
insights into the therapeutic potential of the investigated drugs. Fig. 6 depicts the entire list of medications that can be used to treat the
above mentioned skin cancers.

2.9. Validation of hub genes and therapeutic targets

The hub genes often participate as therapeutic targets and biomarker potentials that play a central role in co-expression, physical
interactions, and pathways involvement for a particular condition or disease [35,36]. Therefore, the common and key hub genes
between BCC and AK that were previously identified using topological centralities (degree centrality, betweenness centrality, closeness
centrality, clustering coefficient, and topological coefficient), were finally validated using RNA-seq data from the GEO (Gene
Expression Omnibus) database [37]. The GEO database is a comprehensive collection of publicly available gene expression data,
enabling large-scale meta-analyses, validation of findings, and the identification of novel biological insights across diverse experi-
mental conditions and organisms [38]. The GEO datasets of BCC (GSE125285 and GSE196292) and AK (GSE90643 and GSE32979)
were collected and analyzed with GEO2R to identify common differentially expressed genes between BCC and AK and validate our hub
genes.

2.10. Immune therapy opportunities

To provide more depth to this study, we have performed a literature mining at Google Scholar and PubMed to identify the latest
immune therapies that are common between BCC and AK [39,40]. At first, we identified the latest immune treatment opportunities for
BCC and AK separately and then identified the common immune treatment opportunities. The search terms used included "basal cell
carcinoma immune therapy," "actinic keratosis immune therapy," and related keywords. The findings from the two separate searches
were then compared to pinpoint the common immune treatment options between BCC and AK.

Fig. 2. Identification and visualization of overlapping genes. (A) Identification of overlapping genes using Fisher’s exact test. (B) Visualization of
overlapping genes using Venn diagram which shows 22 common genes between Basal cell carcinoma and Actinic keratosis genes dataset.
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3. Results

3.1. Gene collection, gene mining, linkage & common gene finding

The gene collection and mining process yielded 186 and 40 liable genes for BCC and AK, respectively, after processing and sorting
the associated genes for Homo sapiens. Notably, our linkage analysis revealed 22 common liable genes between BCC and AK, including
TP53, EGFR, CDKN2A, MMP9, PTGS2, VDR, BCL2, MMP2, EZH2, TP63, FOXP3, MSH2, MMP14, FLG, MC1R, CDKN2B, TIMP3, TYR,
SOX10, IRF4, KRT17, and NID1. These overlapping genes were identified using Fisher’s exact test which is presented in Fig. 2 (A). The
Venn diagram analysis (Fig. 2(B)) illustrates the total number of genes and common genes, confirming the intersection of two diseases
and highlighting the significance of these common genes in the pathogenesis of both BCC and AK.

3.2. Analysis of protein-protein interaction network

The analysis of PPI networks of common genes between BCC and AK from the IMEx interactome of the InnateDB and STRING
databases reveals several key insights. Fig. 3(A and B) shows that the protein TP53 has the highest degree of centrality (659 and 256)
across InnateDB and STRING databases respectively, indicating its central role as a highly connected hub and its importance in
facilitating communication between other proteins in the network. Similarly, EGFR also exhibits a high degree (391 and 137) of
centrality. Other proteins of note include EZH2, CDKN2A, TP63, and BCL2, which demonstrate relatively high degree centrality values,
implying their significance in the PPI network. Overall, the centrality measures derived from the InnateDB and STRING databases
provide a comprehensive understanding of the key players and their relative importance in the complex web of PPIs. Both databases
exhibit almost a common protein network with varying degrees of centralities. All the values of centrality measures of both of the
databases have been provided in the Supplementary File.

3.3. Topological properties assessment

The topological properties of the top 10 liability-exposed genes were analyzed to gain insights into their structural and functional
roles within the PPI network. As shown in Table 1, the genes exhibited varying degrees of closeness centrality, clustering coefficient,
and topological coefficient. The gene with the highest closeness centrality was TP53 (0.585), indicating that it is the most central and
influential node in the network. This suggests that TP53 plays a critical role in mediating interactions and information flow within the
network. In contrast, IRF4 had the lowest closeness centrality (0.343), implying a less central position in the network topology. The
clustering coefficient, which measures the degree of interconnectedness among a gene’s neighbors, was highest for PTGS2 (0.024) and
lowest for IRF4 (0.0), revealing differences in the local connectivity of the genes. The topological coefficient, which reflects the extent
of a gene’s shared neighbors with other nodes, was highest for IRF4 (0.055) and lowest for TP53 (0.003), indicating variations in the
gene’s propensity to be a hub or a bridge between functional modules within the network (Table 1 and Fig. 4(A)–D).

3.4. Co-expression & physical interaction analysis

GeneMANIA analyzed PPIs between common genes and revealed a significant prevalence of co-expression (33.94 %) and physical
interactions (27.90 %) among the identified protein pairs. This suggests a strong interplay between these proteins at both the

Fig. 3. Protein-Protein interaction network (A) InnateDB database and (B) STRING database using NetworkAnalyst 3.0 among common 22 genes to
represent condensed interconnection where TP53, EGFR, BCL2, EZH2, MSH2, CDKN2A were the most common and significantly connected in both
of the two databases.
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transcriptional and functional levels. Pathway-based interactions account for 16.32 % of the total, while shared protein domains (9.16
%), predicted interactions (6.75 %), genetic interactions (5.06 %), and co-localization (0.87 %) make up the remaining categories.
While pathway analysis and shared protein domains also contributed to our understanding of protein relationships, the prominence of
co-expression and physical interactions highlights their importance in mediating protein function and network formation. Interest-
ingly, the common genes: TP53, EGFR, EZH2, MMP2, BCL2, MSH2, TYR, and TP63 were responsible for the pathway formation, and
some new genes (TYRP1, TIMP2, and PRDM1) have also interacted with these common genes indicating these genes together may
share a common pathway responsible for skin cancer development. The interacting networks also revealed that the functional
consequence of these genetic interactions involved mostly in “response to light stimulus” (FDR: 1.21e-5), “response to UV” (FDR:
1.21e-5), and “melanosome” (FDR: 2.45e-5) which are common features responsible for skin cancers. The results of the co-expression
and physical interaction analysis are presented in Table 2 and Fig. 5(A–D).

3.5. GO enrichment for common genes

The GO enrichment analysis identified several significantly enriched biological processes pertinent to skin cancer, with "gland
development" (GO:0048732), "negative regulation of the cell cycle" (GO:0045786), and "response to oxidative stress" (GO:0006979)
being notably enriched, with p-values of 3.2364e− 8, 3.8675e− 8 and 4.6365e− 8, respectively, underscoring the potential role of these

Table 1
Using the Cytoscape tool, topological properties of the top 10 responsible genes from the PPI network were established.

Protein Name Degree Closeness
Centrality

Clustering
Coefficient

Betweenness
Centrality

Topological
Coefficient

TP53 659 0.585 0.001 0.618 0.003
EGFR 391 0.475 0.001 0.361 0.003
EZH2 149 0.369 0.002 0.106 0.013
CDKN2A 148 0.432 0.008 0.105 0.009
TP63 129 0.417 0.008 0.089 0.010
VDR 123 0.408 0.005 0.094 0.010
BCL2 114 0.405 0.006 0.081 0.011
MSH2 95 0.401 0.007 0.068 0.012
IRF4 60 0.343 0.000 0.051 0.055
PTGS2 39 0.393 0.024 0.020 0.029

Fig. 4. Topological Properties of the top 22 responsible genes based on the PPI network. (A) represent the Closeness Centrality. (B) represent the
avg. Cluster coefficient. (C) represent the Betweenness Centrality. (D) represent the Topological coefficient. The red dots represent the 22 genes
together with highly connected neighbors (black) that have similar topological properties.
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processes in tumorigenesis. The term "response to radiation" (GO:0009314) also showed significant enrichment (p-value = 9.3524e− 8),
highlighting the genes’ involvement in cellular responses to UV exposure, which is critical in skin cancer development. Furthermore,
"skin development" (GO:0043588) and "immune system development" (GO:0002520) were enriched, with p-values of 2.2816e− 7 and
3.2722e− 7, respectively, suggesting that these biological processes may contribute to the pathophysiology of skin cancers through
mechanisms related to tissue formation and immune response modulation. Hence, these findings shown in Fig. 6 are intricately linked
to the mechanisms underlying skin cancer progression and response to environmental stressors. The False Discovery Rate (FDR) of all
the terms was ≤0.05, suggesting the relevance and significance of these enrichments.

Fig. 5. Co-expression & Physical Interaction between 22 genes using GeneMANIA. (A) Whole network, (B) Co-expression, (C) Physical Interaction,
(D) Pathway. Smaller size node represents a lower degree of association and larger node size represents a higher degree of association among genes.

Fig. 6. Visualization of GO-terms enrichment analysis and their regulatory functions. 6 Major GO terms were significant with FDR ≤0.05.
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3.6. Pathway enrichment for common genes

Pathway enrichment analysis revealed significant enrichment of genes associated with skin cancer in both KEGG and Reactome
pathways. Fig. 7(A) represents the KEGG pathways implicated in skin cancer including microRNAs in cancer, Pathways in cancer, and
Proteoglycans in cancer, suggesting a complex interplay of genetic and molecular mechanisms in skin cancer development. On the
other hand, Reactome pathways, such as Intrinsic Pathway for Apoptosis, Extra-nuclear Estrogen Signaling, and Oxidative-Stress
Induced Senescence were also enriched, highlighting the important role of apoptosis, estrogen signaling, and senescence in skin
cancer progression shown in Fig. 7(B). Notably, the enrichment of Activation of Matrix Metalloproteinases and Degradation of
Extracellular Matrix implicated tissue architecture and microenvironment disruption in skin cancer.

3.7. Gene regulatory network analysis

The gene regulatory network analysis revealed complex interactions between genes, miRNAs, and transcription factors (TFs) in the
investigated system. Fig. 8 (A, B, and C) depict the gene-miRNA interaction, TF-gene interaction, and TF-miRNA co-regulatory
network, respectively, with detailed information on interacting miRNAs and TFs provided in the Supplementary File. Notably, genes
with significant interactions with miRNA in the network included TP53, BCL2, VDR, EGFR, EZH2, MMP2, MMP9, IRF4, NID1, PTGS2,
TIMP3, CDKN2B, CDKN2A, TP63, MMP14, FOXP3, and MSH2. Furthermore, genes exhibiting a high degree of interaction with TFs
(degree value > 10) were TP53, BCL2, PTGS2, MMP9, MMP2, EGFR, CDKN2A, VDR, CDKN2B, MMP14, and EZH2, suggesting their
central roles in the regulatory network. These genes are primarily involved in cell cycle regulation, apoptosis, and DNA repair, sug-
gesting their crucial roles in maintaining cellular homeostasis. The interactions between these genes and their regulators are significant
for understanding the underlying mechanisms of cellular processes and disease development.

Table 2
Protein-protein interaction network analysis on GeneManina.

Category Percentage

Co-expression 33.94 %
Physical Interactions 27.90 %
Pathway 16.32 %
Shared protein domains 9.16 %
Predicted 6.75 %
Genetic Interactions 5.06 %
Co-localization 0.87 %

Fig. 7. Pathway analysis revealed (A) KEGG and (B) Reactome Pathways enrichment.
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3.8. Protein-drug interaction network analysis

The protein-drug interaction network analysis presented in Fig. 9 revealed several key insights for skin cancer drug screening.
Ibuprofen, a common anti-inflammatory drug, was found to interact with both PTGS2 and BCL2, which are known to play important
roles in skin cancer progression. Additionally, the analysis identified several other proteins, including VDR, MMP2, MMP9, TYR, and
MC1R, that interacted with multiple drugs, suggesting their potential as important targets for skin cancer therapy developed by BCC or
AK. From manual observation of the DrugBank database and literature mining of Google Scholar and PubMed, we have gathered three
more approved drugs: fluorouracil, imiquimod, and aminolevulinic acid that are common between BCC and AK and, therefore, could
also be promising for the treatment of these skin cancers apart from ibuprofen [41–43]. This comprehensive network analysis provides

Fig. 8. Gene regulatory network analysis revealed (A) Gene-miRNA interaction, (B) TF-gene Interaction, and (C) TF-miRNA Coregulatory Network.

Fig. 9. Graphical representation of PDI network using Networkanalyst where PTGS and BCL2 interacted with common drug ibuprofen. Multiple
other drugs interacted with proteins VDR, MMP2, MMP9, TYR, and MC1R.
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a valuable framework for identifying and prioritizing drug candidates that can simultaneously target multiple critical pathways
involved in skin cancer development and progression, potentially leading to more effective treatment strategies. Hence, these findings
underscore the interconnected nature of drug-protein interactions and offer insights into potential drug repurposing opportunities. The
complete list of drug-protein interactions has been provided in the Supplementary File.

3.9. Validated hub genes with skin cancer therapeutic opportunities

Following the removal of duplicates, a total of 11,649 and 12,977 differentially expressed genes were obtained for basal cell
carcinoma (BCC) and actinic keratosis (AK) microarray datasets, respectively. Notably, seven of the initially identified top 10 hub
genes were found to be dysregulated in both BCC and AK skin cancers, including EGFR, MSH2, EZH2, CDKN2A, VDR, TP53, and BCL2.
Among these, EGFR and BCL2 were upregulated in both BCC and AK, while MSH2, EZH2, CDKN2A, VDR, and TP53 were down-
regulated in both conditions. The adjusted p-value <0.05 was considered statistically significant. These seven key hub genes are most
likely involved in the pathogenesis of skin cancer through the shared pathways of BCC and AK. Dysregulated genes and seven validated
hub genes have been shown in Fig. 10(A–C). Furthermore, these validated hub proteins have been considered promising therapeutic
targets for the treatment of these skin cancers. Consistent with this, we have previously validated and visualized BCL2 as a therapeutic
target in a protein-drug interaction network (Fig. 9). The compiled list of RNA-seq data for BCC and AK is provided in Supplementary
File 2.

3.10. Common immune therapy opportunities

The findings from the literature demonstrate promising opportunities for common immune therapy approaches in the treatment of
basal cell carcinoma (BCC) and actinic keratosis (AK). The immune response modifier imiquimod, which induces cytokine production
and stimulates both innate and adaptive immune pathways, is an approved and widely utilized treatment option for these conditions
[44]. Additionally, the human monoclonal antibody cemiplimab has been shown to enhance anti-tumor T-cell responses, thereby
modulating anti-cancer activities, and has demonstrated efficacy against both BCC and AK [45–47]. Both therapeutic agents showed
clinical effectiveness in managing BCC and AK, suggesting the viability of immune-based approaches in treating these dermatological
conditions.

4. Discussion

This study aimed to identify common molecular mechanisms of BCC And AK and provides several insights into central proteins
TP53 and EGFR, biological processes, and, involvement in pathways to regulate skin cancers.

TP53, a tumor suppressor gene, is critical in regulating the cell cycle, DNA repair, and apoptosis [48,49]. Mutations in TP53 are
commonly associated with various cancers, including skin cancers like Basal Cell Carcinoma (BCC) and Actinic Keratosis (AK) [42,50].
Its centrality in cellular processes makes it a crucial target for cancer therapies aimed at restoring normal regulatory functions. On the
other hand, EGFR is a receptor tyrosine kinase that, when activated, triggers a cascade of signaling pathways involved in cell pro-
liferation, survival, and differentiation [51]. Overexpression or mutations in EGFR are frequently implicated in various cancers,
including skin cancer [52]. Targeting EGFR protein has become a central strategy in cancer therapy, particularly in promoting tumor
growth and metastasis.

Initially, our study identified 22 common genes between the two cancers BCC and AK (TP53, EGFR, CDKN2A, MMP9, PTGS2, VDR,
BCL2, MMP2, EZH2, TP63, FOXP3, MSH2, MMP14, FLG, MC1R, CDKN2B, TIMP3, TYR, SOX10, IRF4, KRT17, and NID1), suggesting
shared pathogenic mechanisms and potential common therapeutic targets for both BCC and AK.

Analysis of PPI networks revealed TP53 and EGFR as central hub proteins with high degrees of centrality. Other highly connected
proteins (EZH2, CDKN2A, TP63, BCL2) further emphasize their importance in the disease processes. Furthermore, analysis of topo-
logical properties (closeness centrality, clustering coefficient, topological coefficient) of the top 10 liability genes provided further
insights into their roles within the PPI network, where again TP53 and EGFR showed the highest centrality, indicating its central role in
mediating interactions. The hub proteins were validated using RNA-seq data. Additionally, GeneMANIA analysis revealed a high
prevalence of co-expression (33.94 %) and physical interactions (27.90 %) among the common genes, indicating strong interplay at
both transcriptional and functional levels. This strengthens the biological relevance of the identified gene network.

GO enrichment analysis revealed significant enrichment of terms related to gland development, cell cycle regulation, response to
oxidative stress, response to radiation, and skin development. These findings underscore the involvement of these processes in BCC and
AK pathogenesis. KEGG and Reactome pathway enrichment revealed significant involvement of pathways related to cancer, apoptosis,
estrogen signaling, senescence, and extracellular matrix degradation, pointing to the complex interplay of multiple pathways in the
development and progression of BCC and AK.

Gene regulatory networks showed complex interactions between genes, microRNAs (miRNAs), and transcription factors (TFs). Key
genes (TP53, BCL2, EGFR, etc.) showed significant interactions with miRNAs and TFs, highlighting their central roles in regulating
cellular processes relevant to skin cancer. PDI network analysis identified potential drug targets for both BCC and AK. The interaction
of ibuprofen with PTGS2 and BCL2 suggests potential for drug repurposing opportunities. Other drugs, fluorouracil, imiquimod, and
aminolevulinic acid, interacted with both BCC and AK identified through literature mining, have else the potential for drug repur-
posing for the treatment of skin cancers, highlighting the potential for developing novel skin cancer therapies targeting multiple
pathways simultaneously. Apart from chemotherapy, the efficacy of imiquimod and cemiplimab in treating BCC and AK underscores

M.S. Mahmud et al. Heliyon 11 (2025) e41688 

10 



the potential of immune-based therapies for common dermatological conditions, which further strengthens our study on the associ-
ation between BCC and AK on skin cancer treatment.

This integrated approach provides a more holistic understanding of the shared genetic mechanisms underlying BCC and AK than
previous studies, which often focused on individual genes or pathways [11,53,54]. The identification of common genes and pathways
offers a potential for developing more effective and targeted therapies for both diseases. Therefore, future research should focus on
experimental validation of the identified genes using in vitro and in vivo models and identify clinical relevance of the identified
protein-drug interactions.

5. Conclusion

This research provides an overview of two types of skin cancer: BCC and AK. PPI and PDI, two of the most significant features, have
also been thoroughly examined in this study to elucidate the molecular mechanisms underlying BCC and AK. Our comprehensive
analysis revealed a set of 22 common genes between BCC and AK, which are interconnected through a complex network of protein-
protein interactions, co-expression, and regulatory relationships. Notably, TP53 and EGFR emerged as central hubs in the PPI network,
while functional enrichment analysis highlighted the importance of skin development, immune system development, response to
radiation, and several cancer pathways in the pathogenesis of both conditions. Furthermore, our analysis identified ibuprofen as a
potential therapeutic agent targeting PTGS2 and BCL2 and revealed multiple drug interactions with VDR, MMP2, MMP9, TYR, and
MC1R. These findings provide a rich resource for understanding the shared molecular mechanisms of BCC and AK and offer promising
avenues for developing novel therapeutic strategies and repurposing existing drugs for these debilitating skin cancers. Ultimately, our
study demonstrates the power of computational network analysis in illuminating the complex biology of human disease and informing
the developmental strategies of targeted therapies.
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