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Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious
virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes
advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny
virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain
host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into
virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail
is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env
proteins.

1. Introduction

All replication-competent retroviruses encode genes for
three major proteins: Gag, Pol, and Env. Complex retro-
viruses, such as human immunodeficiency virus type 1
(HIV-1), encode additional regulatory and accessory pro-
teins required for efficient replication in host cell or the
infected host organism. Gag, an essential retroviral pro-
tein, is necessary and sufficient for the assembly, budding,
and release of virus-like particles (VLPs) in all types of
retroviruses except the spumaviruses. Gag is synthesized
on cytosolic ribosomes and is assembled as a polyprotein
precursor. During and/or shortly after budding and release,
the polyprotein is cleaved into several domains by the viral
protease (Figure 1) as reviewed in [1–3]. The major domains
of the precursor Gag are the matrix (MA), capsid (CA), and
nucleocapsid (NC). The primary role of the N-terminal MA
domain is targeting of the Gag precursor protein to the site of
assembly, typically the plasma membrane (PM). In general,
electrostatic interactions between basic amino acid residues
in MA and the acidic inner leaflet of the PM are important
for Gag-membrane targeting [4, 5]. In the case of HIV-1, the
N-terminal myristate group and a cluster of basic residues

in the MA domain of the HIV-1 Gag that interacts with
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) together
target the Gag precursor Pr55Gag to the PM [6, 7]. Although
the Gag-membrane targeting of both murine leukemia virus
(MLV) and Mason-Pfizer monkey virus (MPMV) is also
affected by PI(4,5)P2 modulation [8, 9], it has been reported
that the membrane targeting of Rous sarcoma virus (RSV)
and human T-lymphotropic virus type 1 (HTLV-1) is largely
independent of PI(4,5)P2 [10, 11]. The MA domain also
plays a role in the incorporation of the Env glycoprotein
into virions. The CA domain is important for Gag-Gag
interactions during virus assembly and constitutes the outer
part of the viral core after Gag processing by the viral protease
[12–14]. NC is the primary nucleic acid binding domain of
Gag. This small, basic domain is responsible for the binding
and incorporation of the viral RNA genome into virions,
which is mediated by Gag interactions with genomic RNA.

Gag proteins are synthesized and transported to the
PM. Many studies demonstrate that the major site of HIV-
1 assembly is the PM [15–18], although late endosomes
could be a platform for virus assembly under specific
conditions [19]. In primary macrophages, HIV-1 has been
shown to assemble in endosomal vesicles. However, studies
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Figure 1: Synthesis and trafficking of HIV-1 Gag and Env proteins. Precursor Gag (Pr55Gag) (left) is synthesized on cytosolic ribosomes
and traffics to the plasma membrane (PM), where it forms multimers (middle). Env is synthesized as the gp160 precursor, and undergoes
glycosylation and oligomerization in the RER. Oligomerized gp160 is transported to the Golgi and the TGN, where it is processed into the
surface glycoprotein gp120 and the transmembrane glycoprotein gp41 by cellular enzymes. The gp120/gp41 complexes are transported
through the secretory pathway to the PM and are incorporated into virus particles (middle). At the PM, most of the Env protein is
endocytosed into early endosomes (EE), which mature into late endosomes (LE) and then into lysosomes for Env degradation (right).
However, some Env proteins are recycled to the PM through recycling endosomes (RE). During and after virus release, processing of Pr55Gag

by virus proteases yields mature virions. The protein domains of Pr55Gag and Env are illustrated in the insert at the top left. The illustration
was adapted from Checkley et al. with permission from Elsevier [23].

have recently suggested that the above vesicles are not late
endosomes but rather membrane invaginations connected to
the PM [20–22].

In addition to Gag, the other major structural retroviral
protein is the Env glycoprotein. Env proteins are required
for virus entry into target cells and are thus essential for
forming infectious retroviral particles. In this paper, we
discuss current knowledge about the biosynthesis, intracel-
lular trafficking, and virion incorporation of retroviral Env
proteins, as well as the membrane microdomains involved in
virus assembly and/or transfer. Most of this information was
obtained from studies on HIV-1.

2. Env Biosynthesis and Trafficking to the
Plasma Membrane

Retroviral Env glycoproteins are synthesized from a spliced
form of the viral genomic RNA as reviewed in [23–
25] (Figure 1). Translation of the Env protein occurs on
ribosomes bound to the endoplasmic reticulum (ER) and
starts with the leader sequence, which contains a small,
N-terminal hydrophobic signal peptide. The Env protein
is cotranslationally inserted into the lumen of the rough
ER. In the ER, the leader sequence is removed by cellular
signal peptidases. In addition, Env polypeptides are N- and

O-glycosylated and subsequently trimmed [26, 27]. The
number and location of glycosylated residues varies broadly
among retroviruses. The hydrophobic transmembrane (TM)
domain prevents Env proteins from being fully released into
the lumen of the ER [28, 29]. The amino acid sequence
following the TM is referred to as the cytoplasmic tail (CT),
which varies from 30 to around 150 residues, depending
on the virus. Env proteins are folded and assembled into
oligomers in the RER. Retroviral Env proteins form trimers
[30–33]. The HIV-1 accessory protein Vpu binds to the CD4
receptor through its cytoplasmic domain and downregulates
the receptor by transporting it to the proteasome for degra-
dation, thereby preventing premature interactions between
Env and its receptor [34–36].

In the Golgi, cleavage of the retroviral Env precursor
occurs at a polybasic (e.g., K/R-X-K/R-R) motif by cellular
proteases such as furin or closely related enzymes probably
within or near the trans-Golgi network (TGN) [37–43].
For HIV-1, the surface glycoprotein gp120 and the TM
glycoprotein gp41, which bind together noncovalently, are
both formed from the same precursor protein, gp160. Gp160
processing is essential for the activation of Env fusogenicity
and virus infectivity [38, 42, 44–46]. Similarly, cleavage
of Env is also essential for membrane fusion and virus
infectivity in MLV [39, 47–50], in RSV [51, 52], and in
mouse mammary tumor virus (MMTV) [53]. A recent
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report showed that cleavage of MLV Env by furin also
plays an important role in Env intracellular trafficking and
incorporation [54]. Although most retroviral Env proteins
including that of HIV-1 are associated with intracellular
membranes [55–57], at least part of the gp120/gp41 trimer
complex traffics through the secretory pathway to the PM.
It has been suggested that AP-1, one of adaptor proteins for
clathrin-coated vesicle formation, is involved in the correct
sorting of HIV-1 Env from the TGN to the PM, [58, 59].
It has been reported that intracellular CTLA-4-containing
secretory granules are involved in the trafficking of HIV-1
Env to the PM although the subsequent trafficking of Env
after the Golgi is not well understood [60].

After reaching the PM, like those of other lentiviruses,
HIV-1 Env undergoes rapid endocytosis, which is mediated
by the interaction between the μ2 subunit of the clathrin
adaptor AP-2 and a membrane-proximal, Tyr-based motif
(YxxL) in the gp41 CT [58, 61, 62]. Although some of the
endocytosed Env is recycled back to the PM, most retroviral
Env is associated with intracellular membranes [63, 64].
The level of gp120-gp41 oligomers on HIV-1 virions is
relatively low [33]. Maintaining low levels of Env at the cell
surface allows the infected cells to evade the host immune
response and to avoid induction of Env-mediated apoptosis.
Gammaretroviruses such as MLV and MPMV also have
dileucine- and Tyr-based motifs in their Env CT. These
motifs are important to regulate intracellular trafficking
of Env of both retroviruses via interactions with clathrin
adaptors [65, 66].

As for pseudotyping of gammaretroviruses, it has been
reported that the feline endogenous retrovirus RD114
Env does not allow pseudotyping with viral cores from
lentiviruses such as SIV, whereas the RD114 Env is incor-
porated into MLV virions [67–69]. Intracellular trafficking
of Gag and Env was examined using a set of chimeric
viruses between MLV and RD114 [57]. Interestingly, it was
found that the RD114 Env was mainly localized along
the secretory pathway, whereas the MLV Env was mostly
localized in endosomes, and that intracellular localization
was dependent on specific motifs in the Env CT [57]. In
addition, subsequent work revealed that an acidic cluster in
the RD114 Env CT regulates assembly of not only the RD114
Env but also the MLV Env through the interaction with a host
factor, phosphofurin acidic-cluster-sorting protein 1 [66].

3. Env Incorporation into Virions

Several models have been proposed for the incorporation of
retroviral Env glycoprotein into virions as reviewed in [23,
70] (Figure 2).

3.1. Passive Incorporation. Passive incorporation is the sim-
plest model for the incorporation of Env proteins into virus
particles (Figure 2(a)). There are several lines of evidence
supporting this model.

First, viral pseudotyping with a foreign glycoprotein
can occur easily in many cases although there are some
exceptions, one of which is the exclusion of HIV-1 or SIV

Env with the long CT from most retrovirus cores [70]. With
respect to HIV-1, the virus can be pseudotyped with Env
glycoproteins not only from several other retroviruses but
also with those from other virus families such as ortho (para)
myxoviruses and flaviviruses [71–84].

Second, retroviruses allow passive incorporation of host
membrane proteins into virus particles [85–87]. Most cel-
lular proteins are incorporated into the retrovirus envelope
without significant sorting [88, 89].

Finally, in the case of HIV-1, several studies have
demonstrated that the gp41 CT can be removed without
affecting incorporation of the Env into virions, although this
has been shown to occur only for some laboratory cell lines
such as HeLa or 293T [90–94].

3.2. Regulated Incorporation through Direct Gag-Env Inter-
actions. Although several lines of evidence support the
passive incorporation model for retroviral Env, there is much
evidence indicating that Env incorporation into virions
is regulated by direct interactions between Gag and Env
proteins (Figure 2(b)). Although removal of the gp41 CT
sequence of HIV-1 has little effect on Env incorporation in
some cell types, as described above, smaller deletions in CT
regions cause severe defects in Env incorporation [95–100].
The MA domain of Gag has been shown to be important
for Env incorporation into virions [91, 92, 101, 102]. The
defect in Env incorporation caused by deletion of the gp41
CT is reversed by several MA mutations, indicating that
an interaction between Env and the MA domain of Gag is
required for incorporation of full-length Env into virions, at
least in the case of HIV-1 [93, 98].

More evidence for direct Gag-Env interaction comes
from the finding that HIV-1 Env directs Gag budding to
the basolateral surface of polarized epithelial Madin-Darby
canine kidney (MDCK) cells through the CT of HIV-1
Env, whereas Gag alone buds in a nonpolarized fashion
[103–106]. The Tyr-based motif in the gp41 CT is also
utilized in polarized budding of HIV-1 in lymphocytes [107].
Surprisingly, the polarized budding of HIV-1 in MDCK cells
could also be promoted by MLV and HTLV-1 Env through
their CT [108]. It also has been reported that coexpression
of Pr55Gag inhibits endocytosis of HIV-1 Env through its
interaction with the gp41 CT [63]. Another example of
the specific Gag-Env interactions was demonstrated using
Gag and Env proteins of MLV and HIV-1 in rat neurons
[109]. Similarly, MLV Env is preferentially recruited onto
MLV Gag through its CT domain in the presence of both
MLV and HIV-1 cores although the authors also show an
alternative mechanism by which the recruitment to HIV-
1 budding sites is independent of the CT domain of MLV
Env [110]. Furthermore, RSV Env is exclusively recruited
to RSV budding sites through its CT, suggesting that the
interaction between Env and Gag is direct in the case of this
avian retrovirus [111].

In addition to the circumstantial evidence discussed
above, some biochemical data suggest a direct interaction
between Gag and Env. In vitro binding between MA and
a gp41 CT-GST fusion protein has been reported for both
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Figure 2: Proposed models for Env incorporation. (a) The passive incorporation model assumes no interaction between Gag and Env. (b)
In the first regulated incorporation model, a direct interaction between the MA domain of Gag and the CT domain of Env occurs during
Env incorporation. (c) In the second regulated incorporation model, Gag and Env interact indirectly through a bridging protein (green
pentagon) that binds to both proteins. The color scheme for Gag and Env is the same as that in Figure 1. The illustration was adapted from
Checkley et al. with permission from Elsevier [23].

HIV-1 and SIV [112, 113]. Peptides corresponding to a
large central domain of gp41 CT inhibited the capture of
membrane-free Pr55Gag with an anti-p24 antibody [114]. In
addition, a stable, detergent-resistant gp41-Pr55Gag interac-
tion was detected in immature HIV-1 virions. The retention
of gp41 in detergent-treated virions is dependent on the CT
region, suggesting a direct or indirect interaction between
Pr55Gag and gp41 [115, 116].

3.3. Regulated Incorporation through Indirect Gag-Env Inter-
actions. In the third model, it is assumed that host cellular
factors (mostly proteins) play a role in bridging Gag and
Env in virus-infected cells (Figure 2(c)). Several host factors
have been reported to bind to Gag and/or Env of HIV-1 or
SIV however, only a couple of host factors were shown to be
required for Env incorporation and/or viral replication.

The 47-kDa tail-interacting protein (TIP47) has been
reported to bridge Gag and Env, allowing efficient Env
incorporation in HIV-1 [117, 118]. The same group also
showed that both the WE motif near the N-terminus of the
MA domain and the YW motif in the gp41 CT domain are
important for interactions between Gag or Env and TIP47
[118]. In a subsequent paper, the same group showed that
mutations in either the WE motif of MA or the YW motif
in the gp41 CT caused defects in virus replication in primary
monocyte-derived macrophages [119]. Although this finding
of an important role for TIP47 in Env incorporation in
HIV-1 has received much attention from retrovirologists, no
confirmatory data have been published by other researchers
in this field.

Human discs large protein (hDlg1) has been reported to
interact with the CT of HTLV-1 Env and to colocalize with
both Env and Gag in virus-infected cells [120]. Subsequent
work demonstrated that Dlg1 also binds HIV-1 Gag and that
the expression level of Dlg1 is inversely correlated with HIV-1
Env expression and incorporation levels of the Env proteins,

although the mechanism behind this phenomena needs to be
investigated [121].

Prenylated Rab acceptor 1 (PRA1), which was identified
as a Rab regulatory protein, was reported to be a binding
partner for the SIV gp41 CT in a mammalian yeast two-
hybrid (Y2H) assay [122]. Although colocalization of PRA1
and SIV Env was observed, changes in the endogenous levels
of PRA1 did not affect virus production, Env incorporation,
or infectivity of SIV or HIV-1 [123].

A Prohibitin 1/Prohibitin 2 (Phb1/Phb2) heterodimer
was identified as a binding partner of the gp41 CT of HIV-
1 using human T-cell lines and tandem affinity chromatog-
raphy [124]. Phb1 and Phb2 are members of the prohibitin
superfamily of proteins, which are localized to several cellular
compartments such as the mitochondria, nucleus, and the
PM [125, 126]. Gp41 CT mutants, in which binding to
Phb1/Phb2 is disrupted, could replicate well in permissive
cell types such as MT-4, but could not replicate efficiently in
nonpermissive H9 cells [124]. Further analysis is necessary
to elucidate the mechanism by which these proteins regulate
virus replication through interactions with Env.

Luman, a transcription factor that is mainly localized
to the ER, was found to interact with the gp41 CT of
HIV-1 in a Y2H screen using a cDNA library from human
peripheral blood lymphocytes (PBL) [127]. Overexpression
of a constitutively active form of this protein reduced the
intracellular levels of Gag and Env, leading to a decrease in
virus release. The mechanism for this negative effect on virus
assembly involves Luman binding to Tat, which decreases
Tat-medicated transcription [127].

By using a Y2H screen with human cDNA libraries, p115-
RhoGEF, an activator of Rho GTPase, was found to interact
with the gp41 CT through its C-terminal regulatory domain
[128]. The gp41 mutants that lost the ability to bind p115
showed impaired replication kinetics in T-cell lines such as
SupT1, H9, and Jurkat, suggesting that the gp41 CT could



Molecular Biology International 5

modulate the activity of p115-RhoGEF to support virus
replication [128].

In addition to the host factors described above, calmod-
ulin [129–132] and α-catenin [133–135] have been reported
to interact with HIV-1 and/or SIV. However, their roles in
virus replication, especially with respect to the Env functions
of both proteins, have not been clearly elucidated.

4. Membrane Microdomains

Regardless of whether direct or indirect interactions between
retroviral Gag and Env proteins are required for Env incor-
poration into virions, a great deal of experimental evidence
suggests that retroviruses assemble and bud from “mem-
brane microdomains.” The most well-known microdomains
are “lipid raft(s),” which are enriched in cholesterol and
sphingolipids [136, 137]. Lipid rafts are widely thought to
function as a platform for the assembly of protein complexes
and to allow various biological processes such as cellular
transport and signal transduction to proceed efficiently
[138, 139]. Lipid rafts are reportedly used as assembly
platforms or entry scaffolds in the replication of enveloped
viruses such as retroviruses [140–146]. The association of
Gag/Env with lipid rafts is important for the regulation of
Env incorporation and pseudotyping [143, 144, 147, 148].
Evidence that both the HIV-1 Pr55Gag and Env proteins are
preferentially localized to lipid rafts comes from biochemical
studies as well as direct observations by microscopy [142,
149, 150].

Another membrane microdomain for retrovirus assem-
bly is the “tetraspanin-enriched microdomain (TEM)” [151–
154]. Tetraspanins are a superfamily of cell surface proteins
that are ubiquitously expressed in mammalian cells. TEMs
also act as platforms for signal transduction and immune
responses. TEMs have been reported to be involved in the
assembly and release of not only HIV-1, but also HTLV-
1 and HCV [155]. When both HIV-1 and influenza virus
were produced in the same cell, only HIV-1 colocalized with
the TEM marker, and its release was inhibited by an anti-
CD9 Ab, which led to extensive aggregation of tetraspanins
[156]. Analysis of dynamics of both lipid rafts and TEMs
by quantitative microscopy has revealed that components
of both lipid rafts and TEMs are recruited during viral
assembly to create a new microdomain that is different from
preexisting membrane microdomains [153, 157].

There have been three recent reports in which both
pseudotyping and microdomain issues were discussed. In
the first paper, the authors examined HIV-1 assembly under
conditions where the Env proteins of HIV-1 and Ebola virus
were coexpressed with HIV-1 Gag in the same cell [158].
They found that infectious HIV-1 virions were released
with both types of Env proteins. Interestingly, however,
the virions contained either HIV-1 Env or Ebola virus
glycoprotein (GP), but not both Env proteins within a single
virion. These results suggest that HIV-1 Env and Ebola virus
GP localized to distinct microdomains on the surface of
the same cell [158]. In the second paper, the subcellular
localization of Gag and Env proteins was investigated using

a combination of three different retroviral Env proteins
(RSV Env, MLV Env, or vesicular stomatitis virus (VSV)
G) and two different Gag proteins (RSV or HIV-1) [111].
Both VSV-G and MLV Env were redistributed to the virus
budding sites when coexpressed with HIV-1 or RSV Gag. In
contrast, RSV Env was mostly transported to RSV budding
sites. A subsequent paper from the same group showed
that the CT of MLV is not required for recruitment of
MLV Env to HIV-1 budding sites, suggesting that there are
no specific interactions between MLV Env and HIV-1 Gag
[110]. Collectively, these results also suggest that retroviral
Env glycoproteins are not recruited to preexisting membrane
platforms but rather that they are actively recruited to newly
formed microdomains on the cell surface [111].

Human retroviruses such as HIV-1 and HTLV-1 spread
more efficiently between target T cells by cell-cell infection
than by cell-free infection [159, 160]. Sattentau et al. pro-
posed, in analogy to the “immunological synapse”, the “viro-
logical synapse (VS)” as a point of contact between virus-
infected cells and uninfected cells [161, 162]. The molecular
mechanisms of retroviral VS formation are as follows. (1)
With respect to HIV-1 T-cell VS, initial contact between
virus-infected cells and uninfected cells occurs through
gp120-CD4 binding. Subsequent interactions between inte-
grins and ICAMs enforce and maintain the stability of these
junctions. (2) The gp120-CD4 interaction recruits CD4,
coreceptors such as CXCR or CCR5, adhesion molecules,
and filamentous actin into the synaptic area. (3) The cellular
secretory machinery and microtubule organizing centers
(MTOC) are polarized towards the HIV-1 assembly sites at
the PM to form the VS. It has been reported that a so-
called microsynapse formed by nanotubes between virus-
infected cells and uninfected cells is also involved in cell-cell
infection of HIV-1 [84, 163]. In cell-cell transfer of HTLV-
1-infected cells, an extracellular matrix structure referred to
as the “viral biofilm” was proposed as an alternative to the
VS [164]. In addition to HIV-1 and HTLV-1, the spread of
MLV between fibroblasts also occurs via the VS [165, 166]. It
is noteworthy that assembly of MLV is directed towards cell-
cell contact sites through the interaction of the CT of MLV
Env with Gag [167, 168]. Although the concept of cell-cell
infection through the VS is now well appreciated, the detailed
molecular mechanism of VS assembly and its relevance to
viral spread in vivo will require further elucidation through
the use of more advanced techniques.

5. Conclusions and Perspectives

Incorporation of Env glycoproteins into virions is crucial for
producing infectious retroviral particles. Although this paper
has introduced several experimental models for retroviral
Env trafficking and/or incorporation, the correct mechanism
for this process is still unclear. The following questions must
be clearly addressed to not only gain a better understanding
of this complex biological process, but also to develop new
antiretroviral compounds that target Env incorporation.

(1) What are the structures of the CTs of retroviral Env
proteins? The answers for this question will give
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useful information on elucidating a role of the Env
CTs in the Env trafficking and/or incorporation in
virus-infected cells.

(2) What host factor(s) are necessary for the retroviral
Env trafficking and/or incorporation into virions?

(3) Where and how Env and Gag proteins of retroviruses
are recruited to the assembly sites in order to form
infectious virus particles?
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