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The human gastrointestinal tract has an enormous and diverse microbial community,
termed microbiota, that is necessary for the development of the immune system and
tissue homeostasis. In contrast, microbial dysbiosis is associated with various
inflammatory and autoimmune diseases as well as neurological disorders in humans by
affecting not only the immune system in the gastrointestinal tract but also other distal
organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that
function as a gatekeeper for immune activation and are essential for peripheral
autoimmunity prevention. Tregs are crucial to the maintenance of immunological
homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-
lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and
distinct function. The gut microbiota has an impact on Tregs development, accumulation,
and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed
towards gut microbes, which supports the host–microbiota symbiotic interaction in the
gut. Recent studies have indicated that Tregs interact with a variety of resident cells in
central nervous system (CNS) to limit the progression of neurological illnesses such as
ischemic stroke, Alzheimer’s disease, and Parkinson’s disease. The gastrointestinal tract
and CNS are functionally connected, and current findings provide insights that Tregs
function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells.
The purpose of this study is to explain our current knowledge of the biological role of
tissue-resident Tregs, as well as the interaction along the gut-brain axis.
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INTRODUCTION

The gastrointestinal (GI) tract and central nervous system (CNS) are constantly in communication
with one another through a bidirectional link termed as the ‘gut-brain axis’. The gut-brain axis is a
complex inter-organ communication network, comprised of CNS, the peripheral nervous system
(PNS), the intestinal immune system, and commensal microbiota that contributes to the regulation of
CNS function, development, and host behavior (Figure 1) (1). The human intestine contains a wide
org June 2022 | Volume 13 | Article 9160661
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and diversified microbial ecology, in which the microbiota has
enormous effects on host’s physiology and pathology, implicating
its roles in health and disease (2). The gut microbiota is crucial for
the physiological function of the host including food digestion,
development, protection against pathogens, and immune system
education (3–5). In contrast, microbial imbalance (dysbiosis) in
the gut has been related to several inflammatory disorders such as
inflammatory bowel disease (IBD) and various peripheral
autoimmune diseases (6–9). Importantly, numerous studies have
also shown a link between dysbiosis in gut microbiome and a
variety of neurological disorders, suggesting potential of intestinal
inflammation by dysbiosis for neuropathology through
modulation of the gut-brain axis (6, 10). However, despite
recent advances in the field (11–16), little is known about how
signaling from the gut microbiota to the brain governs CNS
pathophysiology, and vice versa and the mechanisms underlying
these complex interactions require elucidation.

Forkhead box P3 (FOXP3) + regulatory T cells (Tregs) are a
subset of CD4+ T cells that operate as a checkpoint for
immunological activation and are required to prevent systemic
autoimmunity. The major function of Tregs in the intestine is to
regulate inflammation. While Tregs can be recruited from the
thymus to the intestine, the majority of Tregs in the gut are
peripherally differentiated from FOXP3-negative conventional
CD4+ T cells in order to induce tolerogenic responses to
microbiota and dietary antigens (17, 18). Notably, the
dysregulation of Tregs has a role in the development of chronic
inflammatory disorders such as IBD (18, 19). Along with
regulating immunological tolerance in barrier tissues, Tregs are
Frontiers in Immunology | www.frontiersin.org 2
critical for tissue homeostasis and remodeling in other organs,
including the CNS, which has long been considered an immune-
privileged site (Figure 1) (20, 21).

Recent research demonstrated that Tregs interact with a diverse
range of resident cells in the CNS, resulting in a powerful
neuroprotective effect in neuronal diseases (22, 23). The CNS-
resident Tregs participate in controlling the neuroinflammatory
response and neuroplasticity, associated with ischemic stroke,
Alzheimer’s disease (AD), and Parkinson’s disease (PD).
However, the characteristics of CNS-resident Tregs are poorly
understood since the limited numbers of Tregs in CNS under
homeostatic conditions (20, 24). Despite the established function
of Tregs in each specific organ, the numerous mechanisms
along the gut-brain axis remain poorly understood in health and
disease. Thus, increasing our understanding of tissue-resident
Tregs activity in the settings of inflammation and homeostasis
may help improve therapy options for persons suffering not only
from inflammatory disorders in barrier tissues, but also from
neuroinflammatory illnesses.

This article discusses the induction, maintenance, trafficking,
and activity of Tregs to maintain homeostasis in non-lymphoid
tissues (intestine and brain) and suggest Tregs as the critical
regulator of immune homeostasis along the gut-brain axis.

TREGS IN THE INTESTINE

The intestine, including the small intestine and the colon, is the
largest immune organ which is responsible for food digestion,
nutrient absorption, and protecting the host against harmful
FIGURE 1 | Schematic overview showing the interaction between the GI tract and the CNS through the ‘gut-brain axis’. The central nervous system is connected with the
intestine by the peripheral nerves for reciprocal interaction and tissue homeostasis in which immune cells including Tregs are involved in this entangled inter-organ communication.
Immunological factors, produced by gut immune cells, can regulate the nerves innervating to the intestine, eventually affecting the CNS function. In the opposite direction,
neurological factors such as neurotransmitters can act on the gut immune system. Furthermore, the gut microbiome can modulate the gut-brain axis by microbe-derived
molecules. In these processes, Tregs may act as a critical regulator of pathophysiology along the gut-brain axis. (All figures in the review were created with BioRender.com).
June 2022 | Volume 13 | Article 916066
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pathogens while maintaining immune tolerance to innocuous
microbial or dietary stimuli (25). Tregs found in the intestine
differ from those residing in other tissues with tissue-specific
characteristics and activities. While Tregs in lymphoid organs
mainly express self-antigen specific T cell receptors (TCRs),
substantial number of intestinal Tregs have a set of TCRs
specific for intestinal antigens which is essential to suppress
immune responses against harmless dietary antigens and
commensal microorganisms (26, 27). Intestinal specific cues
have potential influence for the development, migration, and
maintenance of Tregs in GI tract (28). Certain microbiota
members, in particular, supply antigens and immunoregulatory
small molecules that affect intestinal Tregs on a constant basis
(28). Thus, understanding the development and maintenance of
intestinal Tregs reveals critical information regarding host-
microbiota interactions in health and disease context (28).

Tregs constitute more than 30% of the lamina propria (LP)
CD4+ T cells in the colon and 20% of LP CD4+ T cells in the
small intestine (28). Tregs, generated in the thymus, are
characterized by the expression of IKAROS family zinc finger
2 (HELIOS) and Neuropilin-1 (NRP1). Interestingly, compared
with Tregs in lymphoid tissues, HELIOS+NRP1+ Tregs constitute
only 30% to 35% of the colonic Tregs in both mouse and human,
suggesting peripherally derived Treg cells (pTregs) are the main
population in the GI tract (27, 29–32). In small intestine, where is
the primary site of nutritional absorption with abundant dietary
antigens, the retinoic acid-related orphan receptor gamma-t
(RORgt) negative pTregs are highly abundant that are
responsible for maintaining immune tolerance against dietary
antigens (Figure 2) (33). Around 50% of LP Tregs are dietary
antigen specific RORgt- pTregs, whereas only 15% of Tregs are
RORgt+HELIOS- Tregs that are primarily responsible for
intestinal microbiota in small intestine (29). RORgt+ but not
RORgt- Tregs were diminished in antibiotics-treated mice,
whereas the deprivation of dietary antigens led to severe
reduction of NRP1low pTregs due to the specific depletion of
RORgt– pTregs in the small intestine, suggesting while the
microbial antigens are essential for the induction of RORgt+

pTregs, the induction of RORgt- Tregs requires exposure to
dietary antigens (33). Indeed, mice lacking NRP1lowRORgt–

Tregs became more susceptible to food allergy (33).
On the other hand, the RORgt+ Tregs, which are highly

abundant in the colonic LP, have unique roles to restrain
intestinal inflammation, triggered by gut microbiota (34). In
the colon, HELIOS−RORgt+FOXP3+ pTregs are the main source
of Interleukin(IL)-10, which is necessary for maintaining
intestinal homeostasis (Figure 2) (28). RORgt expression is
essential for the pTregs to control commensal induced
inflammation, while the Tregs-specific ablation of Rorgt causes
hyper-production of the pro-inflammatory cytokines such as IL-
17 and IFN-g in FOXP3- conventional CD4+ T cells (Figure 2)
(29) . The transcription factor c-MAF, encoded by
musculoaponeurotic fibrosarcoma (Maf) gene, is important for
maintaining the immune tolerance to bacter ia by
RORgt+FOXP3+ Tregs, supported by Tregs-specific deletion of
c-Maf resulting in impaired IL-10 production and induction of
Frontiers in Immunology | www.frontiersin.org 3
bacteria-specific inflammatory T-helper 17 cells (Th17). This
suggests a central role of c-MAF in the proper function of colonic
RORgt+ Tregs (35). Moreover, Tregs-specific c-Maf deficiency
has shown to trigger gut dysbiosis together with immune
alteration with enhanced IgA-producing plasma cells and IL-
17a/IL-22-producing Th17 in intestine indicating a key role of c-
MAF in Tregs to maintain the homeostatic relationship between
host and microbiota (36). In addition to the induction of
tolerance against gut commensals, microbiota-dependent
activation of the RORgt+ Tregs population is required for
protection against food allergy (37).

A distinct colonic Tregs subpopulation is defined as the GATA-
binding-protein (GATA)3+ HELIOS+ Tregs, which are mainly
derived from thymus and play the key immunosuppressors
during intestinal inflammation (Figure 2) (38). GATA3
expression is not necessary for the maintenance and proper
function of Tregs at steady state, but essential for the
accumulation of Tregs at inflamed sites during inflammation (39).
Additionally, deletion of Gata3 in Tregs results in spontaneous
inflammation and intestinal pathologies with aging in mice (40, 41).
Colonic GATA3+ HELIOS+ Tregs have been shown to express the
IL-33 receptor ST2 (IL1RL1) which enable Tregs to expand in
response to the alarmin IL-33 during inflammation (39). IL-33/ST2
engagement signals into Tregs to promote serine phosphorylation of
GATA3 together with IL-2 and TCR engagement (Figure 2). This,
in turn, increases the expression of St2 and Foxp3, thus regulating
the proliferation and maintenance of Tregs (Figure 2) (42).
Furthermore, expression of OX40 by the GATA3+ST2+HELIOS+

Tregs subpopulation is essential for the accumulation of Tregs in the
colon, as well as for the restriction of effector T cells in naïve T cell
transfer model of colitis (Figure 2) (43).

Even though the colon harbors mainly pTregs, single-cell and
high-throughput sequencing of the TCR repertoires of FOXP3+

Tregs revealed that the majority of the dominant TCRs are
shared by colonic and thymic Tregs (44). This suggests that a
vast majority of colonic Tregs might be of thymic origin,
supported by the crucial roles of thymic Tregs (tTregs) to
mediate the tolerance against intestinal antigens (44). A more
recent study shows that early life colonization of bacteria in the
intestine leads to the transport of microbial antigens from the
intestine to the thymus by CX3CR1+ dendritic cells (DCs), hence
promoting the development of microbiota-specific T
lymphocytes (45). Further studies are needed to clarify whether
microbiota-specific Tregs are induced in the thymus as well.
Overall, these findings suggest that the colonic Tregs, which
include both pTregs and tTregs, contribute together to maintain
intestinal homeostasis.
MICROBIAL REGULATION OF INTESTINAL
TREGS

The microbiota is crucial for the maturation of the immune
system during early life (46). The “window of opportunity”
theory suggests that the interaction between the microbiota
and the host immune system during a critical developmental
June 2022 | Volume 13 | Article 916066
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period might have long-lasting implications for disease
susceptibility in later life (47, 48). During this time-window,
goblet cell function as passages to facilitate the delivery of
microbial antigens from the intestinal lumen to the CD103+ LP
DCs for Tregs development (49). A transient depletion of the
Tregs during weaning period (4 weeks of age) results in enhanced
susceptibility to inflammatory pathology later in life (50),
suggesting the unique roles of Tregs at early developmental
stage by microbiota to maintain tissue homeostasis later in life.

Studies using germ free (GF) mice revealed the necessity of
microbiota for intestinal Tregs homeostasis. GF mice present a
decreased frequency of RORgt+ Tregs compared to specific-
pathogen-free (SPF) mice which can be rescued by colonization
with Clostridium species (51), altered Schaedler flora (ASF) (52),
or Bacteroides fragilis (53). RORgt+FOXP3+ Tregs mediate the
tolerance to a pathobiont, Helicobacter hepaticus, through
Frontiers in Immunology | www.frontiersin.org 4
restriction of pro-inflammatory Th17 in a transcription factor c-
MAF-dependent manner (35). Several studies have revealed the
regulatory role of the bacteria-derived metabolites, particularly
short-chain fatty acids (SCFAs) (54–57) and bile acids (BAs) (58–
60) in Tregs differentiation (Figure 2). SCFAs induce the
differentiation of Tregs via T cell intrinsic upregulation of the
Foxp3 expression via either through inhibition of histone
deacetylases (HDACs) at transcriptional level via G protein-
coupled receptor (GPR) 43 (61), or by promoting histone
acetylation in the conserved noncoding sequence region 1
(CNS1) of the Foxp3 genomic locus (56). Moreover, SCFAs
enhance GPR15 expression, which in turn induces Tregs
accumulation in the colon (61, 62). However, a recent study
proposed conflicting results, showing minor effects of dietary
supplementation with SCFAs to promote pTregs induction
neither in mesenteric lymph nodes nor the colonic LP, which
FIGURE 2 | The three main subsets of FOXP3+ Tregs are controlled by host and environmental factors in the intestine. 1) The FOXP3+ RORgt- Tregs are present
mainly in the small intestine, mainly induced by dietary antigens. GATA3+ Tregs are thymic origin Tregs with high level of ST2, thus these cells can respond to IL-33,
secreted from IECs in response to tissue damage. Moreover, OX40 expression on GATA3+ Tregs supports the accumulation of Tregs in the colon and OX40 is
required for the Tregs-mediated restriction of effector T cells (Teff). 2) RORgt+ Tregs constitute the main colonic Tregs subset, promoted by the microbiota. SCFAs,
secondary BAs and AhR ligands can induce Tregs differentiation, however the effect of these metabolites on different Tregs subsets are not known, except a recent
finding showing that BAs induce RORgt+ Tregs. 3) CD103+ DCs induce the differentiation of Tregs in a TGF-b-dependent manner and suppress Th17 cells. These
functions of DCs are regulated by aVb8 integrin-mediated activation of latent TGF-b1 and RALDH-mediated metabolizing of vitamin A into RA. ILC3s, triggered by
microbe-activated macrophages, promote Tregs in the intestine through IL-2 or CSF2 production. These microbiota induced Tregs, either through microbial
metabolites or other immune cell types are essential for the maintenance of immune homeostasis. 4) The crosstalk between intestinal epithelium and Tregs are
essential for intestinal homeostasis. Tregs can interact directly with ISCs via MHCII molecule and promote ISCs renewal by IL-10 signaling. IECs-derived IL-18 is an
important regulator of Treg-mediated suppression of intestinal inflammation.
June 2022 | Volume 13 | Article 916066
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might be explained by a ceiling effect related to the SCFA-
producing microbiota frequency (63). Moreover, the bile acid
metabolite, isoallolithocholic acid (isoalloLCA) promotes Tregs
differentiation in a Foxp3 CNS3-dependent manner through the
production of mitochondrial reactive oxygen species (59). To the
contrary, 3-oxolithocholic acid binds directly to RORgt and
inhibits Th17 differentiation. One study revealed that
isoalloLCA, produced by Bacteroidetes species in the gut,
regulates the nuclear hormone receptor NR4A1 to promote the
differentiation of naïve T cells to Tregs by enhancing Foxp3
transcription (64). Similarly, the secondary bile acid, 3b-
hydroxydeoxycholic acid, induces the generation of colonic
RORgt- Tregs via a Foxp3 CNS1-dependent manner in DCs-
intrinsic the farnesoid X receptor activity suggesting an
interaction between bile acid and nuclear receptor (58).
Furthermore, colonizing GF mice with Bacteroides species
promotes RORgt+ Tregs in the colon via the vitamin D receptor
(VDR) in a BAs-dependent manner (60). While the mice fed
minimal diet developed severe dextran sodium sulfate-induced
colitis, the BA supplementation increased the numbers of RORgt+

Tregs and alleviated the disease. Moreover, Tregs-specific VDR
deficiency worsened the DSS-induced colitis. Overall suggesting
both BAs and VDR have a protective role in chemical-induced
colonic inflammation by modulating RORgt+ Tregs (60). Finally,
tryptophan metabolites are important components of intestinal
immune tolerance by Tregs via aryl hydrocarbon receptor (AhR)
(Figure 2) (65). Intestinal Tregs express Ahr at higher levels
compared to Tregs in the spleen or lymph nodes (66). In a T
cell transfer model of colitis, the suppressive effect of Tregs on
intestinal inflammation was diminished by the specific depletion
of Ahr in Tregs (66). Whole-body Ahr deficiency acutely
attenuates the expression of GPR15 both in effector memory T
cells and in Tregs (67). Like SCFAs, AhR upregulates GPR15
expression together with FOXP3 in Tregs. Conversely, RORgt acts
as an antagonist of AhR DNA binding to the Gpr15 locus in T
lymphocytes to suppress Gpr15 transcription (68). Overall, these
findings highlight the role of the microbial metabolites in
controlling host immune responses by acting on intestinal Tregs.
CROSSTALK BETWEEN INTESTINAL
TREGS AND OTHER IMMUNE
POPULATIONS

Tregs communicate with various immune cell types in a
cooperative way to maintain immune tolerance. In the gut,
antigen presenting cells (APCs) interact with conventional
CD4+ T cells and promote the development of pTregs
(Figure 2). Intestinal APCs, expressing the chemokine receptor
CX3CR1, induce Tregs differentiation while limiting T effector
cell expansion against soluble antigens and the microbiota itself
in IL-10 dependent manner (Figure 2) (69). CD103+ DCs of the
intestinal LP can similarly present luminal antigens by capturing
them to extend their dendrites to the lumen through the
intestinal epithelium (Figure 2) (70). DCs have control over
the TGF-b-dependent differentiation of naïve T cells, promoting
Frontiers in Immunology | www.frontiersin.org 5
Tregs but suppressing Th17 via integrin aVb8-mediated
activation of latent TGF-b1 and retinal dehydrogenase
(RALDH)-mediated metabolizing of vitamin A into retinoic
acid (RA) (Figure 2) (71–74). Interestingly, stromal cells in the
intestinal LP can upregulate RA from DCs in an RA- and
granulocyte-macrophage colony-stimulating factor-dependent
manner. In turn, stromal cell-primed DCs enable to induce
Tregs (Figure 2) (75). RORgt+ type 3 innate lymphoid cells
(ILC3s) are another immune cell type in the intestine that
regulates FOXP3+ Tregs differentiation (Figure 2). The
crosstalk between IL-1b-secreting macrophages and Colony
stimulating factor 2 (CSF2)-producing RORgt+ ILC3s has been
proposed a mechanism of Tregs regulation by ILC3s in the
intestinal mucosa. The gut microbiota induces IL-1b production
by macrophages to enhance colonic Tregs frequency by
upregulating ILC3s-derived CSF2 (Figure 2) (76). IL-2,
produced by ILC3s as a response to the APC-derived IL-1b
upon microbial stimulation, is essential for Tregs maintenance
and immune tolerance. In addition, IL-2-producing ILC3s are
important for the oral tolerance of dietary antigens in the small
intestine, while the decrease of IL-2 production from ILC3s is
associated with lower Tregs frequencies in Crohn’s disease
(Figure 2) (77). Reciprocally, both Tregs and Th17 have
control over ILC3s in the intestine (Figure 2) (78). In the
absence of CD4+ T cells, ILC3s displayed a comprehensive and
persistent phosphorylation of Signal transducer and activator of
transcription 3 (STAT3), as an outcome of hyper-production of
IL-22 by ILC3s in response to microbiota (78). Adoptive T cell
transfer experiments revealed that Tregs can inhibit ILC3s
activation by reducing IL-23, produced by CCR2+ monocytes
and monocyte-derived DCs, whereas Th17 lower the bacterial
burden, thus limiting ILC3s activation (78). In agreement with
these results, another study using anti-CD40-driven colitis model
showed that Tregs exert a protective function by reducing IL-22
secretion from ILC3s via the suppression of production of IL-23
and IL-1b in CX3CR1+ macrophage by latent activation gene 3
(LAG3)-major histocompatibility complex class II (MHCII)
engagement (79).
INTERACTIONS BETWEEN INTESTINAL
TREGS AND INTESTINAL EPITHELIAL
CELLS

Communication between the immune and non-immune cell
populations has recently drawn considerable attention in
intestinal health and disease (80–83). The intestinal epithelium
forms a barrier between microbes and host to coordinate the
crosstalk between the gut microbiota and the mucosal immune
cells, while epithelial cells also respond to immune and microbial
stimuli (84). Tregs maintain the epithelial barrier integrity in the
intestine by promoting intestinal stem cell (ISC) renewal via IL-
10, whereas effector T cell subsets induce ISC differentiation, as
demonstrated by organoid studies (Figure 2) (83). Accordingly,
in vivo Tregs deficiency results in a reduced ratio of ISCs to
differentiated intestinal epithelial cells (IECs) (83). By facilitating
June 2022 | Volume 13 | Article 916066
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the direct interaction between IECs and T cells, the expression of
MHCII on intestinal epithelial cells likely contributes to T cell
cytokine-mediated ISC renewal and differentiation. A lack of
MHCII in IECs reduced the levels of surface MHCII on the
intestinal mononuclear phagocytes and the proportion of
HELIOS– microbial-responsive Tregs in the small intestine,
suggest ing a communicat ion network between the
mononuclear phagocytes, IECs, and Tregs (85). IECs-specific
MHCII deficiency led a slight reduction of Tregs frequency in the
colon LP during steady state (86). A recent study reported that
mice lacking IECs-intrinsic MHCII have expanded commensal-
specific cBir1+ CD4+ T cells, specifically recognizing bacterial
flagellin. In a fungal commensal model, mice colonized with
Candida albicans-2W1S+ displayed increased numbers of C.
albicans-specific 2W1S+ CD4+ T cells in the large intestine
upon IEC-specific MHCII deficiency (87). Deletion of IEC-
intrinsic MHCII expression altered the ratio of Tregs to Th17
in both commensal-specific cBir1+CD4+ T cell and C. albicans-
2W1S+ commensal models (87). Collectively, these studies
indicate that the disruption of epithelial MHCII-T cell
interaction modulates microbiota-specific immune responses in
the intestine.

Tregs-IECs interactions occur not only via MHCII but also
through cytokine signaling (88). In the colon, IECs participate in
the regulation of CD4+ T cell homeostasis via IL-18 production
(Figure 2) (88). In the homeostatic condition, IECs-derived IL-
18 is dispensable for Tregs differentiation, but Tregs-mediated
suppression of intestinal inflammation requires IL-18/IL-18R1
signaling in the T cell-transfer colitis model (88). Another
member of the IL-1 family, IL-33, is constitutively expressed in
epithelial cells, including IECs (89). In the inflamed colon,
epithelial IL-33 levels are elevated (42). After being released
from IECs upon tissue damage, IL-33 promotes Tregs function
and adaptation to the inflammatory environment through ST2
signaling (42). IL-23 inhibits Tregs responsiveness to IL-33,
implying that the balance between IL-33 and IL-23 might be a
key regulator of intestinal Tregs homeostasis (42). The clear
evidence indicates a reciprocal interaction between IECs and
intestinal Tregs for intestinal homeostasis; nevertheless, there is
still much to learn about the crosstalk of Tregs with IECs, as well
as other non-immune populations in the intestine.
TREGS IN THE CENTRAL NERVOUS
SYSTEM

Previously, the CNS was considered an immune-privileged site
due to a lack of lymphatic vasculature and the presence of the
blood-brain barrier (BBB) (90). This view led to undervalue the
roles of immune system in CNS; however, it has been revisited in
light of the recent identification of functional lymphatic vessels
(91) and immune cells including T cells in the meninges (90).
Furthermore, T cells have found in the brain parenchyma of
healthy mice, though small numbers (about ~2,000 CD4+ T cells
and ~150 Tregs in the entire brain) (92). Post-mortem human
studies also identified T cells in the pathological (93) and healthy
Frontiers in Immunology | www.frontiersin.org 6
(92) brain. T cells are actively involved in the pathologies of CNS
disorders and injuries by infiltrating into the CNS (94). Though
often neglected due to their scarcity, recent studies have
enlightened the essential roles of T cells in CNS physiologies.
For instance, meningeal T cell-derived IFN-g regulates neuronal
connectivity, promoting an inhibitory current in cortical gamma
aminobutyric acid (GABA)ergic neurons (95). A recent study
showed that brain-resident CD4+ T cells are required for the
maturation of microglia (92). The existence of Tregs in the CNS
implies their potential roles in CNS homeostasis (92). Here, we
discuss the characteristics of CNS-resident Tregs and provide an
overview of how Tregs interact with other CNS cells, such as
neurons and glial cells.
ORIGIN AND ENTRY OF TREGS INTO THE
CENTRAL NERVOUS SYSTEM

Blood-derived T cells can migrate into the CNS through at least
three major routes: to the perivascular space through the BBB,
through the subarachnoid space in the meninges, and to the
cerebrospinal fluid (CSF) across the choroid plexus (96).
However, T cell entry into the brain parenchyma is limited by
the glia limitans between the perivascular space and parenchyma,
and by epidermal cells between the CSF space and parenchyma
(97). In inflammatory conditions, the number of infiltrating T
cells, including Tregs, increases due to exacerbated permeability
or disruption of the BBB and the blood-CSF barrier (98). In
addition, the altered chemokines niche actively participate to
recruit T cells in the insulted brain region (97). In particular, in
the middle cerebral artery occlusion (MCAO) model of stroke,
the infiltration of Tregs into the infarcted brain region is driven
by chemokines such as CCL1 and CCL20 (22).

Like other tissue-resident Tregs, CNS Tregs require TCR
recognition specific to antigen in the CNS, in both physiological
(92) and pathological conditions (22). Studies using OT-II
transgenic mice, which express ovalbumin-specific TCR,
demonstrated no OT-II Tregs in the brains of these mice (22, 92).
Furthermore, in the experimental autoimmune encephalomyelitis
(EAE) model, Tregs in the CNS showed over-representation of
specific Vb8 TCR, suggesting oligoclonal expansion of Tregs against
self (or potentially brain specific) antigens in CNS (99). This is
different from conventional CD4+ T cells in CNS, which require
peripheral activation (92). In agreement with this, TCR sequencing
of Tregs in brain revealed several overlapping TCR clones, especially
TCRa across individual mice, which suggests the shared antigens in
CNS Tregs (22). Tregs can proliferate inside the CNS as well. For
instance, Tregs in CNS can actively proliferate in the EAE model
(99), and the amplification of brain Tregs is dependent on cytokines
such as IL-2 and IL-33 in the MCAOmodel (22, 100). Interestingly,
the neurotransmitter serotonin also exerts a proliferative effect on
brain Tregs through a serotonin receptor signaling (22).

From the perspective of the gut-brain axis, it has been
proposed that the gut microbiome can affect the homing of T
cells, including Tregs, into the CNS. When SPF mice were co-
housed with dirty pet shop mice, CD4+ T cells but not Tregs
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significantly increased in brain (92). One study with T cells
expressing a photoconversion fluorescent protein showed the
migration of intestinal T cells to the cervical lymph nodes and
meninges after ischemic stroke (101), implying a role for gut-
resident T cells in CNS pathogenesis.

One possible hypothesis is that gut microbiota-derived
molecules may act as antigens in brain, which are necessary for
Tregs trafficking to the CNS (22, 92). The ‘molecular mimicry’
hypothesis has been investigated in various nervous autoimmune
disease models, such as EAE (102) and a model for Guillain–
Barré syndrome (GBS) (103). The mono-colonization of
Lactobacillus reuteri, which possesses peptides that potentially
mimic myelin oligodendrocyte glycoprotein (MOG), exaggerated
EAE symptoms than those of GF (102). The structure of
lipooligosaccharide (LOS) on Campylobacter jejuni is similar to
Ganglioside GM1, and GM1-like LOS sensitized rabbits show
pathology similar to GBS such as flaccid paralysis (103).
Furthermore, an adenosine triphosphate-binding cassette
transporter of Clostridium perfringens shared sequence
homology with Aquaporin-4 (AQP4) (104), of which
autoantibodies are pathogenic for neuromyelitis optica
spectrum disorders (NMOSD) (105). Indeed, strains of C.
perfringens are abundant in patients with NMOSD (104).
Further studies are required to address the involvement of the
gut microbiome in the actions of CNS-resident Tregs.
CHARACTERISTICS OF CNS-RESIDENT
TREGS

Due to the small number of CNS-resident Tregs in homeostatic
conditions, their characteristics are not well investigated. Brain-
resident Tregs are highly distinct from blood Tregs in adult mice,
with elevated expression of activation markers including CD44,
Frontiers in Immunology | www.frontiersin.org 7
CTLA4, and ICOS, and expression of residency markers such as
ST2 and CD69 (92). Parabiosis of FoxpThy1.1Cd45.1 mice with
Foxp3Thy1.1Cd45.2 mice showed the presence of CD69+ Tregs in
host brain tissue after approximately 7 weeks, in contrast to the
rapid exchange of blood Tregs (92).

Several studies with stroke models have found that T cells,
including Tregs, infiltrated into the infarcted brain region
(Figure 3). In the healthy brain, the infiltrated Tregs showed
activated phenotypes (CD44hi/CD62Llo) and expressed high
levels of canonical Tregs markers such as PD-1, CTLA4, GITR,
and CD103 (22, 106). Transcriptome analysis of brain-infiltrated
Tregs showed a profile similar to those of other tissue Tregs such
as visceral adipose tissue and muscle (107, 108), with the
expression of Il-10, amphiregulin (Areg), Klrg1, Pparg, and
WNT signaling-related genes (22). In both healthy and
pathological conditions, CNS-resident Tregs are mostly
positive for HELIOS suggesting thymic origin (22, 92, 106). In
addition, CNS-resident Tregs may acquire CNS-specific
phenotypes, as do other tissue-resident Tregs. Interestingly,
after stroke, brain-resident Tregs express several neuropeptides
such as neuropeptide Y (Npy) and preproenkephalin (Penk), and
neuronal receptors including serotonin receptor type 7 (Htr7)
and arginine vasopressin receptor (Avpr1a) (22). This indicates
potential interaction between Tregs and other cells in the
nervous system. Comparison between blood and brain
infiltrating Tregs show that various cytokines (Spp1, Il10) and
trophic factors (Igf1, Osm) are also increased in brain Tregs
(106). However, as most of these studies were performed in
pathological conditions, determining whether these unique
characteristics of CNS-resident Tregs can be generalized to
brain homeostasis in health and disease will require further
investigation. Moreover, the clarification of environmental
signals and cellular mechanisms used by Tregs for CNS
homeostasis may be essential to understand the role of CNS-
resident Tregs.
FIGURE 3 | Characteristics of CNS-resident Tregs and their interaction with other CNS cells. T cells including Tregs exist in the meningeal space and the brain parenchyma
in both physiological and pathological conditions. In disease status, Tregs interact with CNS cells such as neural stem cells (NSCs), oligodendrocytes, microglia, astrocytes,
and neurons to modulate the pathology of CNS insults. CNS-resident Tregs express a high level of Treg markers such PD-1 along with neuronal receptors including 5-HT7.
CCN3, cellular communication network factor 3; SPP1, osteopontin; AREG, amphiregulin; SIRPa, signal regulatory protein alpha; 5-HT7, serotonin receptor 7; ST2, interleukin-
1 receptor-like 1; PD-1, programmed cell death 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4; GITR, glucocorticoid-induced TNFR-related protein.
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TREGS INTERACT WITH CENTRAL
NERVOUS SYSTEM-RESIDENT CELLS

In general, immunomodulatory functions of Tregs are exerted by
interacting with other immune cells. The unique characteristics of
CNS-resident Tregs imply to regulate various CNS processes by
interacting with CNS-resident cells via distinctive mechanisms
other than classical Tregs functions. In this section, we will discuss
how CNS-resident Tregs interact with each cell type and how they
can regulate CNS function in heath and disease (Figure 3).

Astrocyte
Astrocytes are one type of glial cells that regulate a variety of
physiological properties, such as the production of neurotrophic
factors and the regulation of neuronal development and
neuronal synapses (109, 110). In pathological conditions,
astrocytes become reactive and often neurotoxic (111). The
neuroprotective role of brain Tregs has been studied by
repressing neurotoxic astrogliosis. In the context of traumatic
brain injury, peripheral T cells are infiltrated into the brain to
trigger astrogliosis that is exacerbated in diphtheria toxin-
inducing Tregs-depleted mice (112).

In the stroke mouse model, glial fibrillary acidic protein
(GFAP)+ astrocytes and CD4+ T cells, especially Tregs, are
accumulated at the ischemic injury site at 14 days after
MCAO, and this stockpile of astrocytes significantly increased
upon Tregs-depletion (22). AREG was abundantly produced by
brain Tregs than splenic Tregs, which are known for wound
healing and tissue repair (113). Astrogliosis in the brain of
MCAO mice was diminished by transferring wild-type (WT)
Tregs but not Areg-deficient (Areg-/-) Tregs (22). Furthermore,
IL-6 expression by microglia and astrocytes was reduced in WT
but not Areg-/- Tregs-transferred mice. This indicates that brain
Tregs produce AREG to suppress the neurotoxic astrogliosis by
suppressing IL-6 production from astrocytes (22). IL-33-ST2
signaling played the key roles for Tregs infiltration into the brain
that result in increased expression of AREG and epidermal
growth factor receptor (EGFR) at MCAO (100). As neurotoxic
astrogliosis is harmful in many other CNS injuries (111), it would
be interesting to determine whether the Tregs-mediated strategy
is applicable in other CNS diseases. Astrocyte-producing
molecules can affect CNS resident Tregs vice versa. Co-
culturing astrocytes with splenic T cells showed that astrocytes
help to sustain FOXP3 expression in Tregs through IL-2/STAT5
signaling (114). Recently, a study reported higher circulating
Tregs and serum IL-10 level at 48 and 72 hours after stroke onset
in patients (115). To further identify the association of Tregs
frequency with clinical outcomes, stroke patients are divided into
two groups based on disease outcome (good vs. poor based on
modified Rankin scale) and found the poor clinical outcomes
with a higher infection risk especially in patients with lower
Tregs frequency at 48 hours after stroke (115).

Despite the lack of clear mechanisms for the interaction
between Tregs and astrocytes in brain, these studies imply
therapeutic potential of Tregs to control astrocytes that should
be further investigated in future.
Frontiers in Immunology | www.frontiersin.org 8
Microglia
Microglia are resident macrophages in the brain, which compose
about 6% to 18% of the human brain neocortical cells (116, 117).
Not like other CNS cells, microglia are originated from the yolk sac
during the embryonic period (118) and maintain brain
homeostasis and neuronal development via various cytokine
signaling (119, 120). In the brain, IL-10 from T cells and natural
killer cells (NKs) prevents deleterious microglial hyperactivation
following peripheral endotoxin challenge (121). Likewise, IL-10
from Tregs modulates the alternative (M2) microglial polarization
to ameliorate the outcome of intracerebral hemorrhage (122).
In addition, FOXP3+ Tregs are expanded under co–cultured
condition with MHCII+CD40dimCD86dimIL-10+ microglia,
stimulated by low dose IFN-g/MOG, resulting in mitigating the
EAE severity (123).

Microglia are involved along with astrocytes in the context of
inflammation. In murine stroke model, brain Tregs secrete
osteopontin (SPP1) to promote tissue-regenerative microglial
reactions for brain repair through the Integrin beta-1 (ITGB1)
receptor, expressed on microglia (106). Cerebral Tregs secrete
higher level of IL-10 than splenic Tregs, which has the key role to
control the LPS-induced inflammation in microglia (114).
Furthermore, co-culture of Tregs with microglia, promotes the
expression of various factors linked with brain repair and anti-
inflammatory processes in microglia (106).

In neurodegenerative diseases, Tregs have shown their
potential to delay disease progress by modulating microglial
function. Amyotrophic lateral sclerosis (ALS), which is
characterized by the selective destruction of motor neurons,
involves lymphocyte infiltration into the CNS and activation of
microglia in mice and human (124, 125). In the superoxide
dismutase 1 (SOD1) transgenic mouse, which is a murine
model for ALS, Tregs suppressed the cytotoxic microglial
factors such as NOX2 and iNOS in IL-4 dependent
mechanism (126). Indeed, compared with healthy individual,
Tregs from ALS patients express lower level of Foxp3 mRNA
together with the impaired suppressive function that are
positively correlated with progressive rate and severity of ALS
disease (124).

In an AD mouse model (APP/PS1), the depletion of Tregs
exacerbated cognitive dysfunction, accompanied by reducing the
recruitment of microglia toward the amyloid beta plaques and
lingered disease-related gene expression profile, and behavioral
impairments, which were rescued by enhancing Tregs with low-
dose IL-2 treatment (127). Indeed, circulating Tregs were
significantly reduced in patients with mild cognitive
impairment (128). Moreover, in a Parkinson’s disease (PD)
mouse model, neurotoxic microglial activation was ameliorated
by adoptive transfer of Tregs (129).

The significance of Treg-microglia interaction in conditions
other than CNS damage or neurodegenerative illness is an
interesting subject. Severe neuroinflammation is often observed
in the brain with schizophrenia (130) or stress-induced
depressive disorder (131, 132) in human and mice (133).
Given that psychosis is accompanied with inflammatory
responses in microglia, it is hypothesized that Tregs may
June 2022 | Volume 13 | Article 916066

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Choi et al. Tregking From Gut to Brain
contribute to the regulation of the microglial-induced
inflammatory responses in mental disorders.

Oligodendrocyte
Oligodendrocytes are myelinating glial cells that support neuronal
signals and produce the insulating sheath covering axons in the
CNS (134). If remyelination fails, the damaged myelin leads to
irreversible axonal loss and demyelinating diseases like multiple
sclerosis. In a lysolecithin induced demyelinated mouse model,
Tregs promoted oligodendrocyte differentiation and
remyelination by producing communication network factor 3
(CCN3), a growth regulatory protein (21). On the other hand,
Th17 have shown to inhibit oligodendrocyte maturation and
survival through IL-17 (135). Further studies are necessary to
understand the intercommunication between Tregs and
oligodendrocyte for brain homeostasis.

Neuron
There is limited evidence that Tregs directly affect neurons;
however, in an 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine
(MPTP) induced-PD mouse model, adoptive transfer of Tregs
attenuated behavioral change, the inflammatory reaction in the
brain, and the loss of tyrosine hydroxylase-positive dopaminergic
neurons in the substantia nigra (136), partially due to direct
interaction between Tregs and dopaminergic neurons via CD47
and SIRPa, respectively (137). On the other hand, neurological
molecules can govern the response of CNS-infiltrated Tregs (133).
Neurons, co-cultured with T cells, produced TGF-b1 and B7
molecule, to convert encephalitogenic T cells to TGF-
b1+CTLA4+ Tregs which potentially inhibit disease progression
upon transferring into EAE model mice (138).

Neural Stem Cells
Following an insult to the CNS, de novo neurogenesis to replace
the damaged neuron is important for functional recovery (139).
Neural stem cells (NSCs), localized in specific regions of the adult
brain, such as the subventricular zone and the dentate gyrus of
the hippocampus, can replenish new neurons (140). Considering
the unique roles of Tregs for the regulation of stem cells in skin
(141), it is plausible that Tregs participate the regulation of
neural stem cells in brain. Indeed, depletion of Tregs via anti-
CD25 treatment led to impaired neurogenesis after stroke in a
mouse model (142). Moreover, the transferring of activated
Tregs enhanced NSCs proliferation in the subventricular zone
(SVZ), which was mediated by IL-10 produced by Tregs (143).

Given the role of Tregs in pathological conditions, further
study is necessary to determine whether Tregs interact with NSCs
for neurodevelopment or homeostatic adult neurogenesis. In mice,
lymphocytes are found in the brain during the perinatal period
(92, 144), implying their role in brain at developmental stages. It is
worth mentioning that a subset of B cells, B-1a cells, are involved
in oligodendrogenesis during brain development (144). The EGFR
ligand AREG, which is mainly produced by tissue Tregs, might be
one candidate for regulating NSCs by Tregs in brain, as EGFR
signaling is important for NSCs to maintain their proliferative
capacity during cerebral cortex development (145). Furthermore,
AREG acts as the mitogen for adult NSCs (146).
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CROSSTALK BETWEEN INTESTINAL
TREGS AND THE NERVOUS SYSTEM

Neurons in the PNS innervate various organs in the body. It has
been implied that neuronal signaling can regulate the immune
system in other organs, as immune cells are known to express
several receptors for neurotransmitters and neuropeptides (11,
65, 147). Consistently, a line of human studies shows the
dysregulation of the immune system in neurological diseases.
In particular, the imbalance of Th17 and Tregs in the peripheral
immune system have been reported in patients with autism
spectrum disorder (148, 149), epilepsy (150), PD (151), and
schizophrenia (152). The gut and brain communicate with each
other, and their close association implies reciprocal control
between the nervous system and intestinal immunity. Focusing
on Tregs, we cover the new discoveries and perspectives on the
regulation of intestine Tregs by neuronal signals and vice
versa (Figure 4).
NEURONAL SIGNALING REGULATES
INTESTINAL TREGS

The GI tract is innervated by various peripheral neuronal cells –
sympathetic, parasympathetic, and sensory neurons (153) – that
regulate various physiological functions. PNS neurons can directly
innervate into the GI tract or deliver neuronal signals through the
ganglia, which are a collection of neuronal cell bodies in the
periphery (153–155). Efferent sympathetic and parasympathetic
neurons convey signals from the brain to the gut. Sympathetic
neurons are originated from the spinal cord and project to the
prevertebral ganglia and pelvic ganglia. Parasympathetic neuron
cell bodies are located in the dorsal motor nucleus of the vagus
nerve in the hindbrain or in the lumbosacral spinal cord, and they
project to the pelvic ganglia or directly to the GI tract (154, 155).
Afferent sensory neurons originating from nodose/jugular ganglia
and dorsal root ganglia are pseudo-unipolar neurons that extend
into both the peripheral organs such as the gut and the CNS.
Afferent neurons convey information from the gut to the brain
(153), but also can signal to the gut by releasing neuropeptides
(156). Besides the external innervations, the GI tract has an
independent nervous system known as the enteric nervous
system (ENS), connected with external neurons conveying
signals from the CNS (157).

Although the exact mechanism is not well understood,
neuronal signals can regulate intestinal Tregs (Figure 4). Indeed,
vagus nerve stimulation increased frequency of intestinal Tregs
(158), but vagotomy reduced the number of Tregs in the colon,
particularly HELIOS−RORgt+ pTregs (11). Neurotransmitters and
neuropeptides, released from the nerve terminal, have been
proposed as the potential mechanisms for the regulation of T
cell plasticity in the GI tract. Cholinergic parasympathetic neurons
produce acetylcholine (159). In addition, nicotinic and muscarinic
classes of acetylcholine receptor expressed on T cells regulate T cell
differentiation in vitro (160). Vasoactive intestinal peptide (VIP) is
a neuropeptide, known for its anti-inflammatory function,
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produced by neurons in PNS (161) and ENS neurons (162). VIP
induces proliferation of CD4+CD25+ Tregs producing IL-10 and
TGF-b in lymph node and spleen (163), which has potent
therapeutic effect in inflammatory disorders including EAE
(164) and collagen-induced arthritis (165). Calcitonin gene-
related peptide (CGRP), a pain-related neuropeptide, mainly
released from sensory neurons (166), increases differentiation of
Tregs in a model of EAE (167). On the other hand, substance P, a
mediator for pain neurotransmission secreted at the end of
sensory neuron nerve (168), was shown to impair Tregs
function in murine dry eye disease model through the
neurokinin 1 receptor, expressed on Tregs (169). Other signaling
molecules, such as cytokines, produced by neuronal cells, may also
regulate intestinal Tregs. For example, ENS neuron-derived IL-6
regulates RORgt+ Tregs differentiation (170) and epithelial-derived
IL-18 regulates Tregs function in a colitis model (88).
Furthermore, high level of cytokine, chemokine, and their
receptors are detected in ENS neurons (171, 172). Overall, these
findings suggest various neuron-derived messenger molecules are
involved in the regulation of intestinal Tregs and homeostasis.

Besides signaling through the receptors expressed on Tregs,
neuronal signaling can indirectly regulate intestinal Tregs via
other intestinal immune cells. For instance, the neurotransmitter
acetylcholine, produced by enteric neurons, activates muscarinic
acetylcholine receptors (mAchR) on colonic APCs, such as
CX3CR1+ mononuclear phagocytes and CD103+ DCs to
promote pTregs differentiation via aldehyde dehydrogenases (11).

As discussed, not only neuronal signaling would enables to
modulate intestinal Tregs in various pathological conditions, but
also local tissue Tregs may modulate the function of peripheral
neurons. This has been studied in murine pain model such as
Frontiers in Immunology | www.frontiersin.org 10
chronic constriction injury, in which spontaneous pain recovery
after the injury was delayed in Tregs-depleted mice (173, 174).
While these studies do not give direct evidence of Tregs on
peripheral nerves, this is enough to suggest the essential roles of
inflammation for the repair and function of an innervated nerve.
MICROBIOME AND INTESTINAL TREG IN
THE GUT-BRAIN AXIS

As discussed, the microbiome is an important regulator of
immune system. Several studies have shown that the gut
microbiome can regulate neurons innervating the GI tract,
which, in turn, may lead to the modulation of intestinal Tregs.
This entanglement potentially influences CNS activity and
behavior via signaling through the gut-brain axis. For example,
GF mice show more anxiolytic and anti-social behavior pattern
than SPF mice (175). In addition, recent studies indicate that the
microbiome regulates transcriptome and neural activity of
organ-innervated neuron. The activity of gut-innervated
sympathetic neurons is increased in GF or antibiotics-treated
mice as shown by staining with c-FOS, indicating direct
regulation of neuronal activity by commensal microbiota (13).
In RNA-sequencing based transcriptome analysis with myenteric
neurons from GF and SPF mice, Ahr expression is significantly
increased depending on the microbiome that regulates intestinal
peristalsis (176). Moreover, the gut microbiota induced neuronal
maturation in the colonic myenteric plexus of GF mice,
colonized with a normal microbiota, via serotonin type 4 (5-
HT4) receptor signaling (177). Regulation of neurons, involved
FIGURE 4 | Possible model of crosstalk between intestinal Tregs and gut-innervating neurons. External neuronal cells from the peripheral nervous system innervate
to the intestine, and neurons in the enteric nervous system exist in the colonic myenteric and submucosal plexus. Neuronal factors, released from the nerve terminal,
are involved in the regulation of intestinal Tregs. A neurotransmitter acetylcholine (Ach) activates colonic antigen presenting cells, which may support the development
of pTregs in the intestine. Vasoactive intestinal peptide (VIP) enhances the proliferation of Tregs and calcitonin gene-related peptide (CGRP) promotes the
differentiation of Tregs. Cytokines such as IL-6, produced by neuronal cells, regulate the induction of RORgt+ Tregs. It is expected that Tregs-derived molecules can
signal to neuronal cells to modulate their function, which have to be further elucidated.
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in the gut-brain axis by the gut microbiome, plausibly modulates
the immune composition and function in the GI tract, including
Tregs. An intestinal organ culture system showed that Tregs-
inducing Clostridium ramosum (C.ramosom) altered
neurotransmitter expression in gut, which regulated RORgt+

Tregs (178). In the reverse, gut-innervating nociceptor neurons
not only produced CGRP but also shaped the composition of gut
microbiota such as segmented filamentous bacteria (SFB) to
promote host defense against Salmonella in the small intestine
(156). Altogether, these studies suggest the essential roles of gut
microbiome for the proper regulation of gut-brain axis via Tregs.

CONCLUSION AND PERSPECTIVE

In recent years, emerging studies have shown the role of Tregs in
regulating pathophysiological condition along the gut-brain axis.
Given the functional diversity and heterogeneity of gut-resident
Tregs as described in this article, it is well-demonstrated that
intestinal Tregs are crucial for the maintenance of immune
homeostasis and tolerance to luminal antigens along with
pathogens. In addition, CNS-resident Tregs, which interact with
various CNS cells including neurons, glial cells, neural stem cells,
etc. govern brain homeostasis (Table 1). Since present knowledge
about CNS-resident Tregs is limited in pathological or
inflammatory conditions in which most of CNS T cells are
actively infiltered from peripheral immune system, it remains to
be clarified whether Tregs in the CNS, despite their limited
number, have physiological roles in the homeostatic state.

As discussed in this review, the communication between the
CNS, the GI tract, and the microbiota is essential for the exquisite
control linking emotional and cognitive centers of the brain with
peripheral intestinal/immunological functions, known as ‘gut-brain
axis’. Although the mechanisms of this inter-organ interaction are
now being elucidated, many aspects remain unknown. Neuronal
innervations into the GI tract can regulate local immune responses
through neuro- (neurotransmitters and neuropeptides) as well as
immunological- (cytokines and chemokines) messengers.
However, it is still primitive to elucidate the importance of
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neuroimmunological functions with detailed mechanisms in health
and disease. Considering the differences in Tregs populations and
proportion along the intestinal tract, one interesting question is
whether neuronal innervation is directly or indirectly involved in this
divergence and the neuro-/immunological meaning of this
distinction (171). In the other way around, the immune cells in
the GI tract, including Tregs, may also regulate the neurons
innervating along the GI tract, which could modulate neuronal as
well as intestinal functions (179, 180). Further understanding the
regulation of gut-brain axis by Tregs may give a better
comprehension of inter-organ communication between CNS and
other organs. In a manner similar to the gut-brain axis, recent
research reveals that microbial products in the lungs can likewise
alter brain function and disease pathology, known as the lung-brain
axis (181). This suggests that not just gut but multiple organs might
be potentially communicated with neurological compartment for
tissue homeostasis. Because Tregs are present in nearly all organs, the
role of long-range communications for inter-tissue homeostasis and
the manner in which Tregs engage in this process are important
questions that must be addressed in the future.

AUTHOR CONTRIBUTIONS

LC, JC, B-RK, and BA wrote the manuscript and generated figures
and tables. J-YL and H-KK edited the manuscript. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by a faculty research grant of Yonsei
University College of Medicine (6-2021-0155), a grant of the
Korea Health Technology R&D Project through the Korea
Health Industry Development Institute (KHIDI), funded by
the Ministry of Health & Welfare, Republic of Korea
(HV21C0050, HV20C0172), and the Ministry of Education of
the Republic of Korea and the National Research Foundation of
Korea (2021R1C1C1006912 , 2021R1A2C2004501 ,
2020R1I1A1A01069041, 2019R1A6A1A03032869).
TABLE 1 | Interaction of Tregs with tissue-resident cells and its physiological outcomes in the CNS and the intestine.

Region Target cell Physiological outcome Reference

CNS Astrocyte Diminishment of astrogliosis in MCAO stroke mouse model by transferring wild-type Tregs via AREG signaling on Tregs (22)
Strengthened Foxp3 expression in Tregs through IL-2/STAT5 signaling by in vitro co-culturing with astrocytes (114)

Microglia Inhibition of inflammatory response (TNFa, IL-6, IFN-g) of LPS-stimulated microglia and pathology of intracerebral hemorrhage
via IL-10 signaling

(114, 122)

Enhancement of brain reparative microglial reactions by secreting SPP1 and through the ITGB1 signaling in the stroke mouse
model

(106)

Suppression of cytotoxic microglial factors NOX2 and iNOS through IL-4 mediated mechanism in ALS mouse model (126)
Improvement of cognitive function and disease pathology in APP/PS1 AD mouse model and MPTP-induced PD mouse model
by inducing Tregs through suppression of microglial responses

(127, 129)

Oligodendrocyte Promoting oligodendrocyte differentiation through CCN3 signaling (21)
Neuron Reduction of inflammatory cytokine expression and 5-TH dopaminergic neuron loss in MPTP induced-PD mouse model by

adoptive transfer of Tregs
(136)

Suppression of EAE disease progression by transferring of Tregs, co-cultured with neurons (138)
Stem cell Induction of NSC proliferation in adult mouse SVZ through transplantation of active Tregs via IL-10 signaling (143)

Intestine External neuron
(Vagus nerve)

Increased Tregs in mesenteric lymph node by vagus nerve stimulation but reduced Tregs and RORgt+ pTregs by vagotomy (11, 158)

Enteric neuron Enhanced differentiation of Treg into RORgt+ Tregs by IL-6 secreted from ENS (170)
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