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A photograph of a glass of water might consist of large bright 
patches, sparkling dots and low-contrast blurs—yet we 
immediately see these as reflections on the water’s surface, 

bubbles within and smudges on the glass. Identifying the distal 
physical causes of proximal image features is widely considered to 
be the central challenge of vision1–7. Yet how we infer the outside 
world from ambiguous sensory data remains mysterious.

Somehow, the visual system infers the combination of distal 
scene variables that most plausibly explains the proximal sensory 
input4,8–11. But a major unsolved question is how the candidate 
explanations of proximal inputs came to be known in the first place. 
Our visual systems did not—and do not—have access to ground 
truth information about the number or kinds of distal sources of 
image structure that operate in the world. Any knowledge about the 
world must have been acquired from exposure to proximal stimuli 
over evolutionary and/or developmental timescales12–14.

Here we explore the intriguing possibility that visual systems 
might be able to discover the operation of distal scene variables by 
learning statistical regularities in proximal images rather than by 
learning an explicit mapping between proximal cues and known 
distal causes. Specifically, we show that by learning to efficiently 
compress and spatially predict images of surfaces, an unsupervised 
generative deep neural network (DNN) not only spontaneously 
clusters inputs by distal factors such as material and illumination 
but also strikingly reproduces many characteristic ‘misperceptions’ 
of human observers.

Two general principles motivate our approach. The first is that 
variability in proximal sensory stimuli is caused by variations in 
a lower-dimensional set of environmental factors (such as shape, 
reflectance and illumination). This implies that the variation 
between images can be captured in a more compact or simple way 
when represented in terms of its underlying causes rather than, say, 
in terms of pixels15–17. A machine learning model encouraged to dis-
cover a compact representation of images might therefore converge 
on the finite sources that generate image variability. But identifying 

and disentangling these distal sources is possible only if a second 
principle holds: different distal sources must generate statistically 
distinguishable effects in the proximal input18. This seems intuitively 
true—for example, changes in illumination generate different kinds 
or patterns of variability in images than changes in surface material 
do. On the basis of these two principles, we reasoned that it should 
be possible for a sufficiently powerful statistical learning model to 
discover the existence of distal variables without a priori knowledge 
of either the number or kinds of distal variables that exist in the 
world, solely on the basis of the variability they generate in images.

The idea that our perceptual systems exploit statistical regulari-
ties to derive information about the world has a long and vener-
able history in both psychology and neuroscience19–21. For example, 
neural response properties in early visual cortex are well predicted 
by models trained to generate sparse codes for natural image 
patches19,21–24. Unfortunately, such ‘efficient coding’ approaches have 
not yet scaled beyond the initial encoding of images. One of the 
main motivations for the present work was to determine whether 
such ideas could provide leverage into mid-level scene understand-
ing—that is, inferring the distal physical causes of sense data.

Even if different distal factors have different statistical effects 
on images, and a sufficiently powerful unsupervised neural net-
work is able to learn these effects, its success in disentangling dif-
ferent factors is unlikely to be perfect—that is, the network would 
sometimes misattribute the distal causes responsible for the data. 
However, we regard such misattributions as a potential strength. 
There are well-documented examples where the human visual sys-
tem systematically misattributes image structure to the wrong distal 
source—failures of ‘perceptual constancy’1,5,25–33. We were interested 
in whether the pattern of successful and unsuccessful attributions 
made by human observers would also be exhibited by networks that 
failed to fully disentangle distal scene variables. The goal was not to 
understand visual processes as an estimation of ground truth but 
rather to understand why our visual systems extract what they do 
about the world in the absence of access to ground truth knowledge.
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One of the most striking patterns of successes and failures in 
estimating distal scene variables occurs in the perception of surface 
gloss3,5,31,34–37. Gloss perception is a paradigmatic case of a perceptual 
judgement where multiple physical effects must be separated. The 
pattern of specular reflections can change dramatically as a function 
of a surface’s three-dimensional (3D) shape, illumination and the 
observer’s viewpoint. Indeed, psychophysical evidence has shown 
that the perception of gloss in human observers depends not only 
on specular reflectance, as expected32,38–44, but also on lighting and 
shape33–37,45. We were interested in whether the specific pattern of 
these complex interactions could be a consequence of the visual 
system having learned to approximately disentangle distal sources 
from their effects on image structure.

Our work exploits DNN methods that have emerged for learning 
sophisticated models of image structure in the form of latent vari-
ables, which summarize how images differ from one another46–50. 
DNNs achieve complex transformations by passing input data 
through layers of units that apply weighted summations and 
nonlinearities, roughly mimicking the operations of biological  
neurons51–55. During training, connections between units are itera-
tively adjusted to improve the network’s performance on some 
learning objective.

In supervised learning, networks are directly told what label to 
output for every input image in a training dataset, from which they 
learn to subsequently output appropriate labels for new test images. 
Supervised DNNs have revolutionized computer vision, achiev-
ing near-human object and face recognition56–59, and are the best 
extant models of late ventral stream function51–53,60–63. However, 
unlike humans, they are often fragile to tiny image perturbations64,65  
and over-rely on local texture66,67. As models of biological gloss  
perception, it is unclear from where the necessary training  
labels could come.

In unsupervised learning, training objectives encourage net-
works to learn statistical regularities in the training data without 
being given any explicit labels. For example, autoencoder networks 
are trained to compress training images into compact descriptions 
and then reconstruct them as accurately as possible50,68,69. Here, we 
use a variant known as a PixelVAE47,48, which learns to both sum-
marize and spatially predict images, in two connected processing 
streams (Fig. 1c). It is a generative model that can create completely 
novel images with high-order statistical structure similar to the 
training data—in our case, images of glossy and matte surfaces.

Our main finding is that the representation of gloss learned by 
an unsupervised PixelVAE network closely matches the pattern of 
successes and failures in perceived gloss shown by human observ-
ers. The unsupervised models better match human data than do a 
range of supervised networks and simpler comparison models, sug-
gesting that the learning process by which different distal sources 
are disentangled may play a fundamental role in shaping our visual 
experience of the world. This finding provides a potential answer 
to the conundrum of how we learn to see without explicit training.

Results
To test whether an unsupervised DNN can learn human-like gloss 
perception, we rendered 10,000 images from a virtual world con-
sisting of frontal views of bumpy surfaces with either high (‘gloss’) 
or low (‘matte’) specular reflectance. Using renderings grants tight 
control over the statistics of the training environment, allowing us 
to guarantee that reflectance could not be trivially decoded from 
raw images and that physical factors varied independently of one 
another. Each image had a different random configuration of 
bumps, depth of surface relief and colour, and was illuminated by 
one of six natural light fields (Fig. 1a,b). We then trained ten differ-
ent instances of a PixelVAE47,48 network with different initial ran-
dom weights on this dataset to ensure that the results were robust to 
representational differences between training instances of the same 

architecture70. The network culminates in a probability distribution 
over pixel values (Fig. 1c). Its training objective is to adjust the shape 
of this distribution in order to increase the likelihood of the training 
images under it, leading to a model of the structure and variability 
within and across images.

New images can be created from the unsupervised PixelVAE 
model. These are generated pixel-by-pixel from the top left corner 
by probabilistically sampling from the network’s learned distri-
bution, conditioned both on previous pixels and on values in the 
model’s ten-dimensional (10D) latent code (Fig. 1c). The represen-
tations in this latent code are a highly compressed representation of 
whole-image properties and are the focus of all subsequent analyses. 
After training, all ten instances of the model could generate wholly 
novel images that look like plausible surfaces (Fig. 1d).

As a comparison DNN, we also trained ten instances of a super-
vised ResNet71 network to classify the same images as high or low 
gloss, using ground truth (high or low specular reflectance in the 
rendering parameters) as training labels. Its mean classification 
accuracy was 99.4 ± 0.001% (s.d.). This supervised model also con-
tained a 10D fully connected layer prior to its two-unit output clas-
sification layer, which we treated as its high-level latent code for 
comparisons with the unsupervised model (Fig. 1c).

An unsupervised generative model disentangles distal scene 
properties. We are interested in the extent to which models trans-
form raw images into a feature space within which different physi-
cal causes are disentangled12,14,16,72. Surfaces with similar reflectance 
properties may occupy very disparate points in raw pixel space 
but should cluster together in the feature space of a good percep-
tual model. Although the unsupervised PixelVAE model’s training 
objective deals only with proximal image data, after training on the 
rendered dataset, we found that distal scene properties—such as 
reflectance and lighting—spontaneously clustered within the net-
works’ 10D latent codes47,50,73. Visualizing in two dimensions using 
t-distributed stochastic neighbourhood embedding (tSNE)74 reveals 
that low-gloss images cluster together, while high-gloss images 
form multiple tight clusters, corresponding to different light fields  
(Fig. 2a). Within each light-field cluster, images are arranged by the 
angle of illumination, as well as by surface relief, with flatter surfaces 
occupying nearby points and bumpier surfaces more distant points. 
This shows that without explicit labels, the unsupervised model 
learns at least partially to reorganize stimuli by their physical prop-
erties, one of the core challenges of mid-level vision.

The emergence of this clustering of images by scene properties 
is far from trivial. It was not caused by raw image similarities, since 
tSNE visualization of the same images in raw pixel space showed 
a tight entangling of scene properties (Fig. 2b). Other linear and 
nonlinear pixel embeddings such as multidimensional scaling 
(MDS) and locally linear embedding (LLE)75 also failed to sepa-
rate low-gloss from high-gloss surfaces (Supplementary Fig. 2). 
When the same visualization was applied to the 10D layer of the 
gloss-supervised models, high-gloss and low-gloss images were 
neatly separated, but other world factors were intermixed (Fig. 2c). 
Similar qualitative patterns held for all ten instances of both unsu-
pervised and supervised models.

To quantify these clustering effects, we used representational 
similarity analysis76 (Fig. 2d). The results support the tSNE visu-
alizations. Pairs of images belonging to the same gloss condition 
(both glossy or both matte) corresponded to closer points in the 
unsupervised models’ 10D latent codes than pairs of images belong-
ing to different gloss conditions (repeated-measures t-test compar-
ing average distances between same-gloss versus different-gloss 
image pairs, across network training instances: t9 = 16.73; P < 0.001; 
Cohen’s d = 0.97; 95% confidence interval (CI) of difference, 0.37–
0.46). Likewise, pairs of images illuminated by the same light field 
had more similar latent representations than those lit by different 
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light fields (t9 = 29.76; P < 0.001; d = 0.95; 95% CI, 0.36–0.41). In 
the supervised models, clustering was dominated by gloss (Fig. 2e; 
two-way mixed-effects analysis of variance (ANOVA) interaction 
between model type and scene factor: F1,18 = 9,878.34; P < 0.001; 
η2 = 0.99; follow-up tests show far stronger gloss clustering in super-
vised than unsupervised models, t18 = 99.39; P < 0.001; d = 44.45; 
95% CI, 6.42–6.66; but stronger light-field clustering in unsuper-
vised models, t18 = −19.90; P < 0.001; d = 8.90; 95% CI, 0.27–0.32). 
Thus, while the supervised model optimizes disentanglement of the 
single physical property on which it is trained, the unsupervised 
model spontaneously discovers multiple scene factors contributing 
to image structure.

The unsupervised model predicts human gloss perception for 
novel images. Our central question was whether the spontaneous 
separation of high-gloss and low-gloss images in the unsupervised 
model could capture human gloss judgements. To derive quanti-
tative gloss predictions from the models, a linear support vector 

machine (SVM) classifier was trained to find the hyperplane in the 
10D latent code of each network that best separates high from low 
specular reflectance images (Fig. 3a). Although this evaluation step 
involves label-based decoding, it is simply a formal way of quantify-
ing the degree and form of the disentanglement. In neuroscience, 
information that is available directly via a linear readout from units 
or neurons is generally considered to be explicitly represented by 
a model or brain region (for example, see refs. 16,77–81). The linear 
classifier does not provide the model with any new information 
but merely measures the relative placement of different classes of 
images within its existing feature space.

On the basis of this linear decoding, we find that 
gloss-classification accuracy for novel renderings across the ten 
unsupervised models was extremely good at 99.3% (±0.002%)—
practically as good as decoding gloss from the 10D latent code 
of the supervised models (99.4 ± 0.002%; Fig. 3b). Light field and 
surface relief could also be decoded well above chance from the 
unsupervised networks (Fig. 3b) and significantly better than from 

a

Variable surface relief High-gloss or low-gloss material

Random base colour

1 of 6 light fields, random rotation

x x

Training examplesb

Unsupervised
PixelVAE
network

c

Supervised
ResNet
network

Network categorizes gloss:

"high"

"low"

Latent
code

Network samples new images,
conditioned on previous pixels
and latent code.

d PixelVAE samples

Fig. 1 | An unsupervised neural network learns to generate plausible novel images from a simulated visual world. a, The simulated physical world 
consisted of a bumpy surface viewed from above. The scene varied in depth of surface relief (left), surface base colour and whether the surface material 
had high or low gloss (middle), and illumination environment (right). b, Six examples from a training set of 10,000 images rendered from the simulated 
world by randomly varying the world factors. c, The dataset was used to train an unsupervised PixelVAE network (top). The network learns a probability 
distribution capturing image structure in the training dataset, which can be sampled from one pixel at a time to create novel images with similar structures. 
A substream of the network learns a highly compressed 10D latent code capturing whole-image attributes, which is used to condition the sampling of 
pixels. The same dataset was used to train a supervised ResNet network (bottom), which output a classification of ‘high gloss’ or ‘low gloss’ for each 
input image. The penultimate layer of the supervised network is a 10D fully connected layer, creating a representation of equivalent dimensionality for 
comparison with the unsupervised model’s latent code. d, Six example images created by sampling pixels from a trained PixelVAE network, conditioning on 
different latent code values to achieve diverse surface appearances. These images are not reconstructions of any specific images from the training set; they 
are completely novel samples from the probability distribution that the network has learned.
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the supervised networks (independent-measures t-test comparing 
light field decoding between unsupervised and supervised mod-
els: t18 = 23.25; P < 0.001; Cohen’s d = 10.40; 95% CI of difference,  
0.28–0.34; surface relief: t18 = 3.30; P = 0.004; d = 1.48; 95% CI, 0.08–
0.36). Thus, linear decoding further demonstrates that the unsu-
pervised networks learn a compact representation that summarizes 
information about not only surface material but also other scene 
properties such as illumination and surface relief. The analysis also 
revealed that representations were distributed rather than sparse. 
The full latent code predicted scene properties much better than any 
individual dimension could (Fig. 3b and Supplementary Fig. 1c).

Crucially, we could now derive a predicted gloss value for any 
image by inputting it to a network and calculating the SVM deci-
sion value for its corresponding point in latent space (that is, the 
signed distance of the point from the network’s gloss-separating 
hyperplane; Fig. 3a). This allowed us to compare the model against 
human gloss perception.

For Experiment 1 (gloss ratings), we rendered 50 new images of 
surfaces with random magnitudes of specular reflectance, sampled 

uniformly from almost matte to almost mirror-like. Twenty observ-
ers rated the apparent gloss of each surface, from 1 (matte) to 6 
(glossy). We compared their ratings with the gloss values predicted 
by the unsupervised model. Figure 4a shows that agreement was 
excellent (mean R2 over ten model training instances, 0.84) and was 
substantially better than for the supervised model (mean R2 = 0.40; 
independent-samples t-test t18 = 12.45; P < 0.001; Cohen’s d = 5.57; 
95% CI of difference, 0.37–0.50). Notably, the unsupervised model 
even predicted human ratings better than ground truth (specular 
magnitude within the rendering engine; R2 = 0.73; one-sample t-test 
of difference, across model training instances: t9 = 4.74; P = 0.001; 
d = 1.50; 95% CI, 0.05–0.13).

We also considered a number of alternative models (bar graph 
in Fig. 4a), all of which predicted human judgements less well than 
ground truth. The best of these was a feature space consisting of the 
1,000 final-layer features from a ResNet DNN trained on 1.2 mil-
lion images to classify objects58,71. This is consistent with previous 
findings that representations in object-recognition DNNs capture 
perceptually relevant features of textures and images61,82–84. Other, 
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Fig. 2 | World factors are disentangled in the unsupervised model’s latent code. a, Visualizations of distances between 4,000 images, in the 10D latent 
code of one unsupervised PixelVAE network, projected into two dimensions using tSNE. Unsupervised learning spontaneously disentangles the underlying 
world factors, arriving at a nested representation. Images of low-gloss surfaces form one large cluster, while images of high-gloss surfaces form multiple 
small subclusters (left), according to the light field used to render the image (centre left). Lighting direction varies smoothly within each subcluster (centre 
right), and surfaces with low relief are closer to one another than are those with high relief (right). b, tSNE visualization of the same images in raw pixel 
space, where world factors are thoroughly entangled. c, tSNE visualization of the same images in the 10D latent code of one gloss-supervised ResNet 
network, showing a less rich representation. High- and low-gloss images form two clearly separated clusters, but other world factors are entangled.  
d, Dissimilarity matrices showing Euclidean distances between all pairs of images in the latent representations of all PixelVAE networks, averaged across 
surfaces with the same gloss level (left) or illumination (right). Pairs of images belonging to the same gloss or lighting condition (the diagonal blocks in 
each matrix) were represented more similarly than pairs of images belonging to different conditions (the off-diagonal blocks) (gloss: t9 = 16.73; P < 0.001; 
d = 0.97; 95% CI, 0.37–0.46; light field: t9 = 29.76; P < 0.001; d = 0.95; 95% CI, 0.36–0.41). e, Corresponding dissimilarity matrices calculated from 
the representations in the 10D latent codes of the supervised networks reveal stronger clustering by the task-relevant dimension of gloss and weaker 
clustering by light field (model × factor interaction: F1,18 = 9,878.34, P < 0.001, η2 = 0.99).
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less well-performing models included a multiscale texture descrip-
tion comprising 1,350 feature dimensions85; the 4,096 latent features 
from a relatively simple image autoencoder; 10D embeddings of 
raw images via tSNE74, MDS or LLE75; and luminance histogram 
skewness—a measure previously proposed to predict human gloss 
perception86 (Methods). Supplementary Fig. 2 shows visualizations 
of how reflectance and other scene factors are organized within each 
of these feature spaces.

Since PixelVAE networks are generative models, novel  
images can be generated by sampling from them (Fig. 1d).  
In Experiment 2 (gloss manipulation), we used such images to 
test whether perceived gloss varied systematically with an image’s  
location in the model’s latent space. From each of the model  
training instances, four sequences of five images were generated 
by conditioning the image-sampling process first on a low-gloss 
point in the latent space and then on progressively higher-gloss 
points (that is, moving along the model’s gloss-discriminating axis,  
orthogonal to the SVM hyperplane). Another four sequences pro-
gressed from high-gloss to lower-gloss points (Fig. 4c). The same 
20 observers sorted the images within each sequence from least 
to most glossy. Figure 4b shows that moving along the model’s 
gloss-discriminating axis systematically reduced the apparent gloss 
of generated images when moving in the matte direction (one-way 
repeated-measures ANOVA: F4,76 = 244.11; P < 0.001; η2 = 0.93; 95% 
CI of correlation r, 0.87–0.93) and increased it when moving in 
the high-gloss direction (F4,76 = 649.82; P < 0.001; η2 = 0.97; 95% CI  
of r, 0.97–0.98).

We thus find that the unsupervised networks develop inter-
nal representations that not only disentangle distal causes that are 
impossible to tease apart in the raw input (Fig. 2b and Supplementary 
Fig. 2) but also, more remarkably, predict human gloss perception 
better than the true physical reflectance properties of surfaces, even 
though these networks are never given information about scene 
properties during training.

The unsupervised model predicts failures of human gloss con-
stancy. Although human gloss perception generally aligns well 
with specular reflectance, it also exhibits some well-documented 
‘errors’. For example, bumpier surfaces tend to look glossier than 
flatter surfaces, and specific combinations of lighting and surface 
relief yield specific patterns of misperception (Fig. 5a and refs. 34,35). 
Mimicking such perceptual errors is a key test of any computational 

model of biological vision87. We assessed how well different models  
capture the systematic failures of gloss constancy exhibited by 
human observers.

To do this, we rendered sequences where surface relief increased 
in seven steps, while reflectance and other scene properties 
remained fixed (Fig. 5a). For stimuli in Experiments 3a and 3b 
(patterns of gloss constancy), we selected two sets of ten sequences 
for which both the unsupervised and supervised models predicted 
deviations from constant gloss and the models made different pre-
dictions about the particular pattern of deviations (Methods). The 
rationale behind this is that cases where models disagree provide 
the strongest power to test which model is superior88,89.

With these image sequences in hand, in Experiments 3a and 3b, 
two groups of 20 observers judged gloss in a paired-comparison 
task (Methods). If the observers correctly estimated reflectance, all 
surfaces should appear equally glossy, yet we find that they do not. 
The observers exhibited strong failures of gloss constancy, usually 
reporting surfaces with deeper relief to be glossier, although per-
ceived gloss was non-monotonic in 7 of the 20 sequences, being 
the highest for intermediate reliefs (four examples are shown in 
Fig. 5b; the complete data are shown in Supplementary Fig. 3). The 
unsupervised model, despite never being explicitly trained to repre-
sent gloss and without being fit to human data, predicted patterns 
of failures of gloss constancy remarkably well (median R2 across 
sequences and model training instances, 0.71). The model correctly 
predicted the qualitative pattern of constancy failure (monotonic 
versus non-monotonic) for 18 out of the 20 stimulus sequences. In 
contrast, the supervised model completely failed to predict human 
gloss constancy. For almost all sequences, it made predictions that 
were anticorrelated with human patterns (median R2, –1.45). Of 
the alternative models (Fig. 5c), a set of mid-level texture features85 
provided the next-best performance (median R2, 0.54) but was sig-
nificantly poorer than the unsupervised model (one-sample t-test 
of difference across model training instances: t9 = 10.48; P < 0.001; 
Cohen’s d = 3.31; 95% CI of difference, 0.14–0.20).

Human gloss constancy ranges from good to bad depending on 
interactions between lighting and shape30,33–35,90. For Experiment 4 
(degrees of gloss constancy), we rendered 40 image pairs depict-
ing surfaces with identical material but different surface relief or 
lighting (Fig. 5d and Methods), for which the unsupervised model 
predicted a wide range of degrees of gloss constancy, from excel-
lent (near-identical predicted gloss for both images in a pair) to  
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Fig. 3 | Disentangled world factors are available via a simple linear readout. a, To quantify how explicitly gloss was represented in each model, we trained 
linear SVM discriminants to classify gloss from the representations of images within the latent code of each network. As well as obtaining decoding 
accuracy, this allowed us to use decision values (that is, the distance from the SVM hyperplane) to make continuously valued predictions from the model 
regarding the gloss of novel images (three examples are shown), which was critical in subsequent experiments. b, Average decoding accuracy for each 
world factor from latent codes of unsupervised and supervised networks (the y axis shows the proportions correct for two-way gloss classification and 
six-way light field classification, as well as R2 for surface relief regression). The pale lower regions of the bars indicate the average decoding accuracy when 
using the best single latent dimension and give an impression of how distributed the representations are. The data points show the individual  
performance for each of the ten training instances of each model type (the black outline indicates full dimensionality; the white outline indicates  
the best single dimension).
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very poor (the images received very different predicted gloss values; 
see Methods).

Twenty observers indicated which surface in each pair appeared 
glossier, with each pair repeated eight times. The unsupervised 
model predicted the degree and direction of human (failures of) 
constancy reasonably well (mean r across model training instances, 
0.70; Fig. 5e) and outperformed all alternative models (the next-best 
model was object-DNN features, r = 0.64; one-sample t-test of dif-
ference, across PixelVAE training instances: t9 = 4.00; P = 0.003; 
Cohen’s d = 1.27; 95% CI of difference, 0.03–0.08). Fitting a simple 
logistic function to relate model and human gloss values further 
improves the prediction (from an average R2 across model training 
instances of 0.60 for a linear fit, to an R2 of 0.74 for a logistic fit).

Aggregating the results across the three experiments using 
renderings (Experiments 1, 3 and 4) shows that the unsupervised 
model predicts human perceptual judgements better than all others 
(Fig. 6). It achieves near-perfect ground-truth gloss-classification 

accuracy while still predicting idiosyncratic errors of human gloss 
perception (Fig. 6a), with a feature space two orders of magnitude 
more compact than the next-best model (Fig. 6b). The next-best 
model was a set of texture features hand-engineered to efficiently 
capture higher-order statistical structure in images85, which per-
formed significantly less well (one-sample t-test of difference in root 
mean square error predicting individual data across the three exper-
iments: t59 = 10.73; P < 0.001; Cohen’s d = 1.39; 95% CI, 0.05–0.07). 
Simple image statistics, such as the skewness of the luminance histo-
gram86, failed to capture human gloss perception under our deliber-
ately challenging stimulus conditions, where differences in specular 
reflectance must be de-confounded from differences in lighting and 
surface shape.

Model generalization and effects of training set. The composition 
of the training dataset has profound effects on all machine learning 
models. However, a good model of human mid-level vision should 
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generalize over changes to training or test data. Our unsupervised 
networks were trained on a simulated environment with bimod-
ally distributed specular reflectance (near-matte or high-gloss). 
Nevertheless, they well predicted gloss in new image sets containing 
continuously varying reflectance (Fig. 7a; mean R2, 0.79; s.d. of R2, 
0.03; see also Supplementary Fig. 6a), and they predicted gloss for 
scenes with novel geometries and light fields as well as they did for 
familiar scenes (Fig. 7a).

Model predictions do not seem to depend on artefacts of the 
specific computer graphics techniques used to generate our images 
(real-time rasterized rendering), as gloss predictions were near 

identical for matched surfaces rendered using more time-intensive 
but physically faithful ray-traced rendering (Supplementary  
Fig. 6b). Remarkably, given their constrained training environ-
ments, the models even seem able to broadly categorize close-up 
photographs of real-world surfaces91 as being of high or low  
gloss, although they fail when shown surfaces far outside their  
training data, such as fabrics with high-contrast patterns 
(Supplementary Fig. 6c,d).

We performed two tests of robustness to different training data-
sets. First, five new PixelVAE networks were trained on 10,000 
additional renderings in which gloss was sampled continuously 
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rather than bimodally (continuously sampled gloss training data-
set; Methods). Second, an additional PixelVAE was trained on a 
third dataset of 10,000 renderings in which surface geometry and 
lighting varied far more widely (higher-variation training dataset; 
Methods), with each scene comprising one of ten novel surface 
geometries combined with one of 50 novel light fields. Both new 
training environments produced models with latent codes that 
could well subserve gloss classification on the original bimodal gloss 
dataset (with mean accuracies of 96.7% and 91.4%, respectively). 
Importantly, we found that all three versions of the PixelVAE model 
(original, continuous-gloss training and higher-variation training) 
made highly similar predictions regarding the relative gloss levels 
of experimental stimuli. This indicates that the ability to predict 
human perception is not highly sensitive to the training set. The 
three versions of the unsupervised PixelVAE model, trained on 
non-overlapping datasets, made more similar gloss predictions to 
one another than to those made by any of the ten diverse alternative 
models (the dark cluster of low dissimilarity values in the bottom 
left of Fig. 7b). All three training environments led to unsupervised 
models that predicted human data reasonably well (Fig. 7c), both 
for gloss ratings of novel rendered images (Experiment 1) and for 
the more challenging task of predicting patterns (Experiment 3) 
and degrees (Experiment 4) of (failures of) gloss constancy. Each 
of the three model versions predicted human data significantly bet-
ter than the supervised model in all experiments (t19 = 4.01–31.08; 
P < 0.001; Cohen’s d = 0.56–7.00; 95% CI, 0.06–0.18 to 0.60–1.07 
in nine repeated-measures t-tests comparing unsupervised versus 
supervised model correlation with individual participants’ data; 
Bonferroni-corrected α, 0.006) and were significantly better than 
the most promising alternative model, texture features85, in six out 
of nine comparisons (t19 = 0.73–5.84; P = 0.47 to <0.001; d = 0.17–
1.16; 95% CI, −0.12–0.25 to 0.12–0.31).

Several analyses were performed to assess how robustly unsu-
pervised models outperformed their supervised counterparts. In 
building and training a DNN, values must be chosen for the many 
hyperparameters controlling network architecture and training. We 
evaluated the effects of some of these hyperparameters by training 

28 additional models (14 unsupervised and 14 supervised) that dif-
fered from the original implementations in depth, learning rate, 
learning rate decay, training batch size and complexity of the learned 
model (for unsupervised PixelVAEs); see Supplementary Table 1 for 
the details. Eleven of the 14 unsupervised network variants outper-
formed all supervised network variants in predicting human gloss 
judgements; the three exceptions were networks that failed to train 
due to poor learning rate settings (Supplementary Fig. 5). We also 
found that representations in the unsupervised model better pre-
dicted human judgements than those in the supervised model for 
all intermediate layers (Supplementary Fig. 4a). Finally, we created 
a version of the supervised model that outputs continuous-valued 
gloss estimates rather than categorical decisions and trained it 
on a dataset with continuous rather than bimodal reflectances 
(Supplementary Methods and Results). This version predicted 
human gloss judgements better than the category-supervised 
model but less well than the unsupervised model, failing to exhibit 
the systematic errors that characterize human gloss percep-
tion (Supplementary Fig. 4b). Overall, unsupervised learning in 
PixelVAE models seems to converge on a representation that cap-
tures key aspects of human gloss perception and tolerates changes in 
the particular network hyperparameters, or the statistics, illumina-
tions or geometries of the training and test sets.

Features underlying gloss representation in the model. Previous 
research35 identified specific image features—the coverage, con-
trast and sharpness of specular highlights—that predicted per-
ceived gloss for surfaces like those evaluated here. To test whether 
the PixelVAE model was also sensitive to these cues, we measured 
the coverage, contrast and sharpness of highlights in 10,000 new  
renderings of surfaces with specular reflectance varying con-
tinuously from near-matte to near-mirror. All three cues could be 
decoded from the latent code of a PixelVAE trained on these images 
(mean R2 = 0.71) and could be increasingly well decoded from suc-
cessive convolutional and fully connected layers (Supplementary 
Fig. 7a). A linear combination of the three cues in the layer immedi-
ately preceding the 10D latent code correlated with gloss predicted 
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from the latent code (r = 0.80; Supplementary Fig. 7b). Moreover, 
manipulating the highlights in images to weaken each cue  
also reduced predicted gloss (Fig. 8a,b; one-way repeated-measures 
ANOVA for the effect of highlight contrast reduction: F9,81 = 11.20; 
P < 0.001; η2 = 0.55; 95% CI of correlation r, −0.65 to −0.41; 
sharpness: F9,81 = 9.65; P < 0.001; η2 = 0.52; 95% CI of r, −0.61 to  
−0.40; coverage: F9,81 = 18.14; P < 0.001; η2 = 0.67; 95% CI of r, −0.58 
to −0.29).

Interestingly, we did not find evidence that the model’s pre-
dicted gloss decreased when the specular component of images was 
shifted so that highlights were misaligned with the geometry of the 
depicted surfaces (Fig. 8b; F9,81 = 0.48; P = 0.88; η2 = 0.05; 95% CI 
of r, −0.21–0.09). This manipulation preserves coverage, contrast 
and sharpness, yet infringes photogeometric constraints that are a 
precondition for humans to identify highlights as specularities and 
therefore to see gloss at all6,92,93. The fact that the model predicts 
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of ten PixelVAE networks, averaged over training instances (1a); five PixelVAE networks trained on a new set of 10,000 images using the same surface 
geometry and light fields, but with specular reflectance continuously sampled, averaged over training instances (1b); a PixelVAE network trained on a third 
set of 10,000 images using ten surface geometries and 50 light fields, non-overlapping with the geometry and light fields used in the main training dataset 
(1c); and alternative models, ordered by the similarity of their predictions to that of the original PixelVAE (2–10). The gloss predictions are for all stimuli 
used in Experiments 1, 3 and 4 and were normalized into the range 0–1 for comparability across models. c, Average correlation between model-predicted 
gloss and individual human judgements in each psychophysical experiment for the PixelVAE implementations described in b. The data points show 
the values for each observer (N = 20 in each experiment). All unsupervised models predicted the human data better than the supervised model in all 
experiments (across nine comparisons: t19 = 4.01–31.08; P < 0.001; Cohen’s d = 0.56–7.00; 95% CI, 0.06–0.18 to 0.60–1.07). The vertical grey lines indicate 
how well the data can be predicted on average from those of other observers, giving the highest possible average model correlation.

Nature Human Behaviour | VOL 5 | October 2021 | 1402–1417 | www.nature.com/nathumbehav1410

http://www.nature.com/nathumbehav


ArticlesNaTURe HUman BehavIoUR

human gloss constancy without seeming to be sensitive to such con-
straints suggests that although these constraints are crucial to many 
aspects of surface perception7,93–96, the degree of perceived gloss, 
within surfaces that are seen as having highlights, may be largely 
explainable in terms of image features.

Discussion
The efficient representation of sensory data has long been hypoth-
esized as a central goal of neural coding15,19–24,97. But while such 
approaches predict many aspects of low-level image encoding, they 
have not explained how we visually infer properties of the outside 
world. Unsupervised learning objectives in modern DNNs, such 
as data compression and spatial prediction, offer powerful new 
implementations of these statistical learning principles17. Our find-
ings show that mid-level perceptual dimensions, such as gloss—
which imperfectly map onto properties of the physical world—can 
emerge spontaneously by learning to efficiently encode images. 
Unsupervised learning may thus provide a bridge that links theo-
retical views emphasizing the importance of image statistics (for 
example, see refs. 86,98,99) to those that treat perceptual processes as a 
decomposition of images into distinct physical causes (for example, 
see refs. 4,6,8,100).

One of the fundamental unsolved questions in vision science 
is how the visual system became aware of the different physical 

sources that contribute to image structure. Perception is commonly 
framed as the optimal estimation of a set of known physical quan-
tities4,9–11. But these quantities that the brain putatively estimates 
were not specified a priori; they must somehow be discoverable 
(over either the course of evolution or learning) on the basis of their 
manifestation in sensory experience12–14. Here, we suggest that dif-
ferent physical causes give rise to different high-order regularities in 
visual data, making them discoverable through data-driven unsu-
pervised learning processes15–18. We provide a proof-of-principle 
that it is possible to learn to disentangle distal causes without prior 
knowledge about which classes of causes exist in the world, the cues 
that could be used to distinguish them or even how many differ-
ent classes of causes there are. An unsupervised statistical learning 
model predicted the expected changes in perceived gloss caused 
by varying specular reflectance (Experiment 1; refs. 32,33,39–41,43), as 
well as illusory changes in perceived gloss that arise from varying 
lighting and shape (Experiments 3 and 4; refs. 34,35). We suggest that 
known systematic errors in gloss perception can be attributed to the 
particular pattern of partial disentanglement arising from unsuper-
vised statistical learning of surface appearances.

One of our more intriguing results is that the unsupervised model 
predicted human perception better than the supervised model that 
we tested. It is important to note that this is not because humans 
and unsupervised networks were better at extracting ground truth 
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in these stimuli. Categorization-supervised networks categorized 
gloss almost perfectly (Fig. 3b), and regression-supervised networks 
predicted continuous gloss levels almost perfectly (Supplementary 
Fig. 4b), yet both predicted human judgements less well than unsu-
pervised networks. This implies that the systematic errors exhibited 
by humans and the PixelVAE model are not a trivial consequence 
of some inherent impossibility in recovering specular reflectance 
for these stimuli. Nor is this result explained by the supervised 
model reporting ground-truth specular reflectance too faithfully. 
Although the supervised model is near-perfect at coarsely catego-
rizing surfaces as having high or low specular reflectance, it still pre-
dicts different degrees of glossiness for different images, including 
sometimes erroneously. Yet the supervised and unsupervised mod-
els make different predictions on an image-by-image basis, with the 
latter more closely matching those made by humans. We propose 
that this shared pattern of deviation from ideal performance may 
arise from shared characteristics in how the human visual system 
and the unsupervised model learn to encode images.

One of the most notable failures of the PixelVAE in captur-
ing human data is its insensitivity to photogeometric constraints 
known to affect human surface perception, such as the align-
ment of specular highlights with diffuse shading7,92,93 (Fig. 8). We 
believe that this failure is probably due to the relative poverty of 3D  
shape information in its training set. The link between highlights 
and diffuse shading arises from constraints imposed by the 3D 
shape of a surface94,96. It seems implausible to expect any visual  
system trained solely on monocular, static images to develop 
good sensitivity to these constraints, and without a detailed repre-
sentation of 3D shape, no model is likely to explain all aspects of 
human gloss perception94,95,101. We tailored the training sets towards 
modelling variations in perceived glossiness for physically real-
istic surfaces, where highlights are assumed to align with surface  
shading32,33,39–41,43. An important direction for future research is test-
ing whether unsupervised DNNs can also learn photogeometric 
relationships, if training sets provide additional information about 
shape (for example, through motion, stereo, occlusion or larger 
variations in geometry).

In using deep learning models, we do not wish to imply that 
all material perception is learned during an individual lifetime. 
Unsupervised learning principles can also operate on an evolution-
ary timescale. For example, V1 cell receptive fields are predicted by 
simple unsupervised learning models such as independent compo-
nents analysis22, and these seem to be present at birth in macaques102. 
The developmental trajectory of gloss perception is not fully known. 
There is evidence that five- to eight-month-old infants can distin-
guish between matte and specular surfaces103, but also evidence that 
material recognition and classification are still developing in five- to 
ten-year-old children104,105. Even five to eight months of visual expe-
rience provides a huge dataset for statistical regularity learning106. It 
could be that approximate versions of many perceptual dimensions 
are rapidly learned during the first days, weeks and months of life.

Although we do not propose the PixelVAE architecture as a 
physiological simulation of visual cortex, its computational prin-
ciples are eminently achievable in biological brains. Data compres-
sion and spatial prediction are learning objectives that require no 
additional information beyond the incoming sensory data, and 
there are several mechanisms by which brains could represent the 
probability distributions used in the PixelVAE network107–109. At the 
same time, the brain certainly does not learn statistical distributions 
over RGB pixels. If the visual system uses learning objectives like 
the ones investigated here, they presumably operate on image repre-
sentations that have undergone substantial retinal processing110,111.

In conclusion, unsupervised DNN models provide an ecologi-
cally feasible solution to the problem of how brains come to repre-
sent properties of the distal world without access to ground truth 
training data12–14,17,112. Nonlinear transformations reorganize inputs 

according to high-order regularities within and across images, 
allowing the visual system to better summarize and predict sen-
sory data. Because regularities in images are caused by underlying 
physical objects and processes, these new configurations often end 
up (partially) disentangling physical properties from one another. 
Our results suggest that the imperfect nature of this disentangle-
ment may account for the characteristic errors that humans make. 
Failures of constancy, which are rife in vision, may therefore  
offer clues to how we learn to see. Unsupervised learning may 
account for these failures not just in gloss perception but in  
perception more broadly.

Methods
Participants. Three groups of human naive observers reported perceived gloss 
across five experiments: Experiments 1 and 2 (N = 20; mean age, 23.45; age 
range, 19–32; 16 female, 4 male), Experiment 3a (N = 20; mean age, 23.45; age 
range, 19–31; 16 female, 4 male) and Experiments 3b and 4 (N = 20; mean age, 
24.45; age range, 19–35; 14 female, 6 male). Six individuals participated in two 
different experimental groups but received no information about the experimental 
design or hypotheses after the first session. No statistical methods were used to 
predetermine sample sizes, but our sample sizes are larger than those reported in 
previous publications measuring gloss constancy34,35,37. All participants had normal 
or corrected-to-normal visual acuity. Two male participants self-reported poor 
red–green colour vision. The experiments were conducted in accordance with 
the Declaration of Helsinki (sixth revision), with prior approval from the ethics 
committee of Justus Liebig University, Giessen, Germany. The volunteers gave 
written informed consent and were paid €8 per hour.

Stimuli. The stimuli were 800 pixel × 800 pixel images of bumpy surfaces rendered 
using Unity3D (v.2018.2.3; Unity Technologies, https://unity.com/). A virtual 
40 cm × 40 cm sheet with irregularly positioned bumps was placed in a scene and 
illuminated by one of six high-dynamic-range image (HDRI) light probes. The 
light probes were white-balanced 8,192 pixel × 4,096 pixel images of four exterior 
(beach, bay, woodland and savannah) and two interior (church and conference 
hall) environments, captured by Unity Technologies (https://assetstore.unity.com/
packages/2d/textures-materials/sky/unity-hdri-pack-72511). A virtual camera 
(60° field of view) hovered 12 cm above the sheet, viewing directly downwards. By 
randomly varying the camera’s location and orientation, an extremely large number 
of unique images could be generated from the scene.

Main training dataset. We rendered 10,000 images to create the main training 
dataset for the neural network models. For each rendering, one of the six 
HDRIs was randomly selected to illuminate the scene. Surface relief was scaled 
multiplicatively in depth by a uniformly sampled random scaling factor, so that 
the distance between the lowest and highest points on the surface was between 
0.1 cm and 2.5 cm. The surface’s reflectance properties were controlled via the 
Unity3D standard shader, using the ‘specular setup’. The diffuse reflectance 
component of the surface material was chosen by selecting RGB values randomly 
uniformly within the interval 0.3 to 0.7, independently for each channel. The 
surface was either low or high gloss, with equal probability. For low-gloss surfaces, 
the specular reflectance component of the material was selected randomly 
uniformly between 0.1 and 0.3, and the concentration of the specular component 
was selected randomly uniformly between 0.2 and 0.4. For high-gloss surfaces, 
specular reflectance was between 0.3 and 0.5, and specular concentration was 
between 0.75 and 0.95. The training dataset therefore had a bimodal distribution 
of approximately 50% low-gloss and 50% high-gloss surfaces, with small variations 
in reflectance properties within each group. The same dataset was also used when 
training classifiers to decode gloss and other world factors from models.

Continuously sampled gloss training dataset. To verify that the representations 
learned by our models were not artefacts of the bimodal gloss sampling in the 
main dataset, we rendered 10,000 new images in which both the magnitude and 
concentration of the specular reflectance component were sampled randomly 
uniformly between 0.1 and 0.8, independently of each other. All other scene 
properties were varied as in the main dataset.

Higher-variation training dataset. To verify that less-constrained visual diets could 
lead to similar gloss representations, we created a third training dataset in which 
10,000 images each randomly combined one of ten novel surface geometries with 
50 novel light fields. The novel geometries were virtual 40 cm × 40 cm sheets with 
different shapes and sizes of irregularly placed ridges, bumps and indentations 
(examples are shown in Fig. 7a). The novel light fields were 4,096 pixel × 2,048 pixel 
HDR images (25 exterior and 25 interior) from the HDRI Haven database (http://
www.hdrihaven.com). The distance of the virtual camera above the surface varied 
randomly uniformly between 8 cm and 12 cm to introduce scale variation. All other 
scene properties varied as in the main dataset.
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Renderings with continuously sampled gloss levels (Experiment 1: gloss ratings). The 
stimuli were 50 new rendered images with specular reflectance chosen randomly 
uniformly between 0.2 and 1.0, and specular concentration set to the same value. 
Other attributes were varied as in the main dataset. For all rendered images used 
as stimuli in the psychophysical experiments (Experiments 1, 3 and 4), the same 
geometry and set of light fields were used as in the main training dataset, but the 
images were novel renderings unseen by any model during training.

Gloss-modulated images generated from PixelVAE models (Experiment 2: gloss 
manipulation). For each of the PixelVAE networks, we first determined the axis 
in 10D latent space along which gloss could be most strongly discriminated 
(‘Data analysis’). Eight images (four low-gloss and four high-gloss) from the main 
training dataset were input to each network, and their corresponding latent points 
were recorded. These were used as seed points to generate eight gloss-modulated 
sequences for each network. The first step in each sequence was generated by 
conditioning the model’s pixel-sampling process on the respective seed point in 
latent space and then sampling a 128 pixel × 128 pixel image (‘Neural network 
architectures and training’). The conditioning point was then moved 0.07 units 
in latent space along that model’s gloss-discriminating axis, in either the matte 
(for high-gloss seed images) or glossy (for low-gloss seed images) direction, and 
a second image was generated. This was repeated three more times, yielding a 
five-step sequence for each seed image from each model training instance  
(400 experimental images in total).

Sequences of renderings with increasing surface relief (Experiments 3a and 3b: 
patterns of gloss constancy). To create a strong test of the different models, we 
wanted to probe human gloss constancy using stimuli for which there were clear 
differences in constancy patterns predicted by unsupervised versus supervised 
models88,89, and which were likely to produce diverse patterns of failures of 
constancy in human observers. We therefore first generated candidate stimuli and 
then selected those that best satisfied these desiderata.

For each experiment, we rendered 200 different candidate sequences of 
seven images with fixed random material, illumination and camera position, but 
exponentially increasing surface relief (maximum bump heights of 0.10, 0.18, 0.31, 
0.55, 0.97, 0.70 and 3.0 cm). All surfaces had relatively high gloss. In Experiment 
3a, specular reflectance was selected randomly uniformly between 0.2 and 1.0, and 
specular concentration was between 0.7 and 1.0. In Experiment 3b, reflectance was 
between 0.1 and 0.3, and concentration was between 0.8 and 1.0. Other attributes 
were varied as in the main dataset. All 1,400 images in each set were input to each 
of the unsupervised PixelVAE and supervised ResNet networks to obtain predicted 
gloss values (‘Data analysis’). For each candidate sequence of seven images, we then 
simulated the responses from each network under a two-alternative forced-choice 
(2AFC) experiment in which each possible pair of images was compared, and the 
image for which the model predicted a higher gloss value was selected. This was 
analogous to the ‘Which is more glossy?’ task performed by human observers 
(‘Psychophysical procedures’).

First, for each sequence we performed a 2 × 7 (model × surface relief) ANOVA 
between unsupervised and supervised model predictions, averaged over the 
training instances of each model. The sequences were sorted according to the F 
interaction statistic, prioritizing those with strong disagreements between model 
predictions88,89. In Experiment 3a, we visually inspected the top-ranked sequences 
and selected ten with diverse appearances and subjective failures of gloss constancy.

In Experiment 3b, we selected test sequences in an entirely automated manner 
by classifying the sequences into four qualitative groups on the basis of the average 
constancy pattern predicted by the unsupervised models:
•	 Group 1: the model predicts approximate constancy (range of predicted ‘pro-

portion glossier’ values < 0.25, and a linear function fit achieved R2 > 0.70);
•	 Group 2: the model predicts an approximately linear increase in gloss with 

bump height (range > 0.50, and a linear fit achieved R2 > 0.90);
•	 Group 3: the model predicts a non-monotonic failure of constancy 

(range > 0.50, and a quadratic fit of R2 > 0.90 with a negative coefficient of the 
squared term);

•	 Group 4: the model predicts an upward-swinging nonlinear failure of con-
stancy (range > 0.50, and a quadratic fit of R2 > 0.90 with a positive coefficient 
of the squared term).

We then selected the top sequences in each group (ranked by the F interaction 
term), in proportion to the size of each group (one constant, four linear, two 
non-monotonic and three nonlinear sequences).

Pairs of renderings with differing surface relief or lighting (Experiment 4: degrees of 
gloss constancy). Here we sought pairs of stimuli with diverse scene differences 
(some differing in surface relief, some in lighting environment and some in angle 
of illumination) and for which the unsupervised model made a wide range of 
predictions, ranging from good constancy to strong failure of constancy.

We rendered 800 candidate image pairs with the same random material 
properties and camera position, but differing in either surface relief (0.40 cm versus 
1.5 cm maximum bump height) or illumination. Pairs differing in illumination 
were either ‘naturally’ lit (differing in HDRI lighting environment, from among the 

six used in the main training dataset) or illuminated by a directional lamp (at a 30° 
versus 90° angle). Candidate pairs were generated in four groups of 200:
•	 Group 1: identical natural light field; different surface relief;
•	 Group 2: identical lamp angle; different surface relief;
•	 Group 3: identical surface relief; different natural light field;
•	 Group 4: identical surface relief; different lamp angle.

Average predicted gloss values were obtained for each image, across training 
instances of the unsupervised PixelVAE model (‘Data analysis’). Within each 
group, we ranked pairs by the absolute difference in predicted gloss of the images 
in the pair, and we selected pairs lying at each of the 10th percentiles, yielding  
40 test pairs.

Geometry and lighting generalization test set. To test the generalization of models 
trained on the main dataset, we rendered five sets of 500 new images, one using 
the original surface sheet and four using novel surface geometries (Fig. 7a). 
Illumination was randomly one of eight novel 4,096 pixel × 2,048 pixel HDR 
light probes (six exterior and two interior) from the Dutch Skies 360° HDRI 
Project (http://www.dutch360hdr.com/). Specular reflectance was varied as in the 
continuously sampled gloss training dataset.

Highlight-feature manipulated images. To manipulate highlight features (Fig. 8), 
we manipulated the specular component image in four different ways, before 
combining with the diffuse component image by addition:
•	 Translated highlights: the specular component was shifted rightwards in ten 

five-pixel steps. To avoid edge artefacts after translation, the images were  
rendered at 1,024 × 1,024 resolution and then cropped to the lower-right  
800 pixels × 800 pixels.

•	 Reducing highlight coverage: we applied image erosion to the specular compo-
nent using the OpenCV package for Python. The kernel size was 2 × 2. Up to 
ten iterations were applied to create ten progressively reduced highlight maps.

•	 Reducing highlight sharpness: the specular image was convolved with a Gauss-
ian filter, with the step size ranging from 1 × 1 to 11 × 11.

•	 Reducing highlight contrast: we created a ‘highlight mask’ by identifying pixels 
with values >4 (from a range of 0–255) in the greyscale version of the specular 
image. The standard deviation of pixel intensity within the highlight map was 
multiplicatively reduced in ten steps, from 1 to 0.1 times their original s.d., 
while retaining the original mean.

Neural network architectures and training. The DNNs were implemented 
and trained in Python v.2.7 (Python Software Foundation, https://www.python.
org/) with Tensorflow v.1.14 (https://www.tensorflow.org/) on a GPU-accelerated 
machine using 1-4 GTX1080 graphics cards. The networks were trained on the 
first 9,000 images of the main training dataset, using the next 500 for validation 
and the final 500 for testing the accuracy of the supervised networks. All images 
were input at a resolution of 128 pixels × 128 pixels. For both unsupervised and 
supervised models, ten independent instances of the same architecture were 
trained from different random initial weights and with different random sampling 
of training batches, to ensure robustness to representational differences between 
training instances70. We also trained five instances of the PixelVAE network on 
the continuously sampled gloss dataset and one on the higher-variation dataset 
(‘Stimuli’), dividing training and validation data in the same proportions. No data 
augmentation was used. All architectures used rectified linear activation functions.

Unsupervised PixelVAE model. We used the implementation from ref. 47 of 
the PixelVAE architecture48, available at https://github.com/ermongroup/
Generalized-PixelVAE. The architecture consists of two streams of convolutional 
layers, which learn jointly via backpropagation. One stream is a ‘conditioning 
network’, which is a convolutional variational autoencoder that takes an image 
as input and outputs a 10D smooth latent representation. We chose a 10D latent 
code as being approximately the most compact representation that still allowed 
the network to learn a good model of the training images, on the basis of pilot data 
(Supplementary Fig. 1a,b). The other stream is an autoregressive PixelCNN++113,114 
model that learns the structure of the training data in terms of a logistic mixture 
probability distribution over pixel values and takes as inputs both the image and 
the latent code output by the conditioning network. To generate new images, the 
autoregressive stream chooses an RGB value for each pixel, working from the 
top left to the bottom right of the image. Each pixel is sampled from the learned 
probability distribution, conditioning both on the values of pixels generated so far 
(which constrain the local structure of the image) and on the values provided in 
the latent code (which constrain more holistic image properties).

The conditioning network consisted of three convolutional layers of 64, 128 
and 256 feature maps, followed by a fully connected layer of 512 units and a 10-unit 
latent code layer. The autoregressive network consisted of six ‘residual blocks’ of 
three layers of 64 convolutional feature maps each, with skip connections linking 
the first and sixth, and second and fifth blocks. Pixel likelihood distributions were 
modelled with a mixture of 12 logistic functions, and the networks were trained 
with a batch size of 5 and a learning rate of 0.001 for 200 epochs, around which 
point the validation error plateaued. The learning rate was gradually decayed by 
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multiplying by 0.999995 after each epoch. No regularization was used during 
training, to encourage the network to depend on information in its latent code47.

Supervised ResNet model. We used the Tensorflow implementation of the ResNet 
architecture57 from https://github.com/wenxinxu/resnet-in-tensorflow. The 
networks consisted of three residual blocks each made up of three layers of 56 
convolutional feature maps, with skip connections between each. The output of 
the final layer was passed to a ten-unit fully connected layer, which we treated 
as the ‘latent code’ of the model for analysis purposes. This passed, via one more 
nonlinearity, to a two-unit softmax output layer. Ten networks were trained, from 
different random initial weights, to classify images as renderings of surfaces with 
high or low specular reflectance (‘Stimuli’). The networks were trained with a batch 
size of 32 and a learning rate of 0.001 to minimize the sparse softmax cross-entropy 
between outputs and correct labels. The learning rate was gradually decayed by 
multiplying by 0.99995 after each epoch. The networks were trained for 21 epochs, 
by which point the validation accuracy plateaued above 99%.

Simple autoencoder. We also considered a far simpler unsupervised model, in the 
form of a non-variational convolutional autoencoder implemented using Keras 
v.2.2.5 (https://keras.io/) for Tensorflow. The architecture comprised four layers 
of 64, 32, 16 and 16 feature maps alternating with 2 × 2 pooling layers, leading to a 
4,096-unit fully connected bottleneck layer, which we treated as the model’s latent 
feature space for analysis purposes. The compressed code was expanded through 
mirrored layers of 16, 16, 32 and 64 feature maps to an output of the original 
dimensionality (128 × 128 × 3). The network was trained for 1,000 epochs to 
minimize mean absolute error between its input and output images (batch size 32, 
other learning parameters used the default Adam optimizer values as implemented 
in Keras).

Object-trained DNN. Finally, we evaluated a pretrained DNN supervised on object 
recognition: an 18-layer ResNet57 model available from the Deep Learning toolbox 
(https://mathworks.com/help/deeplearning/ref/resnet18.html) for MATLAB 
2019b (The MathWorks Inc.). The network had been pretrained on the ImageNet 
Large-Scale Visual Recognition Challenge database to classify 1.2 million  
images into 1,000 object and animal categories58. For the analyses, we used 
representations in the 1,000-unit fully connected layer immediately before softmax 
category readout.

Additional comparison models. Histogram skewness. Skewness was defined as the 
skew (third moment) of the distribution of pixel intensities in a greyscale version 
of each image.

MDS, tSNE and LLE. MDS is a linear dimensionality reduction technique that 
finds the linear projection of a dataset that best preserves the distances between 
all data points. tSNE74 is a nonlinear technique that preferentially preserves the 
distances between nearby data points. LLE75 is a nonlinear technique that seeks a 
lower-dimensional manifold that best preserves all distances.

Each dimensionality reduction algorithm was used to create a 10D 
embedding of the 10,000 images from the main training dataset, as well as all 
270 rendered images used in the experiments (50 images from Experiment 1, 
140 from Experiment 3 and 80 from Experiment 4). The experimental probe 
images were included because it is not possible to project new data points into 
the reduced-dimensionality solution discovered by tSNE or LLE. Additional 
2D embeddings were performed to create the visualizations (Fig. 2a–c and 
Supplementary Fig. 2) using 4,000 images randomly selected from the main 
training dataset. The default parameters were used, as implemented in the 
scikit-learn package for Python.

Texture features. For each image, we calculated a multiscale texture feature 
description85 using the TextureSynth package for MATLAB (www.cns.nyu.
edu/~lcv/texture/). The images were rescaled to 256 pixels × 256 pixels and 
analysed at three scales, four orientations, with a spatial neighbourhood of seven, 
producing a description of each image in terms of 1,350 feature dimensions.

Psychophysical procedures. The psychophysical experiments were conducted in a 
dimly lit room, sitting at a comfortable distance from the screen. The participants 
could freely view the screen and were given no fixation instructions. The stimuli 
were presented on an EIZO ColorEdge CG277 self-calibrating LCD monitor with 
a resolution of 2,560 × 1,440 and a refresh rate of 60 Hz. PsychoPy v.3.1 (https://
www.psychopy.org/) with Python v.3.6 was used to present the stimuli and record 
the responses. At the beginning of each experiment, the observers were shown 
4–12 example experimental stimuli, randomly arranged, to familiarize them 
with the appearance and range of material properties that they would be asked to 
judge. Response times were unconstrained, and the stimuli were displayed until a 
response was recorded.

Experiment 1: gloss ratings. Experiment 1 measured gloss ratings for novel rendered 
images. Fifty 800 pixel × 800 pixel (18.6 cm × 18.6 cm) images were presented singly 
in the centre of the screen. Each was repeated three times, for a total of 150 trials, 

presented in a random order. The participants were asked to rate the apparent gloss 
of each image using a six-point scale with endpoints labelled ‘1 = completely matte’ 
and ‘6 = extremely glossy’.

Experiment 2: gloss manipulation. Experiment 2 measured gloss rankings for 
gloss-modulated network-generated images. Eighty sets of five 128 pixel × 128 
pixel (2.9 cm × 2.9 cm) PixelVAE-generated images were shown. The five images in 
each set were arrayed in a random order in a row in the centre of the screen. The 
participants were asked to use the keyboard number keys to sort the images into a 
row of initially empty boxes at the bottom of the screen, in order from least glossy 
to most glossy. Each set of stimuli was shown once, for a total of 80 trials, presented 
in a random order.

Experiments 3a and 3b: patterns of gloss constancy. Experiment 3 measured pairwise 
gloss comparisons for probe sequences differing only in surface relief. Experiments 3a  
and 3b differed only in the specific sequences shown to the participants. Both 
experiments consisted of 10 sequences of 7 images, within which all possible pairs 
were shown twice each, for a total of 420 trials. The mages appeared at a resolution 
of 800 pixels × 800 pixels (18.6 cm × 18.6 cm), side by side on screen. Side of screen 
and trial order were randomized, with all sequences interleaved with one another. 
The participants were asked to report, using the left and right arrow keys, which 
surface appeared more glossy.

Experiment 4: degrees of gloss constancy. Experiment 4 measured pairwise gloss 
comparisons for pairs of images differing in surface relief or illumination. Each of 
40 pairs of images was shown 8 times, for a total of 360 trials. The images appeared 
at a resolution of 128 pixels × 128 pixels (2.9 cm × 2.9 cm), side by side, with side 
of screen and trial order randomized. The participants reported, using the left and 
right arrow keys, which surface appeared more glossy.

Data analysis. All analyses of human and model data were performed in Python 
v.2.7 or v.3.6, using the numpy v.1.16.5 and/or scikit-learn v.0.21.3 packages.

Representational similarity analysis. We measured the average correlation distance 
(1 minus Pearson’s r) between the latent representations of all 10,000 images in the 
main training dataset, grouped by whether they used the same (diagonal blocks) or 
different (off-diagonal blocks) gloss/lighting conditions, for each network training 
instance. Representational dissimilarity matrices (Fig. 2d,e) were created by 
averaging these values over the training instances of each model. To visualize the 
similarity of the model predictions (Fig. 7b), we created a vector, for each model, 
of predicted gloss values for all 270 rendered images used as experimental stimuli 
(50 images from Experiment 1, 140 images from Experiment 3 and 80 images from 
Experiment 4), normalized into the range 0–1. The Euclidean distance between 
these prediction vectors was calculated for all pairs of models.

Decoding world factors from models and deriving gloss predictions. For models 
with multidimensional feature spaces (that is, all except histogram skewness), a 
linear SVM was used to classify the specular reflectance (high versus low) of the 
rendered images from their representations within the model. The SVMs were 
trained on a random sample of 7,500 of the main training dataset images and tested 
on the remaining 2,500 to derive gloss classification accuracies (Fig. 3, Fig. 6a and 
Supplementary Figs. 4a and 5a). To derive continuously valued gloss predictions 
for the experimental images, the images were input to each model, and the signed 
distance of their representation from the model’s SVM decision boundary was 
measured. Positive values indicate high-gloss classifications, and negative values 
indicate low-gloss, with the absolute magnitude indicating the strength of evidence 
for that classification (Fig. 3, Fig. 4b,c, Fig. 5d,e, Fig. 7a, Fig. 8b and Supplementary 
Figs. 6b–d and 7b).

For the unsupervised PixelVAE and supervised ResNet models, we also trained 
linear SVMs to perform a six-way light-field classification, and we fitted linear 
regressions to predict surface relief (Fig. 3b). Classifiers and regressions were 
performed once using the full 10D latent space for each network and again  
using each of the network’s individual latent dimensions (Fig. 3b; see also 
Supplementary Fig. 1c for a visualization of the individual dimensions in one 
unsupervised network).

For the histogram skewness model, the raw skew values were used as gloss 
predictors for the purposes of model comparison. Ground-truth gloss classification 
accuracy (Fig. 6a) was defined as the accuracy using an optimal threshold to 
separate high-specular-reflectance from low-specular-reflectance images on the 
basis of their skewness, fitting the threshold on 7,500 main training dataset images 
and testing on the remaining 2,500.

Deriving predicted 2AFC experimental data from models. The model predictions 
for Experiment 3 were derived by simulating responses of each model in the 2AFC 
task performed by humans. For each sequence of seven images, the predicted 
gloss values of each possible pair of images were compared, and the image for 
which the model predicted higher gloss was selected. The predicted responses 
were summarized as ‘proportion selected as being glossier’ for each level in the 
sequence, as for the human data (Fig. 5b and Supplementary Fig. 3).

Nature Human Behaviour | VOL 5 | October 2021 | 1402–1417 | www.nature.com/nathumbehav1414

https://github.com/wenxinxu/resnet-in-tensorflow
https://keras.io/
https://mathworks.com/help/deeplearning/ref/resnet18.html
http://www.cns.nyu.edu/~lcv/texture/
http://www.cns.nyu.edu/~lcv/texture/
https://www.psychopy.org/
https://www.psychopy.org/
http://www.nature.com/nathumbehav


ArticlesNaTURe HUman BehavIoUR

Measuring highlight features. Coverage, sharpness and contrast of highlights  
(Fig. 8) were measured using a MATLAB package developed by Schmid et al.115. 
Briefly, coverage is defined as the proportion of pixels with higher intensities in the 
full image than in the diffuse component image, sharpness is defined as the local 
phase coherence116 within the specular component image and contrast is defined as 
the sum of the root mean square contrast across eight bandpass-filtered versions of 
the specular component image.

Psychophysical data analysis. No participants or trials were excluded from 
the analysis. In Experiment 1, both human ratings and model-predicted gloss 
values were normalized to the range 0–1 before comparing, individually for each 
participant or model instance. In Experiment 2, the rankings were converted to 
average rank position of each image step for each participant, averaging within 
matte and glossy seed image sequences. In Experiments 3a and 3b, the pairwise 
comparisons were converted to the proportion of times each image in each 
sequence was judged as having higher gloss, across pairings and repetitions, for 
each participant. In Experiment 4, the pairwise comparisons were converted to the 
proportion of times that image A (arbitrarily labelled) was judged as having higher 
gloss than image B, and this proportion was subtracted from 0.5 (that is, 0 indicates 
equal apparent gloss and good constancy; deviations in either direction indicate 
deviations from constancy). The model predictions were obtained by subtracting 
the predicted gloss value of image B from that of image A and scaling this gloss 
difference into the range −0.5 to 0.5, retaining the original zero point. For models 
with multiple training instances, model predictions were always derived (and 
performances calculated) for each individual training instance.

Statistical analysis. The statistical analyses were performed using the Pingouin117 
package for Python (v.0.3.10). All tests were two-tailed. The CIs reported for 
mean differences and correlations were calculated by bootstrapping the respective 
estimate 10,000 times. The data distributions were assumed to be normal, but this 
was not formally tested. The gloss predictions of all models were fixed, with no free 
parameters in evaluation against human data, except for the analysis of the data 
in Fig. 5e, where the performance of a logistic transform of unsupervised model 
predictions is also reported.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All human and model data are available on Zenodo at https://doi.org/10.5281/
zenodo.4495586.

Code availability
The custom analysis code that supports the findings of this study is available on 
Zenodo at https://doi.org/10.5281/zenodo.4495586.
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Data analysis All analyses of human and model data were performed in Python 2.7 or 3.6, using 
numpy v1.16.5, scikit-learn v0.21.3 and/or pinguoin v0.3.10 packages.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All human and model data are available on Zenodo at http://doi.org/10.5281/zenodo.4495586, along with custom analysis code that reproduces all figures and 
statistical tests involving human data.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative psychophysics experiments measuring human visual perception.

Research sample Three groups of 20 human observers were recruited for the five psychophysical experiments. In Experiments 1 and 2, participants 
were 16 women and 4 men with a mean age of 23.5. In Experiment 3a, participants were a different group of 16 women and 4 men, 
also with a mean age of 23.5 In Experiments 3 and 4, participants were 14 women and 6 men with a mean age of 24.3. Participants 
were primarily undergraduate students from the psychology programme at Justus Liebig University Giessen, Germany. Visual 
perception of materials likely varies somewhat with environmental and cultural exposure to different materials. We consider our 
sample of educated young adults to be representative of visual material perception within industrialised Western countries, but not 
necessarily representative of all humans.

Sampling strategy A predetermined sample size of 20 participants was used in all experiments, as erring slightly above the conventional sample size in 
psychophysical studies of mid-level perception, e.g. groups of 12 in van Assen et al (2018) Current Biology (10.1016/
j.cub.2017.12.037), groups of 8-23 in Marlow et al (2012) Current Biology (https://doi.org/10.1016/j.cub.2012.08.009). Participants 
were recruited through the university's experimental volunteer system until the quota of 20 was filled for each experiment.

Data collection All data were collected by having participants view a computer screen and respond via keyboard presses. Data collection was 
conducted by a research assistant who understood the broad programme of research but was blind to specific hypotheses in each 
experiment. Only the participant and research assistant were present in the room during data collection.

Timing Data were collected between 12th April 2019 and 16th August 2019

Data exclusions No data were excluded from analyses.

Non-participation No participants dropped out, declined participation, or were excluded from participating.

Randomization All experimental designs are within-subjects, so all participants took part in all conditions (with trials from different conditions 
presented in a random order). Assignment to each experiment was on the basis of which participants signed up to volunteer at the 
time we were running each experiment. Six individuals participated in two different experiments at separate times, but received no 
information about the design or hypothesis of the experiments after their first session.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants volunteered via a university experimental volunteer system. They were primarily undergraduate psychology 
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Recruitment students, and are likely more familiar with visual perception science and associated experimental methods than the average 
person. Since data analyses hinged on comparing how well a range of detailed predictions from different models could 
predict human perception across the specific experimental images used, any general knowledge participants had of material 
perception would not plausibly benefit any particular model in our tests.

Ethics oversight Ethics approval was granted by the local ethics committee of Justus Liebig University Giessen, Germany.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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