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Mammalian gene expression variability is explained
by underlying cell state
Robert Foreman1,2 & Roy Wollman1,2,3,*

Abstract

Gene expression variability in mammalian systems plays an impor-
tant role in physiological and pathophysiological conditions. This
variability can come from differential regulation related to cell
state (extrinsic) and allele-specific transcriptional bursting (intrin-
sic). Yet, the relative contribution of these two distinct sources is
unknown. Here, we exploit the qualitative difference in the
patterns of covariance between these two sources to quantify
their relative contributions to expression variance in mammalian
cells. Using multiplexed error robust RNA fluorescent in situ
hybridization (MERFISH), we measured the multivariate gene
expression distribution of 150 genes related to Ca2+ signaling
coupled with the dynamic Ca2+ response of live cells to ATP. We
show that after controlling for cellular phenotypic states such as
size, cell cycle stage, and Ca2+ response to ATP, the remaining vari-
ability is effectively at the Poisson limit for most genes. These find-
ings demonstrate that the majority of expression variability results
from cell state differences and that the contribution of transcrip-
tional bursting is relatively minimal.
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Introduction

Gene expression variability is ubiquitous in all biological systems.

In multicellular organisms, heterogeneity between different cell

types and states confers specialized function giving rise to complex-

ity in whole-system behavior (Raj & van Oudenaarden, 2008; Eldar

& Elowitz, 2010; Symmons & Raj, 2016; Suo et al, 2018; Tabula

Muris Consortium et al, 2018). Similarly, single-cell organisms and

viruses were shown to utilize heterogeneity at the population level

to create diverse phenotypes, such as bet-hedging strategies in

changing environments (Veening et al, 2008; Vega & Gore, 2014;

Rouzine et al, 2015). While variability can provide useful functional

heterogeneity in a multicellular organism or cell population, it is not

necessarily always beneficial (Raj & van Oudenaarden, 2008;

Symmons & Raj, 2016). Unregulated stochastic events, i.e., noise,

can limit cells’ ability to respond accurately to changing environ-

ments and can introduce phenotypic variability that can have a

negative contribution to overall fitness. Indeed, many biological

mechanisms including buffering (Stoeger et al, 2016) and feedback

loops (Jangi & Sharp, 2014; Schmiedel et al, 2015) have been

suggested to limit the detrimental effect of gene expression variabil-

ity. Quantification of the different contributions of mechanisms that

cause gene expression variability is an important step toward deter-

mining to what degree the variability represents uncontrolled

“noise” or cellular stratification and function.

Two key contributors of gene expression variability are allele-

specific sources and global factors related to underlying cell state.

The analysis of expression covariance between genes is a powerful

approach to decompose gene expression variability into these two

classes. Landmark works used this approach to investigate expres-

sion variability in bacterial cells, which laid a foundation for decom-

posing variability into allele-specific (intrinsic) sources and

variability that originate from sources that affect multiple alleles

and relate to the underlying cell state (extrinsic) (Elowitz, 2002;

Paulsson, 2005). This work was later extended to yeast (Raser &

O’Shea, 2004) and mammalian systems (Raj et al, 2006; Sigal et al,

2006; Singh et al, 2012). The decomposition into allele-specific and

cell state components is not always simple. Allele-specific noise in

an upstream component can propagate into downstream genes

(Sigal et al, 2006), whereas temporal fluctuations in the shared

components can have nontrivial consequences on expression distri-

butions (Paulsson, 2004; Pedraza & van Oudenaarden, 2005; Shah-

rezaei et al, 2008). Finally, use of the terms “intrinsic” and

“extrinsic” is sometimes ill-defined and some models include a

“coupled intrinsic” mode as well, which is a form of shared variabil-

ity and hence “extrinsic” (Rodriguez et al, 2019). Despite the some-

times confusing nomenclature, the use of expression covariance to

distinguish between allele-specific and shared factors is a powerful

decomposition approach.

In addition to covariance-based approaches, the relationship

between gene expression distribution variance and mean provides a

useful quantitative framework to gain insights into sources of

expression variability (Munsky et al, 2012). The comparison of
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expression variability between genes is not straightforward as

expression variance scales with its mean. Three statistical tools are

commonly used to describe mean normalized variance: the coeffi-

cient of variation (CV), CV squared (CV2), and Fano factor. CV and

CV2 are both unitless measures where the CV is defined as the stan-

dard deviation divided by the mean and the CV2 is simply the CV

squared, or the variance divided by the mean squared. The CV and

CV2 are useful to compare the scale of variance between different

genes because of their unitless nature. The third measure, the Fano

factor, is the variance divided by the mean and therefore not unit-

less, but it has a special property of being equal to one in the case of

a Poisson process. Many biological processes have a variance to

mean ratio that is at least Poisson so the Fano factor can define a

“standard dispersion”, as a result, distributions with Fano factor

smaller/bigger than one are considered under/over-dispersed,

respectively. Therefore, a simple quantification of the distribution

variance scaled by its mean can provide key insights into the under-

lying mechanism generating the observed distribution (Choubey

et al, 2015; Hansen et al, 2018a).

Multiple studies across bacteria, yeast, and mammalian cells

measured over-dispersed gene expression distributions. This obser-

vation can have two main interpretations. One interpretation is that

the observed over-dispersion is simply a result of the superposition

of an allele-specific Poisson variability and cell state variability (Bat-

tich et al, 2015). The other interpretation is that the allele-specific

variability itself is not a simple Poisson process (Suter et al, 2011;

Dar et al, 2015; Corrigan et al, 2016; Tantale et al, 2016). The latter

interpretation was popularized by the introduction of a simple

phenomenological model named the two-state or random telegraph

model that represented genes as existing in either “on” or “off”

states (Peccoud & Ycart, 1995; Kepler & Elston, 2001; Paulsson,

2004; Thattai & van Oudenaarden, 2004; Kaern et al, 2005; Fried-

man et al, 2006; Raj et al, 2006; Shahrezaei & Swain, 2008; Suter

et al, 2011; Molina et al, 2013; Sanchez & Golding, 2013; Fukaya

et al, 2016; Lenstra et al, 2016). More complex models with multi-

ple states were also considered (Suter et al, 2011; Zoller et al, 2015;

Corrigan et al, 2016; Tantale et al, 2016; Nicolas et al, 2018) but the

addition of multiple states does not change the model in a qualita-

tive way. These models suggest that transcription should occur in

distinct bursts with multiple transcripts generated when the gene is

“on”. These two-state models can be described by two overall key

parameters: the burst size and frequency that control the resulting

gene expression distributions with lower burst frequency and larger

burst size contributing to the over-dispersion of the underlying

distribution. Overall, both interpretations, bursting and cell state,

can explain the observed over-dispersion. There is mounting

evidence that for at least many genes, most of the over-dispersion is

explained by cell state variables rather than intrinsically noisy tran-

scriptional bursting (Battich et al, 2015). Nonetheless, the transcrip-

tional bursting model is still widely used (Larsson et al, 2019;

Ochiai et al, 2019) calling for more systematic investigation.

The relative scales and sources of variability are very important

to understand in the modern world of single-cell highly multiplexed

measurements. These new technologies are revealing the complex

structure of “cell space” with cells occupying a large array of types

(Han et al, 2018; Rosenberg et al, 2018; Tabula Muris Consortium

et al, 2018), states (Trapnell, 2015; Cheng et al, 2019), and fronts

(Shoval et al, 2012) that reflect functional stratification. Despite our

knowledge that cell types and states manifest as gene expression

heterogeneity, sometimes total gene expression variability is inter-

preted as arising from two-state transcriptional bursting alone

(Larsson et al, 2019). The gap in our understanding of the relative

contribution of cell state and allele-specific factors is hindering

progress in assigning functional roles to observed variability (Dueck

et al, 2016).

To address this knowledge gap, we utilized the two key proper-

ties of expression variability: covariance and dispersion. We

measured gene covariance and dispersion using joint measurements

of individual cells, where for each cell, multiple cell state features

were measured, as well as a highly multiplexed measurement of

gene expression. We used sequential hybridization smFISH

(MERFISH implementation) (Moffitt et al, 2016) that allowed us to

accurately measure the expression of 150 genes in ~ 5000 single

cells. Since expression covariance between genes from the same

pathway is higher compared to genes that have distinct functions

(Sigal et al, 2006; Stewart-Ornstein et al, 2012), we focused on a

single signaling network and biological function, Ca2+ response to

ATP in epithelial cells, and a biological response important to

wound healing (Funaki et al, 2011; Handly et al, 2015; Handly &

Wollman, 2017). The key advantage of Ca2+ response is that the

overall signaling response can be measured in < 15 min, a fast time-

scale that precludes any ATP-induced changes in transcription.

Using the combined dataset, we were able to separate the correlated

and uncorrelated components using a simple multiple linear regres-

sion model guided by the changes in the covariance matrix. We

found that after removing all shared components, the remaining

allele-specific variability shows very little over-dispersion for most

genes measured. Overall, these results indicate that transcriptional

bursting is only a minor contributor to the overall observed expres-

sion variability.

Results

To assess the relative contribution of the overall expression variabil-

ity that stems from allele-specific sources vs underlying cell state

variability, we took advantage of the fact that these two sources

have different expression covariance signatures. Figure 1 shows

simulated data to illustrate how covariance signatures can be

utilized to decompose sources of variability. By definition, allele-

specific variability is uncorrelated to any other gene, whereas vari-

ability that is due to heterogeneity in the underlying cell state will

likely be shared between genes with similar function (Fig 1A).

When transcriptional bursting dominates (Fig 1B top) the shared

regulatory factors will have a small contribution, there will be little

correlation between genes and the expression variance will remain

largely unchanged after conditioning expression level on any cell

state factors (Fig 1B top right). The residual intrinsic variance will

have a Fano factor greater than one. On the other hand, when cell

state variability dominates (Fig 1B bottom), expression between

genes will be highly correlated and conditioning the expression on

cell state factors will reduce both the variance and correlation

between genes. At the limit, when all shared factors are accounted

for, the correlation between genes will approach zero and the Fano

factor of the residuals will approach one, the Poisson limit (Fig 1B

bottom right). When the contribution of bursting and cell state is

2 of 13 Molecular Systems Biology 16: e9146 | 2020 ª 2020 The Authors

Molecular Systems Biology Robert Foreman & Roy Wollman



comparable (Fig 1B middle), conditioning on cell state factors will

have some effect but the final Fano factor will be higher than one

even when the correlation is zero (Fig 1B middle right). Condition-

ing on cell state factors has a dual effect on correlation and Fano

factor, and therefore, it is possible to assess whether the condition-

ing removed all the obvious extrinsic variability. When all the

extrinsic variability is conditioned out, one can confidently interpret

whether the residual intrinsic variability is under- or over-dispersed.

To distinguish between the possible situations described above

requires accurate highly multiplexed single-cell measurements of

gene expression and a sufficient number of cellular features that

correlate with the underlying cell state factors controlling gene

expression. To achieve this, we developed an experimental protocol

that combines MERFISH, a multiplexed and error robust protocol of

counting RNA transcripts using fluorescent in situ hybridization

(Chen et al, 2015; Moffitt et al, 2016) with rich profiling of the

underlying cell state (Fig 2). We used the MCF10A mammary

epithelial cell line, which is often used in studies of cellular variabil-

ity due to their nontransformed nature and their accessibility to

imaging (Selimkhanov et al, 2014; Qu et al, 2015). We focused on

genes that share biological function: involvement in the Ca2+ signal-

ing network, a key pathway important to the cellular response to

tissue wounding (Minns & Trinkaus-Randall, 2016; Justet et al,

2019). The two advantages of Ca2+ signaling are that (i) we expect

that genes that share a function will show a high degree of correla-

tion in their expression levels (Stewart-Ornstein et al, 2012). (ii)

Ca2+ signaling is fast, and we can measure the overall emergent

phenotype of the network in < 15 min (Fig 2A), a timescale faster

than that of gene expression in mammalian cells (Shamir et al,

2016). In our protocol, cells were rapidly fixed after live cell imaging

(10–15 min from ATP stimulation to fixation, Appendix Fig S1), and

therefore, the gene expression measured in the same cell is unlikely

to have changed as a result of the agonist.

MERFISH is a multiplexing scheme of smFISH where transcript

identity is barcode-based, and the barcodes are imaged over several

rounds of hybridization. During each hybridization round, dye-

labeled oligos are hybridized to a subset of RNA species being

measured, the sample is imaged, and RNA appears as diffraction-

limited spots; then, the dye molecules are quenched, and the

process is repeated until all barcode “bits” are imaged. By linking

diffraction-limited spots across imaging rounds, we can decode the

RNA barcodes by identifying the subset of images where a bright

diffraction-limited spot appears at the same XYZ coordinate

(Fig 2B). The use of combinatorial labeling allows exponential scal-

ing of the number of gene images with the number of imaging

rounds. The scaling is mostly limited by the built-in error correction

(Chen et al, 2015). In this experiment, we used 24 imaging rounds

(eight hybs × three colors) where each RNA molecule was labeled

in four imaging rounds. An example of the MERFISH data is shown

in Fig 2B. Overall, we measured the expression of 150 genes includ-

ing 131 genes annotated as involved in Ca2+ signaling network

(Kanehisa & Goto, 2000; Bandara et al, 2013; Kanehisa et al, 2019),

17 genes to mark stages of the cell cycle (Whitfield et al, 2002), and

two genes that correlate with the sub-differentiated state of MCF10A

cells (Qu et al, 2015). We estimate our detection efficiency to be

~ 95.5% and false-positive rate < 1% per gene per cell. Overall
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Figure 1. Transcriptional bursting and trans-acting factors are two distinct causes of cell-to-cell heterogeneity.

A Cartoon depicting that different cells can have different activities of trans-factor (TF) regulatory molecules in addition to the effects of transcriptional bursting.
B Simulated data showing that variability from shared regulatory factors results in correlation between two genes with three example cases: intrinsic dominated noise

(top three panels), mixture of cell state and allele-specific sources (middle three), and cell state dominated (bottom three). This correlation is diminished when the
expression levels are conditioned on the levels of these shared regulatory factors (middle and right). After conditioning on all trans-acting regulatory factors, the
remaining variability due to transcriptional bursting alone is potentially significantly smaller (right). Inset text is the Pearson correlation coefficient between gene A
and gene B (brown) and the Fano factor of gene A (blue).
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spearman correlation with bulk RNAseq was 0.84 (Appendix

Fig S3).

Our decomposition into allele-specific and cell state components

is based on conditioning on multiple cell state factors. While it

would be ideal to directly measure the regulatory factors that causa-

tively control gene expression variability, more accessible measure-

ments, e.g., cell size or cell cycle stage, that are correlated with

these causative regulatory factors are sufficient for the conditioning

process. Given that the genes we probe are related to Ca2+ signal-

ing, we first extracted key features from time series of cytoplasmic

Ca2+ response measured with a calibrated GCaMP5 biosensor

(Appendix Fig S2A). The live cell imaging of cytoplasmic

Ca2+ levels (Fig 2C) showed a highly heterogeneous response,

qualitatively and quantitatively similar to previous work on Ca2+

signaling in MCF10A cells where we observed a mixed population

response with a wide range of response phenotypes (Yao et al,

2016; Handly & Wollman, 2017). We used a feature-based represen-

tation of Ca2+ response to represent cellular factors that we antici-

pate correlate with underlying cell state (Fig 2G and Appendix Fig

S2). In addition to Ca2+ features that are specific to Ca2+ signaling,

we also measured a few global features of the cell that are likely to

be correlated with expression changes of most genes. Specifically,

we measured cell volume, cell cycle stage, and two markers of

MCF10A differentiation status (Fig 2D–F). As was shown in the

past, cell volume strongly correlated with the total number of tran-

scripts per cell (Fig 2D) indicating that at least for some genes, cell
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Figure 2. Paired single-cell MERFISH and live cell calcium imaging.

A Experimental overview—live cells are imaged for their calcium response to ATP before being fixed and imaged to measure gene expression of 150 genes.
B smFISH spots are imaged over several rounds of hybridization and aligned such that individual genes are encoded as specific series of dark and bright spots

throughout all rounds of hybridization.
C Left, representative calcium trajectories demonstrating the heterogeneous response to ATP stimulation, top vs bottom left. The right panel is an image plot of all

5000+ successfully paired to smFISH cells.
D Cellular volume is measured and the correlation between total transcripts per cell and the cellular volume is shown.
E Left, shows marker gene expression for cell cycle-related genes used to derive a g2m score (coloring). Right, is the same as the left panel with a representative gene

used to derive the S score for each cell.
F Correlation of a representative gene (ATP2A2) with a gene that marks the differentiation status of MCF10A cells (CD44).
G Table of the cell state features categories and the complete list of the 13 factors used in the multiple linear regression (MLR) statistical model.
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state factors must be important contributors to their expression vari-

ability (das Neves et al, 2010; Shalek et al, 2014; Battich et al, 2015;

Padovan-Merhar et al, 2015; Hansen et al, 2018a). However, not all

genes show the same strength correlation with volume, and some

cell cycle genes are more complexly related to volume

(Appendix Fig S4). Similarly, the cell cycle stage and MCF10A dif-

ferentiation status were correlated with specific genes (Fig 2E and

F) (Buettner et al, 2015). Overall, we measured 13 different cellular

features that will be used to decompose variance in all 131 Ca2+-

related genes we measured. By focusing on a smaller number of

specific features that relate to the Ca2+ response augmented by

established global cell state features like cell size and cell cycle

state, we expected to be able to capture most of the expression vari-

ability that comes from underlying cell state heterogeneity. These

results are consistent with previous work demonstrating widespread

cell cycle and differentiation-related variability in the transcriptome

(Battich et al, 2015).

To decompose the observed expression into multiple compo-

nents, we used standard multiple linear regression (MLR) (Battich

et al, 2015; Hansen et al, 2018a). Figure 3A shows the scatter plots

of expression of two representative genes (ATP2A2 and RRM1) plot-

ted against cell volume, cell cycle, differentiation markers, and Ca2+

feature. The scatter plots show that (i) there is indeed a correlation

between expression and some of these cell state features. (ii) The

amount of variance that is explained by each cell state feature can

change between genes. Overall, the simple MLR model with 13 inde-

pendent measurements was able to explain between ~ 15 and 85%

of the observed variance with a median of 0.62 (Fig 3B). To assess

the relative contribution of each cell state feature, we looked into

the relative fraction of explanatory power for each feature category

(Fig 3C). Overall, cell volume has the most explanatory power, but

for some genes, cell cycle and Ca2+ features contribute meaningfully

to the explained variance. While some of the features had a small

effect in terms of the overall variance explained by the feature, in

most cases, the effects were very unlikely to be a result of pure

random sampling, permutation-based statistical testing showed that

most genes measured here are statistically correlated with at least

one calcium feature (Fig 3D).

A key uniqueness of our approach is that gene expression is

measured in a multiplexed fashion allowing the estimation of the

correlation between genes. Figure 4A shows the correlation matrix

of the raw counts, and the counts conditioned on cell state features.

As expected, as we increase the number of cell state features

included in the MLR, the overall gene-to-gene correlation goes

down. Interestingly, the full MLR model that only includes 13 identi-

cal terms for all genes is able to reduce the overall correlation

between genes significantly. To quantify the bulk correlation, we

measured the amount of variance that is explained by the first two
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Figure 3. Decomposition of gene expression variability using multiple linear regression.

A Representative scatter plots of correlation between two individual genes (rows) and different cell state factors (columns). The percent of variance explained by each
factor in the MLR model for each gene is annotated in the corner.

B A histogram of the overall explained variance for each gene.
C Stacked bar plot showing which cell state feature categories contribute to the explained variance of the MLR.
D The significance of calcium features for 150 genes was estimated by Z-scoring the slope of the feature in a null distribution of 1,600 bootstrapped shuffled data slopes.

The number of statistically significant genes for each feature is shown above [adjusted P-value (Bonferroni) < 0.05]. Whiskers are at 1.5 times the interquartile range.
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components of a principal component analysis (PCA; Fig 4B).

Without conditioning on any cellular feature, the first two compo-

nents explain > 40% of the variance. This is reduced substantially

to < 10% of the overall variance, in the full MLR. The substantial

reduction in the gene-to-gene correlation demonstrates that we were

able to condition away most of the shared components. Still, the

remaining correlation was not completely removed, and therefore,

we added another term to the model that is based on the first two

principal components of a PCA after taking all other features into

account. These two components most likely represent some cell

state features that were not sufficiently captured by our 13 cellular

features. With the addition of the last “hidden” feature, the overall

variance that is shared is very close to values from shuffled data.

Overall, the analysis of expression covariance demonstrates that our

simple MLR sufficiently captures most of the information related to

cell state that is required for conditioning expression distribution.

Finally, we wanted to determine the overall dispersion remaining

in the allele-specific gene expression distribution. The allele-specific

variability is estimated as the residual variability in the raw gene

expression counts after conditioning on cell state factors. As we

increase the number of cell state features we conditioned on, we

saw a substantial reduction in the distributions of Fano factor

magnitudes (Fig 4C). When all 13 cell state features and the two

hidden features estimated based on PCA are included, the Fano

factor is very close to one for most of the genes. Note that we do not

perform any correction for technical noise; so, the limit of one is

only theoretical. Similarly, analysis of the CV2 vs the expression

means on a log–log plot shows that all genes are very close to the

Poisson limit (Fig 4D). The proximity to the Poisson limit is similar

across all expression levels. Therefore, these data indicate that

super-Poissonian transcriptional bursting plays a very minor role in

allele-specific variability. It is unclear whether the few genes that do

show over-dispersion whether they have significant levels of tran-

scriptional bursting or whether our conditioning procedure failed to

sufficiently remove cell state effect.

Discussion

Here, we analyzed the relative contribution of gene-specific variabil-

ity that arises from transcriptional bursting, i.e., episodic synthesis

of multiple transcripts from a gene, and variability that is shared

among multiple genes. Our approach is enabled by very rich single-

cell measurement that include live cell Ca2+ response to ATP, global

cell state factors such as size and cell cycle stage, and the expression

level of 150 genes all in the same single cells. Using these data, we

were able to decompose gene expression variability into gene-

specific and cell state components. We show that after removing

covariability from gene expression distributions, the remaining vari-

ability follows a simple Poisson model. The residual allele-specific

variability is not over-dispersed and therefore not consistent with

models of transcriptional bursting where a gene is actively tran-

scribed only during a small fraction of time.

The popularity of the transcriptional bursting model is evident by

the large number of papers that fit the entire RNA and protein distri-

butions to the two-state model without considering other sources of
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Figure 4. Residual variability fromMLRmodels contains significantly less covariation between genes and close to Poisson variability within individual genes.

A Gene–gene correlation matrices showing the reduction of covariance after conditioning on cell state features.
B Explained variance of first two components of PCA for each stage of MLR models showing reduction in shared variability with increasing number of cell state factors.

The dotted line shows the variance explained by first two PCA components when the data are shuffled.
C Fano factor distributions of 150 genes measured at different levels of cell state conditioning are shown as boxplots. The whiskers are at 1.5 times the interquartile

range. Dashed line is the Poisson expectation with technical noise.
D Scatter plot of residual gene expression coefficient variation squared for each gene after decomposition of all cell state features. Poisson expectation is shown as

dashed line.
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variability (Skupsky et al, 2010; Suter et al, 2011; Molina et al,

2013; Dey et al, 2015). In other cases, cell state was considered

using dual reporters (Sigal et al, 2006; Strebinger et al, 2018),

assuming timescale separation (Dar et al, 2012), or conditioning on

forward scatter (Sherman et al, 2015). However, without multi-

plexed expression measurements it is difficult to determine whether

conditioning on cell state was done to completion. The high good-

ness of fit of the two-state model to uncorrected or partially

corrected distributions that shows substantial bursting could simply

be a case of over-interpretation of model fit. RNA-binding systems,

such as MS2, allow direct live cell observation of transcription

bursting, and many groups have observed burst-like punctuated

transcription (Muramoto et al, 2010; Ferguson & Larson, 2013;

Corrigan et al, 2016; Fritzsch et al, 2018). While direct visualization

is compelling, it is unclear whether punctuated transcriptional

events are due to stochastic transition of promoter state, as

suggested by two-state model, or due to stochasticity in the activity

of an upstream regulatory element. Furthermore, difficulty in quan-

tifying the number of mRNAs synthesized in each such event makes

it difficult to distinguish between a two-state model and a one-state

model with a low rate of transcription that will generate a Poisson

distribution. In fact, our results are consistent with recent measure-

ments that showed that TTF1 mRNA is generated in “bursts” of 1–2

mRNA (Rodriguez et al, 2019). Furthermore, the two alleles of

TTF1 showed coordination between these bursts suggesting that the

observed transcriptional events are coupled through trans-regula-

tory factors. Finally, temporal changes in global rates of transcrip-

tions (Skinner et al, 2016; Shah et al, 2018) can also make the

interpretation of a single allele temporal reporter challenging. It is

important to note that our work focuses on genes that encode for

calcium signaling activity and might not represent all genes, such as

reporters controlled by viral promoters (Singh et al, 2010; Dar et al,

2012) and genes that are key to cellular differentiation (Hansen &

van Oudenaarden, 2013; Ochiai et al, 2014). Overall, it is advisable

to use more caution when interpreting gene expression variability

as evidence of transcriptional bursting.

Our measurements are based on cytoplasmic RNA, and it is possi-

ble that mechanisms related to RNA processing reduce the dispersion

of RNA distribution in the cytoplasm after it was generated in an over-

dispersed manner through bursting (Battich et al, 2015). Cells include

a large number of RNA-binding proteins many with unknown func-

tion, and it is possible that some function as part of post-transcrip-

tional noise reduction mechanisms (Hansen et al, 2018b). However,

some of the proposed mechanisms such as nuclear export of RNA

were shown to act as amplifiers of observed dispersion (Hansen et al,

2018a). For different genes, there can be different effects explaining

why observed cytoplasmic transcript counts are distributed approxi-

mately Poisson for most genes, despite widespread observation of

bursts during transcription. Expression variability could be buffered

by processes such as nuclear export (Stoeger et al, 2016; Chen and

van Steensel 2017; Xia et al 2019), bursting may not occur for all

genes (Berry et al 2017), and bursting may be linked to extrinsic

fluctuations in enhancer activity rather than intrinsic noise (Fukaya

et al, 2016). Therefore, the degree by which post-transcriptional

mechanism can be used to reduced expression noise is an important

open question. Until additional data will help clarify the ubiquity of

such mechanisms, the most parsimonious interpretation is simply that

RNA synthesis does not happen in large allele-specific bursts.

Recent technological advances in the ability to measure single-

cell gene expression with scRNAseq and sequential smFISH

approaches are providing an unparalleled view into the underlying

“cell state space”. The distribution of cells in “cell state space” and

the definition of cell types and states within this space are key open

research areas that will likely to further grow in importance with

further improvements in single-cell measurement technologies

(Wagner et al, 2016; Eng et al, 2019). Our work has two important

implications on our understanding of this “cell state space”, at least

with regard to the heterogeneity of a single cell type: (i) All the

shared variability was reduced using only a simple representation of

cell state as 13 linear coefficients. Furthermore, most of these 13

features had only a very small contribution to the overall explana-

tory power suggesting that cell state distribution can be represented

by few latent dimensions. An observation that emboldens efforts to

learn the cell state manifolds (Moon et al, 2018). (ii) Expression

noise, i.e., unregulated variability in gene expression that is a result

of stochastic biochemical interactions in effect defines a “resolution

limit” of the cell state space. Our results indicate that the highly

heterogeneous distribution of cells within cell state space is likely

not due to the inability of cells to control their expression levels

rather our work indicates functional stratification of cells within this

space. Collectively, these contributions pave the way to a more

rigorous definition of cell state that is based on concepts of signal to

noise where the signal is represented by regulated differences

between cells and noise is due to unregulated stochastic events.

Such definitions will help identify the functional role of cellular

heterogeneity.

Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should

be directed to and will be fulfilled by the Lead Contact, Roy Woll-

man (rwollman@ucla.edu).

Experimental model and subject details

The MCF10a cells used in this study are Homo Sapien, female cells

with the RRID: CRL-10317. This cell line has not been authenticated,

but bought directly from ATCC. Cells were grown in

complete media: DMEM/F12 media (Gibco) supplemented with 5%

Horse Serum (Life Technologies), EGF 20 ng/ml, hydrocortisone

0.5 lg/ml, cholera toxin 0.1 lg/ml, insulin 10 lg/ml, and Peni-

cillin/Step 100 U/ml referred to as complete media.

Cell culture

MCF10a cells were grown in complete media (above) and passaged

at 70–90% confluency. Cells were seeded onto coated 40 mm #1.5

coverslips (Bioptechs) and grown to confluence in 5-mm-diameter

PDMS wells before changing media to complete media without EGF

and 1% horse serum, instead of normal 5%, 6–8 h before imaging.

Coating solution consists of sterile-filtered 10 lg/ml fibronectin,

10 lg/ml bovine serum albumin, and 30 lg/ml type I collagen in

DMEM.
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mCherry GCamp5 fusion construct creation

For pPB-mCherry vector construction, a PCR product encoding

GCaMP5 sensor incorporating the CaMP3 mutation T302L R303P

D380Y and no stop codon (Addgene plasmid #31788) was direction-

ally ligated into pENTR/D-TOPO vector (Invitrogen K243520) result-

ing in pEntry_GCaMP5G construct.

(For: caccATGGGTTCTCATCATCATCATCATCATGGTATGGCTA

GCATGAC, REV: TTACTTCGCTGTCATCATTTGTACAAACTCTTCG

TAG) pEntry_GCaMP5G was linearized with PCR using standard

Phusion� Hot Start Flex 2X Master Mix (NEB Cat# M0536L)

protocol (FOR: cgcgccgacccag, REV: ctcgagggatccggatcctcccttcgctgt

catcatttgtacaaac). PCR product was then subjected to DpnI diges-

tion (NEB cat# R0176S) and gel purification with Zymoclean Gel

DNA Recovery Kit (ZYMO cat#D4001). A sequence encoding

mCherry and a50 linker was PCR-amplified (FOR: gaggatccggatccc

tcgagAccatggtgagcaagggc REV: aagaaagctgggtcggcgcgcttgtacagctcgt

ccatg). mCherry2-C1 was a gift from Michael Davidson (Addgene

plasmid # 54563).

GeneArt Seamless Cloning and Assembly Enzyme Mix (Invitro-

gen cat# A14606) was used to assemble a construct encoding for

GCaMP5 sensor fused with a short linker to mCherry called

pENTRY-GCaMP5fusedmCherry. LR recombination between this

entry clone and a custom gateway PiggyBack transposon vector

with 1 ll LR Clonase II enzyme (Invitrogen: cat #11791020)

resulted in the final construct of pPB_CAG_GCaMP5-

fusedmCherry_blast.

mCherry GCamp5 fusion MCF10A cell line creation

To generate stable cell lines constitutively expressing cGamp5fu-

sion-mcherry, MCF10A cells were grown in the standard conditions

and co-transfected using Neon transfection system (Invitrogen

cat#MPK1025) and transposase expression vector pCMV-hyPBase

(Sanger Institute) in the 4:1 ratio with 0.625 lg of transposase and

2 lg of transposon plasmid per well in six-well dish. Electroporation

parameters were as follows:

Pulse voltage (v): 1,100

Pulse width (ms): 20

Pulse number: 2

Cell density (cells/ml): 2 × 105

Transfection efficiency: 45%

Viability: 65%

Tip type: 10 ll

Stable, polyclonal cell populations were established after blasticidin

selection (10 lg/ml).

Coverslip modification

Forty millimeter coverslips (Bioptechs) were allyl silane functional-

ized according to Moffitt et al (2016), which briefly consists of

washing coverslips in 50% methanol and 50% 12M HCl, and then

incubating at room temperature in 0.1% (vol/vol) triethylamine

(Millipore) and 0.2% (vol/vol) allyltrichlorosilane (Sigma) in chlo-

roform for 30 min. Wash with chloroform and then with 100%

ethanol, and air-dry with nitrogen gas. These were stored in a desic-

cator for less than a month until use.

Calcium imaging

Cells were stained with 0.1 lg/ml Hoechst for 20 min and then

rinsed with imaging media. Each well was imaged and stimulated

consecutively as follows: image 3 min of Gcamp before stimulating

with 6 lM ATP in imaging media and then imaged for another

13 min. Gcamp was imaged every 2–3 s, and Hoechst was imaged

every 4 min for segmentation. Immediately following imaging of a

well, that well was fixed with 4% formaldehyde in PBS. The next

well was imaged, and then, the previously imaged/fixed well was

washed 3× with PBS.

Sequential FISH staining

PDMS wells were removed, and cells were briefly fixed for 2 min,

washed 3× with PBS, and then permeabilized with 0.5% Triton X-100

in PBS for 15 min. Coverslips were washed 3× with 50 mM Tris and

300 mM NaCl (TBS), and then immersed in 30% formamide in TBS

(MW) for 5 min to equilibrate; all the liquid was aspirated from the

petri dishes; and 30 ll of 75 lM encoding probes and 1 lM locked

poly-T oligos were added on top of the coverslip, and a piece of

parafilm was place on top of the coverslip to evenly spread the small

volume over the surface and prevent evaporation. The entire petri

dish was also sealed with parafilm and incubated at 37°C for 36–48 h.

The parafilm was removed, and the coverslip was washed 2× with

MW buffer with 30-min incubation at 47°C for both washes. A 4%

polyacrylamide hydrogel was then cast to embed the cells before

clearing with 2% SDS, 0.5% Triton X-100, and 8 U/ml proteinase k

(NEB P8107S), according to previously published methods. Coverslips

were incubated in clearing buffer for 24 h and then washed 3× in TBS

for 15 min each at room temperature (Moffitt et al, 2016).

Sequential FISH imaging

smFISH staining was imaged on a custom-modified Zeiss Axio

Observer Z1 body with Andor Zyla 4.2 sCMOS camera and 1.4NA

63 Plan-Apo oil immersion objective. Illumination light was

provided by LUXEON rebel LEDs (deep red, lime, blue, and royal

blue) to excite Cy5, Atto 565, Alexa 488, Hoechst, and 200 nm deep

blue fiducial markers. The microscope was controlled by micro-

manager (Ausubel et al, 2001) and custom MATLAB software.

Automated washing during sequential rounds of hybridization was

accomplished by using a previous published setup (Moffitt et al,

2016; Moffitt & Zhuang, 2016). Briefly, FCS2 bioptech flow cham-

bers were attached to a Gilson Minipuls peristaltic pump pulling

liquid from reservoirs attached to Hamilton MVP valves. The pump

and valves were controlled with Arduino, and serial commands with

Python https://github.com/ZhuangLab/storm-control/tree/master/

storm_control/fluidics. This setup was used to automatically wash

cells with TBS, then 2 ml of TCEP (Sigma) in TBS incubated for

15 min, then rinse with TBS, then flow in 2 ml of wash buffer [10%

ethylene carbonate in TBS with 2 mM vanadyl ribonucleoside

complex (NEB)], followed by 3 ml 3 nM readout probes in wash

buffer incubated for 15 min, then rinsed with 2 ml wash buffer,

then 1 ml of TBS, and finally 3 ml of imaging buffer. Imaging buffer

is 0.15 U/ml rPCO (OYCO), 2 mM PCA (Sigma), 2 mM Trolox

(Sigma), 50 mM pH 8.0 Tris–HCl, 300 mM NaCl, and 40 U/ml

murine RNase inhibitor (NEB).
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FISH oligo pool design amplification

Oligopools were ordered from CustomArray. The oligos were

designed using previously published software (Moffitt & Zhuang,

2016). Briefly, design involves selecting 30-bp regions with 40–60%

GC for each target gene that maximizes specificity of the oligo by

finding shared 15-mer substrings against all other transcripts in the

human genome. These regions are concatenated with sequences for

three readout probe binding sequences and flanking 20 bp primers.

Probes were amplified according to another previously published

work (Wang et al, 2018). Briefly, we performed limited cycle qPCR

with a T7 promoter on the reverse primer. The PCR was terminated

one cycle after saturation during the extension phase. PCR product

was column-purified, and then, in vitro transcription further amplified

the oligos (NEB Quick High Yield Kit); t7 reactions were purified with

desalting columns, and converted to ssDNA with Maxima RT H-

(Thermo).

Gcamp image processing

Cell nuclei were segmented using custom Python 3.6 scripts. Cell

nuclei were segmented using the Hoechst staining. Nuclear images

were low-pass filters with Gaussian of sigma 5 pixels. Then, regional

maxima were found with corner_peaks from scikit-image; these

peaks were used as seeds in a watershed of the negative intensity of

the images, and thresholded with Otsu of the smoothed nuclear

images. This was repeated for each time point, and the centroid of

each nuclear mask was tracked across time using linear assignment.

Segmented nuclei were used as masks to calculate the mean inten-

sity within each cell mask in the Gcamp channel and also the chan-

nel for mCherry-fusion expression marker for Gcamp. Finally,

Gcamp values were divided by the mCherry values to give expres-

sion normalized calcium trajectories.

Calcium trajectory feature extraction

Calcium trajectories were processed with wavelets to find low-pass,

smoothed, and high-pass trajectories by thresholding coefficients of

different scale wavelets. Peaks were detected in the low pass and

high pass with scipy’s find_peaks and prominence thresholds of 0.1

and 0.15, respectively. Decay time of the first major peak after ATP

stim was calculated; FWHM of the first peak after ATP was calcu-

lated; the AUC of high pass and low pass was calculated with

numpy’s trapz; the maximum of each calcium was calculated; and

the time of maximum was also calculated from smooth trajectories.

Alignment to live cell images

EM microgrids (G400F1-Cu EMS) were glued (23005 Biotium) to

40 mm Bioptech coverslips. These grids were imaged in brightfield

to determine the stage coordinate of fiduciary marks on the micro-

grids. A rotation and translation transformation was fitted between

the live cell and smFISH coordinates of microgrid fiduciary marks.

This ensured that we imaged the same FOVs, but additional align-

ment was performed after imaging. smFISH images were down-

scaled until they had a pixel size matching the live cell imaging (63×

vs 10× with same Andor Zyla Camera so 6.3× downscaling). Cross-

correlation template matching with live cell templates and smFISH

candidate images was performed iteratively with range of rotational

angles (�5 to +5 degrees) in order a second set of “image” transla-

tions and rotations that maximize the cross-correlation scores. A

threshold was then applied, and downsampled images were stitched

together and overlaid to confirm successful alignment.

smFISH image alignment

All rounds of hybridization contained 200 nm blue beads (F8805

Thermo Fisher) that were imaged in addition to smFISH oligos.

First, the coordinates of putative beads were determined with

subpixel accuracy by upsampling images by a factor of 5

(~ 20.5 nm pixel size) and finding peak coordinates of normalized

cross-correlation between a Gaussian “bead template” and bead

images in 3D. Next, a translational transformation was estimated

from these putative beads with a custom algorithm designed to be

robust to false detection of beads. Briefly, neighborhoods of beads

with a radius of maximum shift (100 pixels) were found and the dif-

ferences each of these pairs were calculated. Next, the bead coordi-

nate differences were density clustered and bead pairs from the

largest cluster were used in a least sq error optimization of transla-

tion vector that minimizes residual of all bead pairs after transla-

tion. This fit was performed in 3D, and any FOVs with a residual

> 0.5 pixels XY or 1.2 lm (3 frames) in Z were discarded.

Chromatic aberration correction

TetraSpeck (4-color) 100 nm beads were imaged in all channels

used for smFISH imaging. The subpixel centers of these beads were

found as described above, and the misalignment of channels was

calculated as a function of the XY image coordinate. Images were

then interpolated in 2D to correct for systematic differences between

channels. (Mostly only necessary at edges of the images due to large

camera sensor size.)

Gene calling

Spots were called with a reimplemented algorithm deeply inspired by

Jeffrey R. Moffitt et al (2016), and code is available at https://github.

com/wollmanlab/PySpots. Images were taken every 0.4 lm in Z, but

groups of three images one above and below the current Z slice being

processed were maximum projected to form a pseudo-Z slice to be

further processed. Then, two Z slices were skipped before forming

another pseudo-Z slice. These local max projections help gene calling

perhaps do to making the imaging more robust to misaligned images,

or uncorrected planarity issues in the objective. Second, fiduciary

200 nm beads were used to fit XYZ translation transformations

described in the image alignment section, and all pseudo-Z slices were

warped to correct for chromatic aberration and translations from stage

reproducibility error. Registered and chromatic aberration fixed

images were then high-pass-filtered by subtracting a Gaussian convo-

lution with sigma 2.2 pixels from the original images. These high-

pass-filtered images were then deconvolved for 20 iterations of Lucy–

Richardson deconvolution using the flowdec package (Czech et al,

2018). Finally after deconvolution, the images were blurred by Gaus-

sian convolution with a sigma of 0.9 pixels. The output at this step for

each site imaged is a matrix of (2,048, 2,048, 24, #Z) elements. Where

2,048 is the image width and height, 24 is the number of codebits
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used to encode gene identity (three colors × eight rounds sequential

hybridization) and #Z is the number of pseudo-Z slices. Next, each Z

slice was processed separately on a per pixel basis to assign each pixel

as its gene identity or as background. This process was done by divid-

ing each of the 24 images by the 95th percentile of that image to make

the intensities for different codebits more similar, and L-2 normalizing

each pixel. Then for each pixel, the Euclidean distance to L-2 normal-

ized codebit vectors was calculated, and if that distance was less than

the volume of a nonoverlapping hypersphere for all codewords

(0.5176), then the pixel was classified as that closest codeword. This

approach is essentially testing whether the intensities from all 24

codebits point in the direction of a particular codeword in 24-dimen-

sional space. Finally, these classified images (2,048, 2,048, #Z) were

segmented to collect groups of connected components with that same

gene label. Finally, genes calls were thresholded on the number of

pixels for each group of connected components and the average inten-

sity of the set of connected components.

Calculation of cell volume

A 3-D histogram of gene calls for each cell was calculated and

smoothed with a Gaussian filter of 10 pixels. The number of voxels

(1, 1, 1 lm) with at least 0.5 RNA was calculated and used as the

volume for each cell.

Estimation of MERFISH gene calling error rates

False-negative rate (sensitivity)
For each XY centroid of spots that were called genes, the intensity

vector was extracted from the 24-bit codestack. The Euclidean distance

between these intensity vectors was calculated for five items: the actual

codeword (24-bit binary vector with exactly four one bits) and each of

the four possible 1-bit dropouts (24 for binary vectors with exactly 3

one bits). These 1-bit dropouts comprise synthetic codewords that are

still uniquely close to the true gene than any other gene in the code-

book. For each gene, spot we enumerate whether the actual intensity

vector was closer in Euclidean distance to the full hamming weight 4

codeword, or one of the 1-bit (hamming weight 3) dropout codewords

for the same gene. From this, we calculated the frequency of gene calls

that were closest to the hamming weight 4 codeword, and normalizing

by the total number of gene calls, we get 0.68. That is, 1–0.68 = 32%

of the gene calls are expected to contain a 1-bit dropout. If we consider

0.68 the probability that we detect all four bits of a gene, and given that

we can successfully classify a gene that we only detect three bits: over-

all detection sensitivity is p4 + 4*(1 � p)*p3 = 0.955 where p4 = 0.68

and p = 0.681/4 = 0.908 = P (detect a bit of codeword).

False-positive rate
The encoding capacity of our codebook is 472 genes/codewords,

but we only assign 336 of them to actual genes in this experiment.

The other 144 codewords are reserved as “blank codewords”. We

allow these blank codewords to be classified by the algorithm as if

they were real genes. Then using the counts of these blank code-

words, we estimate the false-positive rate of our classification algo-

rithm as (# blank codeword counts)/(144 possible barcodes) = rate

of false positives per barcode. We normalize the rate per barcode to

the number of cells segmented to get an expected average false-

positive rate of < 1% per gene/cell.

Simulation of gene variance decomposition

For each of the three combinations of cell state and allele-specific

noise simulations, there were three transcription factors and two

genes simulated. Transcription factors were Poisson distributed, and

genes were simulated as gamma distributions with shapes depen-

dent on additive combinations of transcriptions 1, 2, and 3. The

scale of the gamma distributions was varied to control the amount

of “allele-specific variability”, and the amount of gene correlation

was controlled by the fraction of shape shared between genes.

For each of the three combinations of different noises, there were

four linear models fitted using python statsmodels ols package. For

each gene, a model was fitted for gene ~ tf1 and gene ~ tf1 + tf2.

Then, the residuals from the fit were adjusted by adding back the

mean of expression for that gene, and these mean adjusted residuals

are the distribution of the gene conditioned on tf1 or (tf1, tf2).

Cell cycle features

Cell cycle features were calculated using the scanpy package (Wolf

et al, 2018).

Gene variance decomposition

The same method (linear model residuals) as in the simulation was

used to decompose variance for gene expression. In order to investi-

gate residual correlations between genes with different sets of condi-

tioning variables, the decomposition was repeated from different

combinations of feature combinations. The first stage involved only

gene ~ volume, and then gene ~ volume + s_phase + g2 m_phase. . .

finally for the inferred features, we used PCA components #1 and #2

as features: gene ~ pca_comp1 + pca_comp2.

Statistical test of calcium feature significance

Volume-adjusted gene expression counts were fitted with a linear

model based on calcium features. For every gene separate and every

calcium feature separately, a shuffled linear model was also calcu-

lated. That is, for each calcium feature and gene many bootstrap

models were estimated where a single calcium feature was shuffled

and the model was fitted. The slopes of these fitted models on shuf-

fled data formed a null distribution, and then, the P-value of the

feature for that gene was considered [100-Qtile(unshuffled slope in

shuffled bootstraps)] where 0 is 1/#Bootstraps.

Data availability

All raw data are available on figshare at https://doi.org/10.6084/

m9.figshare.11410212.v1.

Expanded View for this article is available online.
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