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A B S T R A C T

Sickle cell disease (SCD) is a hereditary blood disorder associated with many life-threatening comorbidities
including cerebral stroke and chronic pain. The long-term effects of this disease may therefore affect the global
brain network which is not clearly understood. We performed graph theory analysis of functional networks using
non-invasive fMRI and high resolution EEG on thirty-one SCD patients and sixteen healthy controls. Resting state
data were analyzed to determine differences between controls and patients with less severe and more severe
sickle cell related pain. fMRI results showed that patients with higher pain severity had lower clustering coef-
ficients and local efficiency. The neural network of the more severe patient group behaved like a random net-
work when performing a targeted attack network analysis. EEG results showed the beta1 band had similar results
to fMRI resting state data. Our data show that SCD affects the brain on a global level and that graph theory
analysis can differentiate between patients with different levels of pain severity.

1. Introduction

Sickle cell disease (SCD) is a hereditary blood disorder characterized
by debilitating acute pain during recurrent and unpredictable episodes of
vasoocclusive crisis (VOC) (Ballas et al., 2012; Tran et al., 2017). Ad-
ditionally, a significant number of patients suffer from chronic pain. Vaso-
occlusion caused by the cascade of inflammatory effects induced by
sickling of the red blood cells and hemolysis lead to VOC, which can start
in infancy and continue throughout life. Other sequelae of SCD include
stroke, silent cerebral infarcts, leg ulcers, and acute chest syndrome (Platt
et al., 1994; Rees et al., 2010). Chronic pain is common in patients with
SCD and is associated with high rates of hospitalization (Aisiku et al.,
2009; Ballas et al., 2010; Smith et al., 2008). Sickle pathobiology replete
with VOC, global inflammation, hemolysis and impaired vascular biology
lead to organ damage and pain (Rees et al., 2010). Therefore, it is likely
that brain function is influenced by sickle pathobiology and chronic pain.

Few groups have investigated abnormalities of brain connectivity in
SCD patients. Increased functional connectivity to pain processing re-
gions in these patients such as the anterior cingulate cortex, primary
somatosensory cortex and periaqueductal gray matter has been re-
ported (Case et al., 2017; Darbari et al., 2015). Altered resting state
network connectivity with abnormalities of the default mode network,
salience network, and somatosensory network have also been described
(Case et al., 2017; Colombatti et al., 2016; Singavi et al., 2016; Sun
et al., 2017; Zempsky et al., 2017). These abnormalities correlate with
the frequency of hospitalization, considered to be an indicator of dis-
ease severity (Case et al., 2017; Darbari et al., 2015). Clinical and an-
imal studies suggest that central sensitization is one of the mechanisms
underlying chronic pain in SCD (Campbell et al., 2016; Cataldo et al.,
2015). While studies show that SCD alters natural brain dynamics, the
overall impact of this disease on global brain connectivity is still not
well understood.

https://doi.org/10.1016/j.nicl.2018.11.009
Received 21 March 2018; Received in revised form 28 October 2018; Accepted 13 November 2018

Abbreviations: SCD, sickle cell disease; VOC, vasoocclusive crisis; fMRI, functional magnetic resonance imaging; EEG, electroencephalography; MNI, Montreal
Neurological Institute; FWHM, full width half maximum

⁎ Corresponding author at: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
E-mail addresses: casex112@umn.edu (M. Case), bhe1@andrew.cmu.edu (B. He).

NeuroImage: Clinical 21 (2019) 101599

Available online 14 November 2018
2213-1582/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2018.11.009
https://doi.org/10.1016/j.nicl.2018.11.009
mailto:casex112@umn.edu
mailto:bhe1@andrew.cmu.edu
https://doi.org/10.1016/j.nicl.2018.11.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2018.11.009&domain=pdf


Previous studies have mainly focused on specific areas related to
pain processing or well-known resting state networks (Baliki et al.,
2014; Huishi Zhang et al., 2016; Kucyi and Davis, 2015; Smith et al.,
2009). We took the novel approach of analyzing the brain on a global
level by means of graph theory. Graph theory analysis involves defining
a set of nodes (brain regions) and edges (functional connectivity
strength) (He et al., 2011; Bullmore and Sporns, 2009; Wilke et al.,
2011). This is a powerful tool that allows unique cortical representa-
tions to be assessed, where node selection defines the complexity of the
cortical network being examined. Parameters such as clustering coef-
ficient, a measure of local connectivity, characteristic path length, a
measure of network efficiency, small world value, a measure that de-
scribes the behavior of the graph, along with other parameters have
been used to describe brain networks to further understand the me-
chanisms involved in diseased brain states (Bullmore and Sporns, 2009;
Van den Heuvel and Hulshoff Pol, 2010). For example, when migraine,
a chronic pain condition, was studied using graph theory analysis,
network abnormalities were identified including higher clustering
coefficient values and decreased small world values, showing that long-
term migraine causes irregular network construction (Liu et al., 2013).
Additionally, graph theory showed that female migraine patients tend
to have a more dysfunctional network compared to male patients (Liu
et al., 2011). Pain has also been shown to have large scale network
impacts in other chronic pain conditions (Balenzuela et al., 2010;
Mayer et al., 2015).

Therefore, we examined the effect of chronic pain and severity of
SCD on brain networks using graph theory. This study was entirely data
driven: regions included in a standard brain atlas were included in
order to study the global brain network. Imaging was performed using
both functional magnetic resonance imaging (fMRI) and electro-
encephalography (EEG) in order to provide high spatial and temporal
resolution of resting state data. We hypothesize that graph theory
would detect differences in network connectivity between healthy
controls and patients, and differences among patients with less and
more severe disease. Prospectively, we investigated how chronic pain
can influence network connectivity. We hypothesize that greater pain
intensity would cause more dysfunction in the brain network causing
less organization and reduced efficiency in the network.

2. Methods

2.1. Patients

This study was registered as “Functional Neuroimaging of Pain
Using EEG and fMRI” at clinicaltrials.gov (registration number was
NCT02212691). The patient group includes thirty-one SCD patients
recruited across two sites including the University of Minnesota
(Minneapolis, MN) and Children's National (Washington DC).
Approvals from the Institutional Review Boards at the University of
Minnesota and at Children's National were obtained prior to the start of
the study. All patients were recruited by hematologists and gave written
informed consent before participating in the study. Participants under
the age of eighteen gave assent and their parent or legal guardian gave
written informed consent. Written informed consent was also obtained
from participants to have the research staff access medical history to
obtain clinical parameters relating to the patient's general health and
disease severity history, where a summary of these parameters is dis-
played in Table 1 and medications taken by the patients is shown in
Table 2.

Thirty-one patients participated in this study (15 female, 16 male,
average age 21.5 ± 5.9 years). Twenty-one patients were recruited at
the University of Minnesota and 10 patients were recruited from the
Children's National. Patients were separated into two groups based on
their medical history. The sum of the number of hospitalizations and
the number of emergency department visits in the past two years was
used to group patients as less severe or more severe related sickle pain.

Patients with less than eight total visits were placed in the less severe
group (n=15, 8 female, 7 male, average age 21.4 ± 5.7 years), and
patients with eight or more visits were in the more severe group
(n=16, 7 female, 9 male, average age 21.7 ± 6.3 years). Eight visits
were selected because it was the median value of the patient group.
This allowed us to split the patients evenly among the two groups.
Resting state fMRI data was recorded for all patients. However, due to
impedance issues with EEG, two patients were removed from the
resting state EEG analysis. As a result the group parameters for the total
patient group (n=29, 14 female, 15 male, average age
21.7 ± 6.1 years), less severe group (n=14, 7 female, 7 male, average
age 21.6 ± 5.8 years), and more severe group (n=15, 7 female, 8
male, average age 21.8 ± 6.5 years) changed slightly.

2.2. Controls

The control group consisted of sixteen healthy controls (8 female, 8
male, average age 24.6 ± 4.8 years) who voluntarily participated in

Table 1
Summary of clinical parameters of sickle cell disease patients.⁎

Patient Characteristics P Less Severe
Group (n= 15)

More Severe
Group (n=16)

Age, years 0.89 21.4 (±5.7) 21.7 (± 6.3)
Females, n (%) 0.60 8 (53) 7 (44)
Type HbSS, n (%) 0.49 12 (80) 11 (69)
Type HbSC, n (%) 0.94 2 (13) 2 (12)
Type HbSβ0, n (%) 0.08 0 (0) 3 (19)
Type HbSβ+, n (%) 0.33 1 (7) 0 (0)
Pain score 0.02 0.1 (± 0.4) 1.6 (± 2.2)
Systolic blood pressure,

mmHg
0.43 116.5 (± 11.6) 120.1 (± 13.1)

Diastolic blood pressure,
mmHg

0.49 67.4 (±7.0) 69.4 (± 8.7)

Hemoglobin, g/dL 0.41 9.7 (± 1.5) 9.3 (± 1.6)
Fetal hemoglobin, % 0.08 10.1 (±8.1) 4.7 (± 4.8)
Automated absolute

reticulocyte count, K/uL
0.16 241.0 (± 129.6) 323.9 (± 188.9)

White blood cell count, K/uL 0.84 7.6 (± 4.6) 7.9 (± 4.1)
Platelet count, K/uL 0.67 354.5 (± 171.8) 377.6 (± 114.8)
Emergency room visits in

past 2 years
0.005 1.4 (± 1.4) 20.8 (± 23.3)

Hospitalizations in past
2 years

< 0.001 1.3 (± 1.6) 10.9 (± 5.9)

Hydroxyurea, n (%) 0.57 10 (67) 9 (56)

⁎ Note: Values are mean ± SD unless otherwise indicated.

Table 2
Group summary of medications used by sickle cell patients.

Medications used by multiple patients Medications used by one patient

Medication N Amlodipine Naproxen
Acetaminophen 3 Budesonide Oxymorphone
Albuterol 7 Benztropine Pseudoephedrine
Aspirin 2 Bisacodyl Ranitidine
Deferasirox 3 Celebrex+Celecoxib Rivaroxavan
Diphenhydramine 2 Cholecalciferol Senna
Docusate 4 Clozapine Sildenafil
Fluticasone 4 Desyrel+ Trazodone Topiramate
Folate 15 Escitalopram Ursodiol
Gabapentin 6 Etonogestrel Implant Zolpidem
Hydromorphone 2 Fondaparinux
Hydroxyurea 19 Haloperidol
Ibuprofen 10 Hydroxyzine
Lisinopril 2 Lansoprazole
Meloxicam 2 Levalbuterol
Montelukast 2 Levonorgestrel
Morphine extended release 2 Loratadine
Oxycodone 13 Methadone
Polyethylene glycol 6 Morphine
Tramadol 2 Mometasone
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the study. The ethnicity of the control group was diverse with 6 African
Americans, 6 Caucasians, 3 Asians, and 1 Hispanic. The healthy con-
trols were all screened prior to participation to ensure none had neu-
rological diseases, psychiatric diseases, or chronic pain conditions.
Written informed consent was obtained from each control prior to
participation in the study. Resting state fMRI was recorded from all
healthy controls; however, one control was removed from the EEG
resting state analysis due to noise. Fifteen subjects (8 female, 7 male,
average age 25 ± 4.4 years) had EEG data and were included in the
analysis. The control group did not participate in the thermal pain part
of this study.

2.3. Resting state fMRI and EEG acquisition

All of the participants in this study completed resting state fMRI
acquisition and EEG recording (study schematics in Fig. 1). fMRI data
was collected using a, supine position in a 3 T MRI scanner; EEG re-
cordings were performed in a sitting on a chair in a private room.
Participants were asked to keep their eyes open while letting their mind
wander naturally. Resting state recordings lasted approximately 8min
for fMRI and 10min for EEG data collection. Participants were asked on
the day of the recordings prior to going into the fMRI scanner to
verbally rate their pain on a scale from 0 to 10, where 0 indicated no
pain and 10 indicated the worst pain imaginable.

2.4. fMRI recording and preprocessing

For experiments conducted at the University of Minnesota, a 3 T
Siemens Magnetom Trio scanner (Erlangen, Germany) with a sixteen
channel head coil was used to record fMRI data on fourteen subjects. The
remaining seven patients recruited at the University of Minnesota used a
3 T Siemens Magnetom Prisma scanner (Erlangen, Germany) with a
twenty channel head coil for fMRI recordings because of upgrades done at
the Center for Magnetic Resonance Research. Anatomical MRI data were
obtained for each patient, using a high-resolution T1 sequence with 240
contiguous sagittal slices (slice thickness: 1mm; matrix size: 256*256;
FOV: 256mm*256mm; TR/TE=20ms/3.3ms). For functional scans,
whole-brain images with blood-oxygen-level-dependent contrast were
attained using a gradient echo planar imaging sequence (40 sequential
axial slices; slice thickness: 3mm; TR/TE: 2500ms/30ms; flip angle: 90°;
matrix size: 64*64; FOV: 192mm*192mm). No MR angiography or T2
imaging was performed in this study.

For experiments conducted at Children's National, a 3 T GE
Discovery MR750 scanner (Milwaukee, WI) with a thirty-two channel

head coil was used to obtain fMRI data from ten patients. Anatomical
MRI data was obtained using a high-resolution T1 sequence with 360
contiguous sagittal slices (slice thickness: 1 mm; matrix size: 256*256;
FOV: 256mm*256mm; TR/TE: 7.2ms/2.7ms). For functional scans,
whole-brain images with blood-oxygen-level-dependent contrast were
attained using a gradient echo planar imaging sequence (52 sequential
axial slices; slice thickness: 3 mm; TR/TE: 2000ms/22ms; flip angle:
90°; matrix size: 64*64).

The preprocessing steps used in this study have been previously
described (Case et al., 2017). Essentially, all fMRI preprocessing was
done using SPM12 software (Ashburner et al., 2014), which included
slice scan time correction, 3-D motion correction, and temporal fil-
tering. The images were aligned to the anterior-posterior line and
normalized into MNI (Montreal Neurological Institute) space. The
anatomical and functional images were co-registered and smoothing
was performed to three times the size of the original voxels using full
width and half maximum (FWHM). The first ten images of the fMRI
data were removed so that a steady state of excitation had been reached
in the data analyzed.

2.5. EEG recording and preprocessing

For resting state experiments conducted at the University of
Minnesota, a 64 channel MR-compatible BrainProducts EEG system was
used (Gilching, Germany). For resting state experiments conducted at
Children's National, a 64 channel Neuroscan system was used
(Charlotte, NC). For thermal pain experiments, a 128 channel BioSemi
Active-II EEG system was used (Amsterdam, Netherlands). All electrode
impedances were below 20 kΩ and all EEG data was recorded at 1 kHz.

The EEG data was processed using the EEGLAB toolbox (Delorme
and Makeig, 2004). Visual artifact removal was performed be removing
noisy sections of the EEG recordings. Additionally, independent com-
ponent analysis was used to remove noisy components. The EEG data
were resampled to 256 Hz, bandpass filtered between one and 50 Hz,
and average referenced. Finally, an automatic artifact rejection toolbox
in EEGLAB was used to further clean the data (Gomez-Herrero et al.,
2006). The first and last minute of EEG recordings were removed from
the resting state data. At least 5min of artifact-free EEG data was re-
quired for participants to be included for further analysis.

2.6. Resting state fMRI graph theory analysis

The preprocessed anatomical and functional MRI data was imported
into the CONN functional connectivity toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012). A connectivity matrix was generated for each
subject by calculating the correlation coefficient between all of the 136
regions of interest included in the CONN toolbox's Talairach Daemon
atlas. Adjacency matrices were generated from each connectivity ma-
trix over a range of sparsity thresholds between 0.10 and 0.30 with a
0.01 increment. Sparsity is defined as the total number of edges in a
network divided by the total number of possible edges (Achard and
Bullmore, 2007; Liu et al., 2013). Sparsity thresholds ensure the same
number of edges is in the graph for each subject. Each adjacency matrix
created a graph G=(N,E), where N represents the nodes or brain re-
gions and E represents the edges or functional connections between
brain regions. To eliminate potential bias, the overall functional con-
nectivity of each subject was found. There was a significant difference
between the less severe and more severe groups, and so a subset group
was created that matched functional connectivity across groups (Van
den Heuvel et al., 2017). The subset groups did not show any significant
differences and each group contained 12 subjects (Fig. 2A). The same
subjects were used for the EEG analysis, and no significant differences
were found between overall functional connectivity in either the ori-
ginal groups or the subset groups (Fig. 2B). The control and less severe
groups contained 11 subjects and the more severe group contained 12
subjects.

Fig. 1. Schematic diagram of experimental procedure. The study involved ob-
taining resting state data from patients and controls. Both functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG) were used to
record resting state data. Subjects were asked to let their mind naturally during
resting state recordings.
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Several parameters were calculated from the graph including node
degree, clustering coefficient, characteristic path length, small world
value, global efficiency, and local efficiency (Bullmore and Sporns,
2009; Menon, 2013; Sporns, 2013). The node degree is the total number
of connections at a node (Bullmore and Sporns, 2009; Van den Heuvel
and Hulshoff Pol, 2010; Menon, 2013; Sporns, 2013). The clustering
coefficient represents the probability that neighbors of a node are also
connected to each other (Van den Heuvel and Hulshoff Pol, 2010; Liu
et al., 2013; Watts and Strogatz, 1998). The overall clustering coeffi-
cient of the network is the average of clustering coefficients across all
nodes. The characteristic path length is the average of the shortest path
lengths between any pair of nodes in the network (Van den Heuvel and
Hulshoff Pol, 2010; Liu et al., 2013; Menon, 2013; Sporns, 2013; Watts
and Strogatz, 1998).

The clustering coefficient and characteristic path length were found
for a random network consisting of the same number of nodes and
edges. These parameters were used to calculate the small world value of
the network. A small world network is characterized by high clustering
coefficient and short path lengths (Bullmore and Sporns, 2009; Van den
Heuvel and Hulshoff Pol, 2010; Menon, 2013). If the small world value
is greater than one, the network is considered a small world network
(Liu et al., 2011). The global efficiency is the ability of the network to
transmit information at a global level (Wang et al., 2010). The local
efficiency is the ability of the network to transmit information at a local
level and is related to the clustering coefficient (Bullmore and Sporns,
2009; Menon, 2013; Wang et al., 2010). Each of the six parameters was
calculated for every subject, and the mean values and standard

deviations for each group including controls, less severe, and more
severe are reported.

In order to conduct further analysis on the graphs, a fixed sparsity
level needed to be selected. The lowest sparsity value where the mean
of each group had all nodes connected to the network was selected (Liu
et al., 2012), shown in Fig. 3. This allowed each group to have whole
network connectivity without the graph being too densely populated.
The sparsity value S= 0.15 was selected and is used in all following
analysis descriptions.

A robustness analysis was conducted to test the resilience of the
networks by using a targeted attack approach described previously
(Albert and Barabási, 2002; Liu et al., 2011). The targeted attack in-
volved removing the node with the highest node degree. After the node
was removed the size of the largest remaining cluster was found. This
process was repeated until all nodes were removed. We found the
average response from each group; in addition, we also calculated the
response of a random network to the targeted attack procedure.

The six parameters calculated for each network were tested against
clinical parameters including the number of emergency department
visits and the number of hospitalizations. These parameters were
chosen because they have previously been shown to reflect chronic pain
severity in sickle cell patients because these values tend to reflect the
frequency of acute pain crises (Darbari et al., 2015; Darbari et al.,
2012). A linear model was generated by assuming a linear relationship
between the graph parameters and the clinical parameters. Only cor-
relations that were determined to be significant are reported.

Finally, the T1 anatomical images were used to assess the gray
matter and white matter volume by counting the number of gray matter
and white matter voxels. This was done for each group and for each
subset group. The anatomical image was segmented using the voxel-
based morphometry toolbox, which is an extension of the statistical
parametric mapping tool implemented in MATLAB (Ashburner et al.,
2014; Ashburner and Friston, 2000).

2.7. EEG graph theory analysis

The preprocessed EEG data were imported into the FieldTrip
toolbox (Oostenveld et al., 2011). The MRI of Colin27, a realistic
standard head model (Enhancement of MR Images Using Registration for
Signal Avera, n.d.), was used to create a three layer boundary element

Fig. 2. Bar graphs showing overall functional connectivity of subject groups. A.
The overall functional connectivity for the fMRI analysis. B. The overall func-
tional connectivity for the EEG analysis. The bars show the average value of the
functional connectivity and the error bars show the standard deviation. The *
indicates a p < .05. No significant differences were observed in the subset
groups.

Fig. 3. Chart for selecting sparsity level for analysis for fMRI analysis. The chart
shows how sparsity level effected how many nodes were included in the net-
work. The smallest sparsity value with all the groups having the complete
network connected was chosen for analysis. The sparsity value selected was
S= 0.15.
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model (Hamalainen and Sarvas, 1989; He et al., 1987). A three-di-
mensional source grid with 10mm resolution was defined from
Colin27. The EEG was split into 2 s epochs with 50% overlap. The cross
spectrum was calculated using the Fourier Transform and binned into
different frequency bands including delta (2–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta1 (12–16Hz), beta2 (16–30 Hz), and gamma
(30–50 Hz). The resulting cross-spectral matrix was fed into a beam-
former algorithm (Frei et al., 2001; Gross et al., 2001; Veen et al., 1997)
for each epoch. A connectivity matrix was calculated from the ima-
ginary part of the coherence spectrum (Nolte et al., 2004). An AAL atlas
available from the FieldTrip toolbox with 90 regions of interest was
used to parcellate the connectivity matrix. Adjacency matrices were
generated from the connectivity matrix for each frequency band for
every subject.

In order to limit the number of comparisons performed for EEG
resting state data, a comparison between the three groups of the six
graph theory parameters was performed at S=0.15, to be consistent
with the fMRI resting state analysis. Significant differences were only
observed in the beta1 band, shown in Fig. 4. Therefore, EEG resting
state analysis was only performed in the beta1 band. The sparsity
threshold ranged from 0.10 to 0.30 with a 0.01 increment. The six
parameters described in the fMRI resting state analysis were calculated
for each subject. A comparison of the groups was done by calculating
the mean and standard deviation. The general trends observed in EEG
were compared to the trends observed from fMRI.

2.8. Statistical analysis

Reporting differences between the clinical parameters for the less
severe and more severe sickle pain patient groups were done by using
an independent t-test. For determining significant differences between
groups on the graph theory analysis, functional connectivity, and ana-
tomical analysis an ANOVA test was used followed by multiple com-
parisons correction using the Tukey method (Tukey's Honestly
Significant Difference (HSD), 2010). This process was used to determine
significant differences between control, less severe, and more severe
groups for the sparsity analysis for fMRI and EEG, the robustness ana-
lysis, and determining which frequency band to assess for the resting
state EEG analysis. For the induced pain study, this process was also
used; however, due to the limited number of participants significant
differences should be cautiously considered as an outlier can greatly
affect results for a small subject pool. All results with p < .05 after
corrections are reported as significant. For the linear correlations be-
tween the graph parameters and the clinical parameters, the R2 and p-
values were found. Only correlations with p < .05 after false-discovery
rate corrections are reported as significant for this study.

To determine regional differences between the groups, tests to look
for significant differences between the edges and the nodes were con-
ducted. For edges, the connectivity value for each possible connection
was tested for significance by using an ANOVA. Edges with p < .05
after multiple comparison corrections are reported as significant. For
nodes, the node degree and clustering coefficient was found for each

Fig. 4. Bar graphs showing graph parameter values across frequencies at the sparsity level S=0.15. The bars show the average value of the graph parameters and the
error bars show the standard deviation. The * indicates a p < .05. The only band to show significant differences in any of the parameters was the beta1 band. The
beta1 band was selected to analyze the resting state EEG data.
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node in the network. These values were tested for significance using an
ANOVA and nodes with p < .05 after multiple comparison corrections
are reported as significant.

3. Results

3.1. Patient statistics

The clinical parameters reported in this study are listed in Table 1.
Most of the parameters showed no significant differences between the
less severe and more severe patient groups. The number of emergency
department visits and hospitalizations, as expected, were significantly
different between the groups. However, the pain score recorded the day
of the study also showed a significant difference between the groups
and the percent fetal hemoglobin showed a trend for difference between
the groups. The medications taken by the patient group varied greatly
as can be seen in Table 2. Patients were often taking more than one
medication. The most common medications taken across the patients
included hydroxyurea, folate, oxycodone, and ibuprofen.

3.2. Resting state fMRI findings

The sparsity analysis showed that the network properties of the

more severe patient group behaved differently compared to the other
groups, shown in Fig. 5. Generally, the more severe group had lower
local efficiency, and clustering coefficient compared to the control
group and the less severe group. There were typically more statistical
differences observed between the control and more severe patient
groups. No statistically significant differences were observed between
the control group and the less severe patient group.

The robustness analysis showed how each group's network re-
sponded to a targeted attack, Fig. 6. The patient groups behaved si-
milarly when a small portion of the nodes had been removed; however,
the less severe group shifted toward the control group's response while
the more severe group continued to behave similarly to a random
network as more nodes were removed. Once a majority of the nodes
were removed the control group and less severe group had a smaller
main cluster compared to a random network and the more severe
group.

Three of the graph parameters showed correlations with the number
of hospitalizations in the past two years, Fig. 7. The characteristic path
length had a positive correlation with the number of hospitalizations.
The small world value and the global efficiency had a negative corre-
lation with the number of hospitalizations. The other parameters had
no significant correlations.

The control group had more significant interregional edges

Fig. 5. Graphs depicting how graph parameters change with sparsity levels from resting state fMRI. A. The control group and less severe patient group results. B. The
control group and more severe patient group results. C. The less severe patient group and more severe patient group results. The lines represent the average values of
the group, and the shaded regions represent the standard deviation of the group. The * indicates p < .05.

Fig. 6. Graph showing robustness analysis results from resting state fMRI. The lines represent the average value of each group. The * represent significant differences
(p < .05) between the less severe and more severe groups. The · represent significant differences (p < .05) between the control and more severe groups. The squares
represent significant differences (p < .05) between the control and less severe groups.
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compared to both patient groups, Fig. 8. The less severe patient group
had stronger edges compared to the more severe group, but not to the
extent of the controls. The patient groups had some significantly
stronger edges compared to controls including the right superior par-
ietal lobe to the brain stem, the left parahippocampal gyrus to the left
frontal operculum cortex, the left frontal operculum cortex to the right
cerebellum, the left putamen to the left accumbens, and the right pal-
lidum to the vermis 7. The nodes with significantly different node de-
gree and clustering coefficient values are shown in Table 3. The contrast
between the controls and more severe patient group showed the
greatest number of significantly different nodes. In particular, the
clustering coefficient assessment showed that nodes were globally
spread throughout the brain. This indicates that the more severe group
has less clustering coefficient values, which was also seen in the sparsity
analysis.

3.3. Resting state EEG findings

A sparsity analysis was completed for the beta1 band of the resting
state EEG data, Fig. 9. The control group showed significant differences
in local efficiency between the more severe patients and significant
differences in clustering coefficient between both patient groups, where
patient groups had significantly reduced values in these parameters. No
significant differences were observed between the less severe and more
severe patient group.

3.4. Anatomical analysis

The gray matter voxel count did not show any significant differences
between any of the groups, Fig. 10A. The subset groups also did not
show any significant differences. The control group had significantly
more white matter voxels than the less severe patients (p= .02) for
when all subjects were included, Fig. 10B. The control group had sig-
nificantly more white matter voxels than the less severe group (p= .03)
and the more severe group (p= .05) for the subset group analysis. This
indicates that patients not only have functional neural dynamics, but
also anatomical anomalies as well, which may contribute to the dis-
ruptions observed in the graph theory analysis.

4. Discussion

We have investigated the long-term effects of SCD severity and pain
on brain dynamics using non-invasive neuroimaging by means of graph
theory analysis. Significant differences were observed between the
three groups (control, less severe and more severe disease). Specifically,
fMRI showed that the more severe patients had less clustering coeffi-
cient and local efficiency values and behaved closer to a random net-
work during a targeted attack. EEG source imaging demonstrated that
controls significantly differed from the patient groups in the beta1
band. To our knowledge, this is the first study that uses graph theory to
study the global brain network in sickle cell patients utilizing both EEG
and fMRI recordings.

The fMRI results found that more severe patients have reduced local
efficiency and clustering coefficient compared to controls and less se-
vere patients indicating sickle pain severity impacts global brain dy-
namics. Altered graph parameter values may reflect why some SCD
patients have reduced cognitive abilities compared to controls
(Colombatti et al., 2015; Novelli et al., 2015). SCD patients demon-
strated altered network behavior in memory-related regions, such as the
cerebellum, parahippocampus, and prefrontal cortex observed from the
significant edges and nodes analysis, where both patient groups had
weaker edges in these regions compared to controls. Additionally, SCD
patients have been observed to have declined cognitive performance,
which have been linked to imaging through fMRI or gray matter volume
analysis (Chen et al., 2017; Colombatti et al., 2016; Mackin et al., 2014;
Schatz and Buzan, 2006). Furthermore, another study demonstrated
that patients with white matter disease have neuro-architecture with
the least similarity to controls and patients without white matter dis-
ease (Coloigner et al., 2017). Our anatomical analysis showed that both
the less severe and more severe patients had decrease white matter
volume compared to controls. This could imply that the decreased
white matter may have affected the graph theory parameters.

Small world networks tend to have high clustering and low path
lengths, which makes them a robust and efficient network (Achard and
Bullmore, 2007; Van den Heuvel and Hulshoff Pol, 2010). The small
world values did not show any significant differences between the
groups; however, a trend was observed where the more severe patients

Fig. 7. Correlation graph between past hospitalizations and graph parameters from resting state fMRI. The lines represent the linear trend. The significance of the
correlation and the R2 value are displayed on the charts. Both patient groups are plotted for these graphs.
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tended to have decrease small world value compared to the controls.
This trend in the more severe patients resulted from decreased clus-
tering across the brain including regions in the frontal cortex, temporal
cortex, parietal cortex, occipital cortex, and subcortical regions. The

robustness analysis showed how the more severe patient group behaved
differently from controls and less severe patients as a result of the loss
of small world properties. These more affected patients behaved closer
to a random network with low clustering and low path lengths (Van den

Fig. 8. Chart showing significant edges from the resting state fMRI results. A. Significant edges between the control and less severe patient group. Red lines represent
where controls have stronger edges and blue lines represent where patients have stronger edges. B. Significant edges between the control group and more severe
patient group. Red lines represent where controls have stronger edges and blue lines represent where patients have stronger edges. C. Significant edges between the
less severe and more severe patient groups. Red lines represent where less severe patients have stronger edges and blue lines represent where more severe patients
have stronger edges. The brain regions for the node labels are listed in Table 4. The images were generated using the BrainNet toolbox.
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Heuvel and Hulshoff Pol, 2010). Regions related to the executive con-
trol network, emotion-regulation network, and salience network were
found to have hyperconnectivity in the patient groups (Damoiseaux
et al., 2006; Heine et al., 2012). The salience network, related to pain
processing, and the executive control network, related to cognitive
processing, have been shown to be altered in sickle cell disease patients
(Case et al., 2017; Darbari et al., 2015). Hyperconnectivity may cause
disruptions in these resting state networks and this may contribute to
the reduced efficiency observed in the patient groups. This suggests that
more severe patients, and to a smaller extent the less severe patients,

have less organization compared to controls; therefore, patients have a
less efficient network.

Several graph parameters were correlated with the number of hos-
pitalizations, an indirect measure of chronic pain history (Ballas et al.,
2010; Darbari et al., 2012), during the previous two years. These cor-
relations indicate that long term chronic pain is a factor for abnormal
graph parameters. Patients with higher hospitalizations tended to have
increased path length and decreased small world values and global
efficiency. Patients with migraine showed clustering coefficient and
small world value have a positive correlation with the duration of the
migraine (Liu et al., 2011; Liu et al., 2012). These results find that graph
parameters can reflect factors pertaining to chronic pain. Migraine
patients have increased clustering coefficient and small world values
compared to controls, the opposite was observed in sickle cell patients.
This most likely indicates that the pain mechanisms behind migraine
and SCD are different, where migraine patients tend to have increased
clustering and stronger edges compared to controls to form a highly
interconnected community (Liu et al., 2015). Sickle cell patients have
reduced clustering and weaker edges, which most likely leads to re-
duced connectivity in resting state networks, which has been reported
previously (Case et al., 2017).

This study included both fMRI and EEG analysis for resting state
data to compare how the two modalities performed. The EEG resting
state data indicated significant differences only within the beta1 band.
Notably, in Alzheimer's disease, a similar phenomenon was observed
where beta band reflected results observed in fMRI, where patients
have decreased clustering coefficient and increased path length (Stam
et al., 2007). The beta band appears to reflect abnormality in resting
state activity in several disorders including Alzheimer's disease, atten-
tion deficit disorder, and SCD (Case et al., 2018; Lansbergen et al.,
2011; Stam et al., 2005). The EEG resting state results displayed more
severe patients had significantly decreased local efficiency and clus-
tering coefficient compared to controls, which is the same result ob-
served in the fMRI results. However, the less severe group also pre-
sented significantly reduced clustering coefficient, which was not
observed in resting state fMRI, and caused no differences to occur

Table 3
Node regions with significant differences between groups.

Node degree

Controls vs less severe nodes Controls vs more severe nodes Less severe vs. more severe nodes

Right Inferior Frontal Gyrus, pars opercularis Left Frontal Pole Left Frontal Pole
Left Middle Frontal Gyrus Left Middle Frontal Gyrus
Left Parahippocampal Gyrus, anterior division Left Superior Lateral Occipital Cortex
Right Pallidum Left Cerebelum 4 5
Vermis 9
Vermis 10

Clustering coefficient

Controls vs less severe nodes Controls vs more severe nodes Less severe vs. more severe nodes

Left Superior Lateral Occipital Cortex Right Frontal Pole Right Frontal Pole
Right Intracalcarine Cortex Right Middle Frontal Gyrus Right Middle Frontal Gyrus
Left Planum Temporale Right Inferior Frontal Gyrus, pars triangularis Right Inferior Frontal Gyrus, pars triangularis
Right Supracalcarine Cortex Right Inferior Frontal Gyrus, pars opercularis Left Inferior Temporal Gyrus, temporooccipital part
Right Cerebelum 9 Right Superior Temporal Gyrus, posterior division Cingulate Gyrus, posterior division
Vermis 6 Left Middle Temporal Gyrus, anterior division Right Frontal Orbital Cortex
Medial Prefrontal Cortex Right Middle Temporal Gyrus, posterior division Right Cerebelum Crus1

Left Superior Lateral Occipital Cortex Medial Prefrontal Cortex
Right Intracalcarine Cortex
Left Intracalcarine Cortex
Left Planum Temporale
Right Supracalcarine Cortex

Bold nodes indicate regions where first group listed are higher.
Italicized nodes indicate regions were second group listed are higher.

Table 4
Node Labels used for Edge Figures.

Node Label Brain Region

FP.R Right Frontal Pole
SFG.R Right Superior Frontal Gyrus
MidFG.R Right Middle Frontal Gyrus
MTG.L Left Middle Temporal Gyrus
pITG.L Left Posterior Inferior Temporal Gyrus
PostCG.L Left Postcentral Gyrus
SPL.R Right Superior Parietal Lobule
AG.L Left Angular Gyrus
sLOC.L Left Superior Lateral Occipital Cortex
paHC.L Left Anterior Parahippocampal Gyrus
FO.R Right Frontal Operculum Cortex
FO.L Left Frontal Operculum Cortex
OP.L Left Occipital Pole
Caudate.L Left Caudate
Putamen.L Left Putamen
Pallidum.R Right Pallidum
Accumbens.L Left Accumbens
BrainStem Brain Stem
Crus1.L Left Cerebellum Crus1
Cereb2.R Right Cerebellum Crus2
Cereb8.R Right Cerebellum 8
Ver7 Vermis 7
dmn.LLP Left Parietal Lobe
dmn.RLP Right Parietal Lobe
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Fig. 9. Graphs depicting how graph parameters change with sparsity levels from resting state EEG in the beta1 band. A. The control group and less severe patient
group results. B. The control group and more severe patient group results. C. The less severe patient group and more severe patient group results. The lines represent
the average values of the group, and the shaded regions represent the standard deviation of the group. The * indicates p < .05.
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between the patient groups in resting state EEG. Differences between
the two modalities were expected as the graph analyses were slightly
different. The fMRI graphs had a greater number of nodes, and edge
strength was calculated from correlation coefficient rather than the
coherence spectrum. Additionally, fMRI has greater spatial resolution
while EEG has greater temporal resolution (He and Liu, 2008). How-
ever, the major differences observed in fMRI were still seen in EEG,
such as reduced clustering. While not all of these differences were
significant, such as more severe patients having greater reduction in
these parameters compared to less severe patients, graph analysis using
both modalities are fairly similar.

Our study has several limitations. We did not impose constraints on
how long patients should abstain from taking medication prior to the
experiment as it would be unethical to hold treatment for pain for a
research study. This introduces a confounder, as the role of pain med-
ication in network alteration cannot be determined. The control group
was not ethnically matched to the patient groups; however, the group
was ethnically diverse and a large portion of controls were African
American. Other complications of SCD, such as ischemia, could cause
differences in neural signals. However, we are confident our results
reflect neural activity as the graph parameters showed a correlation
with the number of hospitalizations and expected trends were found in
the induced pain study. The lack of neuropsychology testing is another
limitation as we cannot determine if other comorbidities associated
with chronic pain, such as depression and anxiety, contribute to the
results. Since T2 FLAIR imaging was not performed in this study, we
cannot comment on the possible impact of silent cerebral infarctions on
the brain network differences observed in our patients. Finally, the

settings for fMRI were not the same at the two different locations. This
could affect the contrast of the T1 images. An ANOVA test was con-
ducted to determine if the overall functional connectivity was different
between the two locations and no significant differences were found.
Despite these limitations, we demonstrated significant differences be-
tween patients with less severe and more severe disease related pain as
well as between patients and controls. We additionally showed corre-
lations between graph parameters and hospitalizations, which reflects
pain burden. Our results should be interpreted with caution, but our
study provides a foundation for further exploring the long-term impacts
of this disease on brain network.

5. Conclusions

This study demonstrates that graph theory can be used to assess the
overall brain network of SCD patients. It is noteworthy that we found a
significant difference between patients and controls, as well as between
patients with less severe and more severe SCD, indicating the sensitivity
and robustness of this novel non-invasive technique in determining
brain function in SCD. Our graph theory results show the impact of long
term chronic pain and disease severity on the brain, as the nodes with
significant differences in clustering coefficient are not isolated to pain
regions or major resting state network nodes. These results further
support that SCD affects brain function (Lance et al., 2014; Solh et al.,
2016). Neurological symptoms of SCD, such as silent strokes and cer-
ebral infarcts underlying morbidity in children with this disease require
attention to diagnose the predisposition to such events before they
become life-threatening (Rankine-Mullings et al., 2016). Our study

Fig. 10. Bar graphs showing the results of the anatomical analysis. A. The average gray matter voxel count of all groups. B. The average white matter voxel count of
all groups. The bars show the average value of the functional connectivity and the error bars show the standard deviation. The * indicates a p < .05. The white
matter voxel count showed significant differences between the control and patient groups.
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shows that graph theory can be used as a tool to diagnose and test the
effectiveness of potential treatments for brain associated disorders in
SCD.
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