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ABSTRACT

Background and Purpose: To analyze 18F-THK5351 positron emission tomography (PET) 
scans of patients with clinically diagnosed nonfluent/agrammatic variant primary progressive 
aphasia (navPPA).
Methods: Thirty-one participants, including those with Alzheimer's disease (AD, n=13), 
navPPA (n=3), and those with normal control (NC, n=15) who completed 3 Tesla magnetic 
resonance imaging, 18F-THK5351 PET scans, and detailed neuropsychological tests, were 
included. Voxel-based and region of interest (ROI)-based analyses were performed to evaluate 
retention of 18F-THK5351 in navPPA patients.
Results: In ROI-based analysis, patients with navPPA had higher levels of THK retention in 
the Broca's area, bilateral inferior frontal lobes, bilateral precentral gyri, and bilateral basal 
ganglia. Patients with navPPA showed higher levels of THK retention in bilateral frontal lobes 
(mainly left side) compared than NC in voxel-wise analysis.
Conclusions: In our study, THK retention in navPPA patients was mainly distributed at the 
frontal region which was well correlated with functional-radiological distribution of navPPA. 
Our results suggest that tau PET imaging could be a supportive tool for diagnosis of navPPA 
in combination with a clinical history.

Keywords: Primary Progressive Nonfluent Aphasia; tau Protein; Neurofibrillary Tangles; 
Positron Emission Tomography

INTRODUCTION

Primary progressive aphasia (PPA) is a clinical dementia syndrome in which language 
capabilities slowly and progressively become impaired.1 Three subtypes of PPA are 
recognized: nonfluent/agrammatic variant primary progressive aphasia (navPPA), semantic 
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variant PPA, and logopenic variant PPA.2 Underlying pathologies of PPA are heterogeneous, 
including tauopathy, ubiquitinopathy (TAR-DNA binding protein 43), and Alzheimer's 
disease (AD) pathology.3-6 The major neuropathology of sporadic navPPA is known to be 
tauopathy.7-9

Tau positron emission tomography (PET) imaging may allow better understanding of tau 
aggregation and deposition in various dementia syndromes including navPPA. Several 
radiotracers have been developed for in vivo visualization of tau pathology.10 18F-THK5351, 
a 18F-labed THK arylquinoline tracer, has a high binding affinity and selectivity for tau.11 
However, off-target binding related to monoamine oxidase-B (MAO-B) has raised concerns 
about the specificity of 18F-THK5351 for tau recently.12,13 The objective of this study was to 
analyze 18F-THK5351 PET scans14 of patients with clinically diagnosed navPPA.

METHODS

Participants
Thirty-one participants were recruited from a single tertiary hospital from April 2015 to 
April 2016. They underwent a clinical interview and standard neurologic examination 
as well as structural brain magnetic resonance imaging (MRI) as described below. Three 
patients who were clinically diagnosed with navPPA according to guidelines proposed by 
Gorno-Tempini et al.14 and 13 patients who were diagnosed with probable AD according 
to the National Institute of Neurological and Communicative Disorders and Stroke and 
the Alzheimer's Disease and Related Disorders Association15 criteria were included in 
this study. We included AD patients as a representative group to show the pattern of 
THK retention. None of the 3 patients diagnosed with navPPA had a family history of 
dementia or movement disorder. Fifteen normal control (NC) subjects with normal 
cognition without history of neurologic or psychiatric illness or abnormalities detected on 
neurologic examination were also included. All participants underwent a comprehensive 
neuropsychological evaluation using the Seoul Neuropsychological Screening Battery-II.16 
Disease severity was assessed by the frontotemporal lobar degeneration (FTLD) modified 
Clinical Dementia Rating (CDR) containing 2 more domains (behavior and language) in 
addition to the 6 standard domains of the CDR scale.17-19 In the NC group, the CDR score 
was zero, the Mini-Mental Status Examination (MMSE) score was above 25, and the overall 
neuropsychological test performance was 1.5 standard deviations (SDs) above age adjusted 
and education adjusted norms.

We excluded patients with structural, focal lesions on brain MRI such as stroke, intracranial 
hemorrhages, and evidence of traumatic brain injury, hydrocephalus, white matter 
hyperintensities associated with radiation, multiple sclerosis, or vasculitis. Potential 
secondary causes of dementia were excluded through laboratory tests such as complete 
blood count, vitamin B12 and folate levels, thyroid function test, metabolic profile, and 
syphilis serology. Apolipoprotein E (APOE) genotyping was also conducted as described 
previously.20 Our Institutional Review Board (IRB) approved the study protocol (IRB number: 
GDIRB2015-272). Informed consent was obtained from all participants.

Neuropsychological tests
All participants underwent neuropsychological evaluation using a battery that 
included assessments for the following cognitive domains: attention, language, praxis, 
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visuoconstructive ability, elements of Gerstmann syndrome, visual and verbal memory, and 
frontal/executive function. Quantifiable tests among these evaluations included digit span 
test (forward and backward), the Rey-Osterrieth Complex Figure Test, the Korean version of 
the Boston Naming Test, the Seoul Verbal Learning Test, phonemic and semantic Controlled 
Oral Word Association Test, and a Stroop Test (color and word reading of 112 items during a 
2-minute period). MMSE, CDR, CDR Sum of Boxes, FTLD modified CDR Sum of Boxes, and 
Geriatric Depression Scale results were also obtained. The Korean version of the Western 
Aphasia Battery (K-WAB) having subscales to assess spontaneous speech, auditory verbal 
comprehension, repetition, naming and word finding, reading, and writing was performed in 
3 subjects diagnosed with navPPA.21,22

Image acquisition and preprocessing
MRI
MRI of all participants was performed with a 3.0-T MRI scanner (Siemens with a Siemens 
matrix coil; Verio, Orem, Utah, USA) including a 3-dimensional (3D) magnetization prepared 
rapid gradient echo (MPRAGE) sequence. Imaging parameters used for 3D MPRAGE were as 
follows: repetition time=1900 m/s, echo time=2.93 m/s, flip angle=8°, pixel bandwidth=170 
Hz/pixel, total acquisition time=4 minutes 10 seconds, and the iso-voxel resolution was 1.0 
mm. Other clinical MRI sequences including fluid attenuated inversion recovery sequence 
were also acquired.

PET
All PET scans were acquired with a Siemens Biograph 6 Truepoint PET/computed tomography 
(CT) scanner (Siemens, Knoxville, TN, USA) with a list mode emission acquisition. 
Participants underwent a 20-minute emission scan at 90 minutes after intravenous injection 
of 185 MBq of 18F-flutemetamol (FLUTE). Within 3 months of undergoing the initial FLUTE 
PET scan, all participants underwent a 20-minute emission scan starting 50 minutes after 
intravenous injection of 185 MBq of THK. THK was synthesized and radiolabeled at Gachon 
University Neuroscience Research Institute. A low-dose CT was performed for attenuation 
correction prior to all scans. Images were reconstructed in a 256×256×109 matrix with a voxel 
size of 1.33×1.33×1.5 mm using a 2D Ordered Subset Expectation Maximization algorithm 
(8 iterations and 16 subsets). They were corrected for physical effects including radiation 
attenuation and scatter.

Image processing and analysis
THK retention was expressed as a standardized uptake value ratio (SUVR) using cerebellar 
gray matter as reference region. FLUTE retention was also expressed as SUVR using pons as 
the reference region.23 For both regional and voxel-wise group analyses of THK retention, 
individual sets of PET and MRI images were processed using PMOD 3.7 (PMOD Technologies 
Ltd., Zurich, Switzerland) as follows. Individual PET data were co-registered to 3D MRI 
images and corrected for grey matter atrophy and white matter spillover using MR-based 
partial volume correction (PVC). For the correction, we applied the geometric transfer matrix 
(GTM) method24,25 to region of interest (ROI) data and the Müller-Gärtner (MG) method26 
to voxel data. These were implemented in PMOD 3.7. ROI and tissue segments with GTM 
and MG, respectively, were obtained from individual MR images during the PMOD-based 
image processing step. In PVC-corrected images, voxels with low gray-matter probability 
(p<0.2) were masked out to prevent noise amplification. Individual 3D MRI slices were then 
normalized to the Montreal Neurological Institute template. Their transformation matrix was 
applied to MRI co-registered PVC PET images.
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A voxel-wise analysis was also performed to compare regional pattern of THK retention 
using SPM12 (Statistical Parametric Mapping; Wellcome Trust Centre for Neuroimaging, 
London, UK). Before comparison, normalized PVC SUVR images were smoothed with an 8 
mm Gaussian kernel to account for individual anatomical differences and improve signal to 
noise ratio.

To compare THK retention in each group quantitatively, we defined 14 ROIs, including the 
precentral cortex, inferior frontal cortex(triangular part of inferior frontal gyrus, opercular part 
of inferior frontal gyrus, and orbital part of left inferior frontal gyrus), Broca's area (triangular 
part of inferior frontal gyrus and opercular part of inferior frontal gyrus), lateral temporal 
cortex (superior, middle, and inferior temporal cortex), mesial temporal cortex (hippocampus, 
parahippocampal gyrus, and amygdala), fusiform gyrus, superior parietal cortex, inferior 
parietal cortex (inferior parietal, supramarginal gyrus, and angular gyrus), insula cortex, 
anterior and posterior cingulate gyrus (posterior cingulate gyrus and precuneus), occipital 
cortex (superior, middle, inferior occipital gyrus, calcarine sulcus, and cuneus), basal ganglia 
(putamen, caudate nucleus, and pallidum), and brainstem. By using mean and SD of regional 
SUVR values of 15 NCs, regional Z-scores of SUVR values were calculated.

RESULTS

Demographic and clinical characteristics
Characteristics of navPPA patients are shown in Table 1. Those of NC and AD groups are 
presented in Supplementary Table 1. The first navPPA case was an 82-year-old man with 16 
years of education. He presented with 3-year history of slow effortful speech. He showed slow 
speech and used short sentences. Neuropsychiatric evaluation revealed dysfunctions in verbal 
memory, phonemic/semantic fluency, and frontal/executive domains. Results of his K-WAB 
were consistent with transcortical motor aphasia. He was found to have diffuse brain atrophy. 
However, predominant atrophy was seen on the left frontal area on brain MRI. High THK 
retention was also observed in the left frontal cortex (Fig. 1). FLUTE PET scan was negative 
for amyloid pathology.

The second case was a 73-year-old man with 6 years of education who complained 
of difficulties with speech production that started 1.5 years prior to his initial visit. 
Neuropsychiatric evaluation indicated dysfunctions in verbal memory, phonemic/semantic 
fluency, and frontal/executive domains. Results of his K-WAB were compatible with 
transcortical motor aphasia. FLUTE PET scan was negative for amyloid pathology. MRI 
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Table 1. Characteristics of patients with navPPA
Characteristics Case 1 Case 2 Case 3
Age (yr) 82 73 76
Gender Men Men Men
Education (yr) 16 6 6
APOE genotype ε3/ε3 ε3/ε3 ε3/ε3
K-MMSE 26 26 29
CDR 0.5 0.5 0.5
Disease duration (mon) 36 19 12
K-WAB Transcortical motor aphasia,  

slow speech, hypokinetic 
dysarthria, AOS

Transcortical motor aphasia,  
slow speech, hypokinetic 

dysarthria, AOS

Anomic aphasia, slow initiation 
of speech, spastic dysarthria, 
hypokinetic dysarthria, AOS

NavPPA: nonfluent/agrammatic variant primary progressive aphasia, APOE: apolipoprotein E, K-MMSE: Korean version of Mini-Mental State Examination, CDR: 
Clinical Dementia Rating, K-WAB, Korean version of the Western Aphasia Battery, AOS: apraxia of speech.



showed bilateral frontal atrophy (left > right). High THK retention was observed in the left 
frontal region (Fig. 1).

Case 3 was a 76-year-old man with 6 years of education who developed slow effortful speech 
from 1 year prior to enrolling in this study. Neuropsychiatric evaluation revealed dysfunction 
in verbal fluency. Results of his K-WAB were consistent with anomic aphasia. Atrophy on the 
left frontal area was seen in MRI. High THK retention was observed in the left frontal region 
(Fig. 1). FLUTE PET scan was negative for amyloid pathology.

ROI-based analysis of THK retention in navPPA, NC, and AD groups
Statistical results of ROI analysis after PVC are summarized in Table 2. With cut-off Z-score 
of 2.5, typical AD patients showed greater binding than NC in widespread cortical regions 
except bilateral mesial temporal, right precentral, and left anterior cingulate cortices. 
Patients with navPPA had higher levels of THK retention in the Broca's area, bilateral inferior 
frontal lobes, bilateral precentral gyri, and bilateral basal ganglia (Table 2). Details of ROI 
analysis results of 3 patients with navPPA are presented in Supplementary Table 2.

Voxel-based analysis of THK retention in PPA, NC, and AD groups
NavPPA vs. NC
Patients with navPPA showed higher levels of THK retention in the bilateral frontal lobe 
(mainly left side) than NC (Fig. 2A).

AD vs. NC
Patients with AD had higher levels of THK retention in widespread cortical regions (including 
the frontal, parietal, occipital, anterior/posterior cingulate, and mesial/lateral temporal cortices) 
than NC while relatively sparing the primary sensorimotor cortices bilaterally (Fig. 2B).
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Fig. 1. 18F-THK5351 PET and MRI (T1-MPRAGE) scans of navPPA patients. 
PET: positron emission tomography, MRI: magnetic resonance imaging, MPRAGE: magnetization prepared rapid gradient echo, navPPA: nonfluent/agrammatic 
variant primary progressive aphasia.



DISCUSSION

In our study, THK retention in navPPA patients was mainly distributed at the frontal region 
(left > right). This regional pattern of 18F-THK5351 binding is well correlated with the 
functional-radiological distribution of navPPA. To account for potential confounding effects 
of marked cortical atrophy, all images were corrected for partial volume effects and white 
matter spillover in this study to confirm higher cortical THK retention.

The pathology of navPPA is heterogeneous. However, many neuropathologic studies have 
shown that the most common pathologic subtype of navPPA is tauopathy.3,7,27 Many clinically 
diagnosed navPPA cases are known to be often associated with corticobasal degeneration 
(CBD) or progressive supranuclear palsy (PSP) pathology.28 Recent in vivo studies have 
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Table 2. Regional binding values of 18F-THK5351 PET in NC, AD, and navPPA patients
Regions 18F-THK5351 SUVR

NC AD navPPA
Mean (SD) Mean (SD) Z-score Mean (SD) Z-score

Precentral
Left 0.93 (0.16) 1.37 (0.22) 2.75 2.16 (0.16) 7.69
Right 0.84 (0.18) 1.18 (0.22) 1.89 1.33 (0.23) 2.72

Inferior frontal
Left 1.21 (0.22) 1.86 (0.24) 2.95 1.85 (0.36) 2.91
Right 1.20 (0.19) 1.81 (0.32) 3.21 1.75 (0.45) 2.89

Broca area
Left 1.11 (0.24) 1.80 (0.24) 2.88 1.93 (0.45) 3.42

Lateral temporal
Left 1.42 (0.18) 2.34 (0.24) 5.11 1.80 (0.21) 2.11
Right 1.36 (0.14) 2.36 (0.43) 5.56 1.71 (0.20) 1.94

Mesial temporal
Left 2.50 (0.25) 3.03 (0.68) 2.12 2.90 (0.24) 1.60
Right 2.57 (0.23) 3.01 (0.61) 1.91 2.75 (0.24) 0.78

Fusiform
Left 1.62 (0.18) 2.25 (0.39) 3.59 2.02 (0.20) 2.22
Right 1.62 (0.22) 2.28 (0.41) 3.00 2.04 (0.31) 1.91

Superior parietal
Left 1.16 (0.24) 2.05 (0.49) 3.71 1.64 (0.56) 2.00
Right 1.11 (0.26) 2.21 (0.48) 4.23 1.52 (0.16) 1.58

Inferior parietal
Left 1.34 (0.18) 2.29 (0.39) 5.28 1.83 (0.35) 2.72
Right 1.25 (0.14) 2.37 (0.61) 8.00 1.47 (0.90) 1.57

Insula
Left 1.67 (0.19) 2.42 (0.26) 3.95 2.13 (0.50) 2.42
Right 1.71 (0.22) 2.52 (0.22) 3.68 2.23 (0.70) 2.36

Anterior cingulate
Left 1.93 (0.21) 2.45 (0.40) 2.48 2.36 (0.52) 2.05
Right 1.76 (0.23) 2.35 (0.41) 2.57 2.31 (0.62) 2.39

Posterior cingulate
Left 1.40 (0.17) 2.27 (0.28) 5.12 1.77 (0.29) 2.18
Right 1.33 (0.18) 2.30 (0.41) 5.39 1.55 (0.15) 1.22

Occipital
Left 1.18 (0.15) 1.83 (0.34) 4.33 1.46 (0.36) 1.87
Right 1.18 (0.13) 1.90 (0.43) 5.54 1.47 (0.33) 2.23

Basal ganglia
Left 2.45 (0.40) 2.66 (0.33) 0.52 3.59 (0.88) 2.85
Right 2.30 (0.36) 2.54 (0.33) 0.67 3.64 (0.47) 3.72

Brainstem 2.17 (0.24) 2.20 (0.37) 0.13 2.68 (0.49) 2.13
PET: positron emission tomography, NC: normal control, AD: Alzheimer's disease, navPPA: nonfluent/agrammatic variant primary progressive aphasia, SUVR: 
standardized uptake value ratio, SD: standard deviation.



suggested that 18F-THK5351 PET scan might be suitable for the assessment of tau deposition 
in 4-repeat tauopathy disease spectrum including CBD29 and PSP.30,31 Along with these 
studies, our study suggests that tau PET imaging could be useful not only in AD, but also in 
non-AD tauopathies.

We observed that navPPA patients also showed increased THK binding in the bilateral basal 
ganglia. Basal ganglia atrophy and extrapyramidal sign are commonly found in navPPA 
patients.32-34 In many navPPA patients, there are clinical and pathological overlaps with CBD 
or PSP.28 Recent reports have shown greater THK binding in the basal ganglia in PSP and CBD 
patients.29,31 However, possibility of off-target signal should also be considered because off-
target signal in the MAO-B rich basal ganglia has been reported.12

There is a possibility that THK retention in our navPPA patients might reflect neuroinflammation 
or neurodegeneration rather than tau pathology itself. A recent study has shown a possibility 
that the interpretation of 18F-THK5351 PET images could be confounded by the high MAO-B 
availability across the entire brain because 18F-THK5351 might bind to MAO-B and tau paired 
helical filaments with similar affinity.13 MAO-B has been proposed as a biomarker for astrocytosis 
in various conditions associated with neuroinflammation and neurodegeneration.35

Although 18F-THK5351 has limited utility for selective detection of tau pathology, 18F-THK5351 
could be a supportive tool for diagnosis of navPPA because this tracer reflects the 
combination of tau pathology with associated neuroinflammatory changes and distribution 
is well matched with functional-radiological distribution of navPPA. An important advantage 
of tau PET might be its potential for early diagnosis of neurodegenerative disease due to its 
greater sensitivity and clarity. In some of our cases with early stage of navPPA, it was not easy 
to differentiate them with other types of PPA before obtaining tau PET imaging.

This study has some limitations. This was a study examining only a small number of patients. 
Thus, validation in a large population is needed in the future. The major caveat of our study 
was the lack of pathologic confirmation. Autopsy data are needed to resolve this problem.
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A B

navPPA > NC AD > NC

Fig. 2. Statistical parametric mapping analysis of THK SUVR images after PVC. Colored areas represent brain 
regions corresponding to increased THK retention from voxel-wise statistical analyses in those with navPPA (A) 
and AD (B) compared to NC (p<0.001, uncorrected for multiple comparisons after adjusting for age, gender, and 
years of education, a cluster >100). 
SUVR: standardized uptake value ratio, PVC: partial volume correction, navPPA: nonfluent/agrammatic variant 
primary progressive aphasia, AD: Alzheimer's disease, NC: normal control, T: T value.
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Supplementary Table 1
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