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ABSTRACT

Circadian clock ensures coordination of rhythmic biological processes with environmental cycles.
Correct matching of internal and external rhythmic cycles maximizes plant fitness and
environmental adaptation capability and also ensures efficient energy consumption through
circadian gating of a variety of physiological processes. Accumulating evidences support that
circadian oscillator components extensively participate in circadian gating of output processes.
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Here, we provide remarkable examples illustrating molecular mechanisms underlying circadian
gating of environmental sensitivity. In addition, bidirectional interactions between circadian
oscillator and output pathways have been observed in abscisic acid (ABA)-related physiological
processes, emphasizing the biological relevance of extensive crosstalk surrounding circadian clock

in acute time-of-day responses.

Circadian clock generates endogenous biological rhythm
with a period of approximately 24 hours to coincide with
environmental cycles. In Arabidopsis, various clock com-
ponents have been characterized, including CIRCA-
DIAN CLOCK-ASSOCIATED 1 (CCAl), LATE
ELONGATED HYPOCOTYL (LHY), TIMING OF CAB
EXPRESSION 1 (TOC1), PSEUDO-RESPONSE REGU-
LATOR 5 (PRR5), PRR7, PRR9, EARLY FLOWERING
3 (ELF3), ELF4, and LUX ARRYTHMO (LUX),'” and
they establish multiple transcriptional feedback loops, a
basic framework of circadian clock, to ensure robust cir-
cadian oscillation.*”

Circadian clock regulates over 50% of Arabidopsis
transcriptome and thus a variety of biological processes,
including stomatal opening, gas exchange, and carbon
and energy metabolism.*” Consistent with circadian reg-
ulation of output pathways, the environmental sensitivity
of output pathways depends on the time-of-day: upon the
same environmental cue, at some times of day the gate is
open and the signal relays, whereas at other times of day
the gate is closed to attenuate signal transduction.'’

Molecular basis of the circadian gating is starting to
emerge. A limited number of examples suggest how circa-
dian clock gates output pathways at a relevant time-of-
day. The most intuitive mode is direct regulation of core
output genes by clock oscillator components, which diur-
nally oscillate. For instance, cold tolerance is gated around
dawn, and consistently, cold induction of C-REPEAT

BINDING FACTOR (CBF) genes is maximized early in the
morning.'® The upstream regulators of CBFs, including
INDUCER OF CBP EXPRESSION 1 (ICE1) and CAL-
MODULIN-BINDING TRANSCRIPTION ACTIVATOR
(CAMTA) proteins, interact with CCA1,'!? whose accu-
mulation peaks at dawn.! Consequently, the CCA1 protein
binds to the CBF promoters and acts as a transcriptional
activator to gate freezing tolerance at dawn.'* Additional
clock repressors PRRs and Evening Complex (EC) are also
involved in shaping CBF waveforms (Fig. 1A).

The TOC1-PHYTOCHROME INTERACTING FAC-
TOR 4 (PIF4) complex also gates thermoresponsive
growth during the day."” The PIF4 transcription factor, a
key regulator of thermoresponses, triggers auxin biosyn-
thesis and thus longitudinal growth in response to high
ambient temperatures.'"” Notably, although PIF4 is
induced at high ambient temperatures throughout the cir-
cadian cycle,'® evening-expressed TOC1 interacts with
PIF4 and suppresses its transcriptional activation activity
to ensure evening-specific inhibition of thermoresponsive
growth."” In addition, ELF3, whose expression is high dur-
ing nighttime, also participates in transcriptional and post-
translational regulation of PIF4,'*° further providing
maximum thermo-responsiveness during the day (Fig. 1B).

Circadian gating of ABA signaling has also been
demonstrated. Plants are usually exposed to drought
stress during the day, and the water-deficit crisis would
be maximum usually at end-of-day.”’ Consistently,
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Figure 1. Circadian gating of environmental sensitivity. Core
clock components shape rhythmic expression of CBFs (A), PIF4
(B), and MYB96 (C). The white and gray boxes represent the light
condition: white, subjective day; gray, subjective night. Their
waveforms reflect induction strength of corresponding genes in
response to environmental challenges. EC, evening complex.

ABA-dependent drought responses are gated primarily
around dusk.”* The R2R3-type MYB96 transcription fac-
tor is a master regulator of ABA responses and controls
various biological processes, including drought tolerance,
lateral root development, and cuticular wax accumula-
tion, in response to water-deficit.?>%* Notably, MYB96
expression is circadian-regulated and displays a peak at
dusk. The CCA1 transcriptional repressor is a putative
upstream regulator of MYB96 and allows its transcript
accumulation during the day (Fig. 1C).*> Collectively,
circadian gating optimizes plant fitness and survival
but minimizes trade-off, such as growth retardation.
Based on evolutionary memories about time-of-day-
dependent environmental challenges, nearly all aspects
of plant physiological processes anticipate upcoming

environmental conditions and are properly gated to
ensure biological advantages.

Accumulating evidences have supported the idea that
output pathways often feedback circadian oscillator to
elaborate output responses.”>*’ Intriguingly, the ABA-
inducible MYB96 transcription factor activates TOCI
expression by binding directly to its gene promoter.”®
MYB96 is included as a circadian component in central
loop, which is relevant only in the presence of ABA and
influences clock oscillation.”® In support of this, exoge-
nous ABA treatment shortens circadian period in a
MYB96-depedent manner.>* The reciprocal regulation of
circadian oscillator by output pathway would most likely
facilitate to delicately readjust circadian oscillation, ensur-
ing near-perfect matching between diurnal physiological
process and environmental fluctuation for the best perfor-
mance of plants in a given condition. This mode of action
is not limited for ABA signaling and would underlie
wide-ranges of circadian-regulated biological processes.
Future studies will shed a light on more general modes of
action underlying bidirectional regulation between circa-
dian oscillator and output pathways.
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ABA  abscisic acid

CBF C-REPEAT BINDING FACTOR
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