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AbStrAct

Precision medicine is increasingly pushed forward, also with respect to 
upcoming new targeted therapies. Individual characterization of diseases 
on the basis of biomarkers is a prerequisite for this development. So far, 
biomarkers are characterized clinically, histologically, or on a molecular 
level. The implementation of broad screening methods (“omics”) and the 
analysis of big data – in addition to single markers – allow defining bio-
marker signatures. Next to “genomics”, “proteomics”, and “metabolo-
mics”, radiomics gained increasing interest during the last years. Based 
on radiological imaging, multiple radiomic markers are extracted with 
the help of specific algorithms. These are correlated with clinical, (immu-
no-)histopathological, or genomic data. Underlying structural differences 
are based on the imaging metadata and are often not visible and there-
fore not detectable without specific software. Radiomics are depicted 
numerically or by graphs. The fact that radiomic information can be ext-
racted from routinely performed imaging adds a specific appeal to this 
method. Radiomics could potentially replace biopsies and additional in-
vestigations. Alternatively, radiomics could complement other biomar-
kers and thus lead to a more precise, multimodal prediction. Until now, 
radiomics are primarily used to investigate solid tumors. Some promising 
studies in head and neck cancer have already been published.

1. Introduction
Precision medicine aims at most accurately defining diseases in order 
to find personalized and individual therapies. This approach should 
improve healing chances and/or lead to a reduced spectrum of side 
effects. Diseases that in earlier times had been defined clinically are 
more precisely diagnosed by histological, molecular, or a broad spec-
trum of clinical biomarkers. In this way, biomarkers and increasingly 
also biomarker signatures consisting of a typical pattern of different 
characteristics influence more and more the clinical routine. Their 
prognostic and diagnostic relevance, however, may vary significant-
ly with regard to their specificity and sensitivity. An influence is al-
ready observed with the definition of the patient cohort, the analytic 
method and its variance as well as the definition of the respective 
correlation. The degree of standardization has another effect on all 
levels: the method of data collection, the type of data acquisition, 
data processing as well as evaluation. Broad screening methods pro-
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ducing enormous amounts of data are increasingly applied. They 
allow simultaneous measurement of many parameters and their 
comparison with regard to the applicability as biomarkers and thus 
open the option to define various biomarker combinations for diffe-
rent patient groups.

Hereby vast amounts of data arise that necessitate providing large 
storage capacities and developing suitable software for valid analysis. 
It is also beneficial to have a safe exchange of those data on an inter-
disciplinary and trans-regional level. The extraction of parameters that 
are decisive for the respective question can only be performed by IT-
based data analysis, statistics, and modeling. The broad data collec-
tion bears the possibility to analyze the data pool with regard to diffe-
rent issues and in different directions. However, large data pools with 
sufficiently large patient cohorts are necessary for defining significant 
biomarkers. The data analysis may be a relevant challenge that is more 
complex than the analysis of the material itself and that is also associ-
ated with multiple potential sources of errors.

In the last years, those screening examinations were included in-
creasingly in the biomarker analysis under the umbrella term of 
“omics”. According to the definition, the overall primary analysis is 
relatively unselective. The suffix “omics” characterizes different sour-
ces of large data volumes whereby this suffix is preceded by naming 
the original materials of data collection for definition. This leads for 
example to the description of the “genomics” in the context of ge-
netic expression analysis or to “transcriptomics” for investigations 
on the RNA level; protein analyses become “proteomics” or also “me-
tabolomics” when the metabolome is analyzed. In analogy, compa-
rably newly defined “radiomics” find their way into clinical research 
and increasingly even into clinical routine.

Defined characteristics of a disease contain information about 
prognosis and diagnosis with regard to the status, the outcome, and 
the therapeutic response. Those variables are analyzed in the con-
text with clinical data and the course of the disease while the clinical 
data still serve as diagnostic and prognostic parameters.

Valid biomarkers should be easily accessible, measurable, and re-
producible. So their stability with regard to the measurements 
should be verified. The definition should be performed in a represen-
tative, possibly large and standardized cohort where well-defined 
parameters are sufficiently assessed. After definition of the biomar-
ker signature, it should be reevaluated in a second cohort – prefe-
rably independently in a second institution. Further prospective va-
lidation is reasonable in order to confirm the reliability.

Biomarkers are an essential prerequisite for personalized thera-
py. For some diseases (e. g. breast cancer, prostate cancer) it is pos-
sible to define single biomarkers with high significance but because 
of the complexity of pathogenesis, also in this context increasingly 
biomarker matrices are applied.

These may originate from one or several data sources. Clinical, 
genomic, histopathological, and other markers may be combined. 
These combinations are analyzed ideally by means of software that 
allows quantification, configuration, and visualization. Thus, large 
data volumes provide various options for the definition of appropri-
ate markers or marker patterns in different stages of the disease, on 
different steps of the analysis, and of most diverse materials and data 
sources. Unfortunately, however, also the same amount of possible 
misinterpretations, analysis bias, methodical and statistical sources 

of errors must be considered that are difficult to identify and disco-
ver due to their high complexity.

Up to now, it is mostly necessary for analyses to gain material from 
solid tumors – e. g. tissue biopsies. These specimens undergo geno-
mics, proteomics, or metabolomics with the help of a broad spect-
rum of analytic methods (e. g. next generation sequencing, NGS) 
and thousands of data are collected. Radiomics as a relative newco-
mer on the scene of biomarkers have the great advantage that no 
invasive specimen gaining is required.

Using mathematical algorithms, a quantitative high-throughput 
extraction of radiological features based on meta-datasets (DICOM 
format) is performed. Often these image features cannot be percei-
ved with the human eye and so they can only be assessed in an IT-sup-
ported way [1]. Historically, radiomics originate from computer-assis-
ted diagnosis and detection systems (CAD) of the 1980s and 1990s 
[2, 3]. The difference, however, is the extracted data volume and the 
type of combination with clinical, histological, or genomic data volu-
mes. While CAD systems only provide answers to single questions re-
garding diagnosis and detection of a disease, radiomics allow genera-
tion of large data volumes from imaging such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), or positron emission 
tomography (PET). Nonetheless, there are older investigations that 
already meet the requirements of radiomics to a certain extent wit-
hout using that term at the time of examination and thus they had not 
been defined as such. A PubMed research provides the first results for 
the key word of “radiomics” in 2012. The research group of Lambin et 
al. published an article entitled “Radiomics: extracting more informa-
tion from medical images using advanced feature analysis” [4]. This 
title contains the exact definition of this new term.

1.1 Principles of radiomics
Fortunately, the typically applied imaging technique is performed 
routinely. It is generally accessible and ideally already used in the con-
text of diagnosis. However, the basic data of imaging have to be 
available comprehensively for processing and furthermore imaging 
has to be performed digitally according to current standards with 
adequate accuracy and ideally without artefacts (▶Fig. 1). In order 
to achieve this objective, innovations and increasing standardization 
of medical imaging have contributed to make those new methods 
possible. Only in this way, sufficiently large data pools are available in 
single institutions to establish radiomic signatures. In addition, mo-
dern hardware, the use of comparable radiocontrast media, and the 
standardization of imaging protocols are important factors to enable 
quantitative analysis and to apply specific software to this end.

Standardized imaging protocols and the routine application of 
modern software are essential for reproducible biomarker signatu-
res gained from radiomics that can be compared on a multicenter 
level. Only in this way, the broad quantitative analysis becomes pos-
sible [4]. Hence, imaging performed in clinical routine may be used 
as gigantic source for data analysis. In order to assess the volume of 
the potentially available data, one must understand that each of 
those data sources – regardless of 2- or 3-dimensional – of each pa-
tient contains millions of voxels and hundreds of features that are 
available for radiomics analyses [5]. The data are ready for analysis, 
exist and are automatically newly generated every day. Additional 
material collection such as biopsies and potentially expensive tissue 
analyses are not needed.
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Radiomics data can be extended by using a combination of different 
imaging procedures as for example CT/PET, “dual source/dual energy” 
CT scans as well as the application of radiological markers. Hereby the 
tissue itself, disease-specific markers as well as increasingly also biolo-
gical processes are superiorly visualized. This allows generating diffe-
rent and additional characteristics from the obtained images.

Another variation of radiomics is radiogenomics. Radiomics are 
based on the interesting hypothesis that cellular and phenotypic tis-
sue properties correspond to specific radiomic features and are dis-
played in imaging because radiological images are nothing else than 
tissue depictions [4]. The more differentiated and the finer the exa-
mination methods are, the more accurate and specific is the possib-

le depiction and the more findings are provided. Tissue specification 
becomes more and more accurate with regard to macroscopic, mi-
croscopic-histological, immunohistological, electron microscopic, 
and molecular aspects (▶Fig. 2). The principle of radiogenomics is 
a logic consequence of this idea and is based on the hypothesis that 
even proteogenomic cell and tissue characteristics are – directly or 
indirectly – visualized by imaging procedures. The assumption in this 
context is not that single mutations may be visualized e. g. in CT scans 
but that tissue characteristics are induced by certain proteogenomic 
constellations. For example, increased regulation of cell cycle genes 
might trigger a heterogenic tissue structure. The idea is certainly fas-
cinating that proteogenomic and cellular characteristics and thus 
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▶Fig. 1 Schematic, simplified workflow for creation of a radiomic signature.

Workflow Radiomics

Imaging

ROI Definition

Standardization

Automatic

Manual

Voxel/Pixel

Form, Surface, ...

Clinical Features

Outcome

Histologic Markers

Genetics

Statistics

Confounder Identification

Structure, Grey Scale, ...

Semi-automaticSegmentation

Generation of Radiomics
Features

Development of Database

Analysis of Database

Radiomics Signature

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Scheckenbach K. Radiomics: Big Data Instead … Laryngo-Rhino-Otol 2018; 97: S129–S141

Referat

S132

▶Fig. 2 a Description of a cervical lymph node metastasis after importing the imaging into the segmentation software (courtesy of Prof. S.  
Wesarg, Fraunhofer Institute Darmstadt, Germany).

▶Fig. 2 b Description of a cervical lymph node metastasis after semi-automatic segmentation (in red).
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also local and individual differences have equivalents in imaging and 
that basic data may provide currently unknown additional informa-
tion, which can be assessed with specific algorithms, i. e. “methods”, 
and adequately correlated and set into a context. Nonetheless it must 
be stated that also a microscopic image without additional informa-
tion such as e. g. immunohistochemistry, can provide only limited 
findings. Since even imaging is visualization of tissue, the informati-
on is limited.

Some studies could already reveal that radiomic analyses were 
able to extract and correlate equivalents to cellular, genetic, or phe-
notypic characteristic from classic imaging procedures [1]. An addi-
tional challenge is the fact that radiogenomics combine 2 “omics”, 
i. e. radiomics and genomics. This leads to a very large data pool and 
its sufficient evaluation and application can only be performed in a 
professional and IT-based way. Separately considered, the genomics 
data as well as the radiomics data have various advantages and their 
combination may generate useful additional information. Via geno-
mics it is possible to identify a very detailed genetic pattern and thus 
an extract of molecular processes on the cellular level – broken down 
to DNA or RNA. However, this is limited to specific, rather small areas 
or cell types and tissue or tumor parts.

From these analyses specific biomarkers relevant for the discrete 
question have to be defined. Already this objective is a great challen-
ge. It is certainly not realistic to aim at one-to-one correlation of ge-
nomic examination with radiomics. But if it is successful to adequate-
ly correlate the genomic data that are relevant for a problem and to 
perform genetic/molecular subtyping on a radiological level, this alone 
would be an enormous benefit. With radiogenomics, for example a 
tumor could be holistically characterized because in the radiological 
image not only single areas but the entire affected tissue would be as-
sessed. A combination of both methods would then provide signifi-
cantly more information also on a molecular biological level. If radio-
genomics retrieved important molecular phenomena in equivalence 
to laboratory diagnostic methods, even avoiding molecular tissue di-
agnostics might be possible. This could finally lead to the potential 
avoidance of invasive biopsies, lower costs, and less staff- and materi-
al-related efforts as well as improve the patient satisfaction.

Currently radiomics are mainly applied in oncology for alternative 
characterization of solid carcinomas. However, they have the poten-
tial to serve as biomarkers for benign diseases with one or several clas-
sifiable correlates in imaging – e. g. in the context of Menière’s disease 
[6] or functional disorders of the parotid gland after radiation [7].

In the following paragraphs, examples of some radiomics appli-
cations in the field of oncology will be focused and the state-of-the-
art in head and neck oncology will be described. For better under-
standing of the methods and their problems, the radiomics work-
flow will further be described and its potential sources of variation 
and errors will be discussed.

2. Radiomics and Tumors
Especially in oncology, radiomics are very well received. In this con-
text, the outcome, histology, subtyping, or even therapy response 
are correlated with imaging features. There are already older inves-
tigations that date back to the 1970s and that follow the same prin-
ciple – although this was not called “radiomics” at that time. The di-
stinction of the terms is certainly vague. However, because of the 

possibilities of data storage and processing that were not available 
to the current extent, these articles are significantly more limited re-
garding their spectrum of analysis. Imaging techniques that were 
used included CT scan, MRI, PET/CT but also conventional X-ray, 
mammography, or ultrasound.

The number of publications is manageable although if has grea-
tly increased in the last years with definition of the term of radiomics 
and an associated workflow as well as forward-looking expectations. 
A high variation is found in the size of the patient cohorts and the 
study design. Generally speaking, older studies deal with smaller co-
horts than more recent ones – finally also due to capacities and pos-
sibilities of data processing and storage. Although most trials are 
based on retrospective datasets, a tendency is observed that radio-
logical signatures are validated in second or even prospective data-
sets – which is highly desirable.

It is remarkable that specific tumor entities are significantly more 
present in this field than others. There are comparably many publi-
cations for example on lung and breast cancer, whereas other also 
frequently occurring entities such as cervix cancer or lymphomas are 
rather underrepresented. Therefore, some articles about well-inves-
tigated tumors such as lung and breast cancer will be elucidated here 
and other less dominant entities will not be described in this context.

2.1 Lung cancer
Already in the 1970ies, before the era of “omics”, Sutton and Hall cor-
related structural analyses in radiography of the lung with different pa-
thologies. Their objective was to evaluate the feasibility of automatized 
diagnostics of chest radiography. However, in comparison to current 
possibilities, the dataset was quite restricted because IT-based analysis 
as we use it today was not possible. Thus, the article may be considered 
rather as a precursor than as an example for modern radiomics [8].

In 2008, Al-Kadi and Watson differentiated aggressive lung car-
cinomas from non-aggressive ones based on CT scans by means of 
structure-based characteristics in 15 patients [9].

Since 2010, the research team of Ganeshan et al. is continuously 
working on radiomics of lung carcinomas. In 2010, they published a 
pilot study that encompassed 18 patients with non-small cell lung 
cancer. Statistically processed imaging properties (middle greysca-
le, entropy, uniformity) could be correlated with the tumor stage and 
its glucose metabolism [10]. In a follow-up trial, the tumor unifor-
mity could be correlated with the survival of 54 patients. Further in-
vestigations revealed that the structural properties could also be 
matched with histopathological characteristics beside the clinical 
ones [11]. By applying additional statistical evaluation methods, 
further histopathological properties could be correlated to the struc-
tural analysis of the CT scans [12].

Other publications concerning non-small cell lung cancer were 
provided by Aerts et al. [13]. They investigated 440 radiomic features 
in non-small cell lung and head and neck cancer. That aspect will be 
elucidated later in this article when focusing on head and neck can-
cer. The research team could establish a predictive signature in lung 
cancer for the survival, the histology, and the tumor stage. Recently, 
those parameters were confirmed for the survival in another patient 
cohort and the transferability on the modalities of planning-CT and 
CBCT (cone beam computed tomography) verified. This implies that 
radiomic signatures are potentially applicable in different modalities 
which may be of high clinical value [14].
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Based on a cohort of 182 patients with adenocarcinomas of the 
lung, the same group could show that a radiomic signature with 33 
markers may predict metastatic spread, and another signature en-
compassing 12 features the survival [15]. The analysis of other cha-
racteristics of the complexity of tumor type and heterogeneity could 
be correlated with the overall survival in a patient cohort and confir-
med in an additional one [16].

Also in pulmonary adenocarcinomas (n = 431), Yuan et al. com-
pared 20 selected radiomic biomarkers in CT scans with volumetric 
analysis in order to differentiate distinct phenotypes (carcinoma in 
situ versus minimally invasive carcinoma versus invasive carcinoma). 
In this context, the radiomic signature (accuracy: 80.5 %) was supe-
rior to volumetric analysis (accuracy: 69.5 %) [17]. The comparison 
of these methods was thus decided in favor of radiomics.

Zhang et al. optimized the radiomic signature for the prediction 
of recurrences, death, and recurrence-free survival in non-small cell 
lung cancer by varying different methods for parameter selection 
and classification [18]. In this way, they could show that the applied 
statistical methods have a significant impact on the definition and 
relevance of radiological biomarkers. In addition, the modalities 
within one imaging variant are crucial. Different data quality and re-
levance regarding the prognosis of recurrences of lung cancer were 
revealed by Huynh et al. comparing different CT modalities (static 
versus respiration-adapted) [19].

Even radiogenomics have already been investigated in lung cancer. 
Aerts et al. could find a high correlation of genomic data obtained from 
gene-set enrichment analysis (GSEA) with radiomic parameters in pa-
tients with non-small cell lung cancer. Two characteristics of radiomic 
heterogeneity could be correlated with cell cycle genes that lead to 
the development of heterogeneous tumors and increased proliferati-
on [13]. This substantiates the hypothesis that proteogenomic phe-
nomena can be displayed directly and indirectly in imaging data.

Only recently, the same group elucidated in pulmonary adenocar-
cinomas that a CT-based radiomic signature (heterogeneity-based) 
in 353 patients could predict the EGFR (epidermal growth factor re-
ceptor) status. This signature was validated in a second cohort of 352 
patients. A combination with a clinical data model further improved 
the accuracy. A signature intended to differentiate KRAS-positive 
from KRAS-negative tumors in the same cohorts, was also signifi-
cant but with a clearly poorer accuracy than the EGFR-associated si-
gnature [20]. In diffusion-weighted MRI, Yuan et al. could confirm 
the EGFR mutation status of pulmonary adenocarcinomas [21].

Not only outcome parameters and biological tissue typing may 
be displayed by radiomics. Tools to support decision-making in the-
rapy planning would be of great clinical value. In cases of non-small 
cell lung cancer, a correlation of the response to radiotherapy or ra-
diochemotherapy with the overall survival could be found in PET and 
PET-CT by means of radiomic biomarkers [22, 23]. An additional be-
nefit and even sometimes better performance compared to imaging 
properties of the primary tumor (n = 85) resulted from an analysis of 
imaging parameters of lymph node metastases (n = 178) of stage II-
III non-small cell lung cancer for the prediction of the response to 
neoadjuvant radiochemotherapy [24].

The versatility of imaging-based biomarkers is very well reflected 
in radiomics-based studies on lung cancer. Overall, CT-based and in-
creasingly also PET-CT trials dominate the investigations of lung can-
cer. The results are very promising and encompass the differentiati-

on of malignant and benign lesions, the elucidation of genetic and 
histological foundations as well as clinically oriented prognoses of 
outcome and therapy response.

2.2 Breast cancer
Already early, breast cancer has been evaluated with regard to the si-
gnificance of imaging because mammography has been used for 
screening for several decades. A rapid and precise differentiation of 
benign and malignant lesions based on structural characteristics as 
endpoints as well as the possibility of implementing automated scree-
ning have been evaluated for a long time. Structural analyses of mam-
mograms reach back to the 1980ies and were continued in the 1990ies 
and 2000ies [25–31]. Since the 1990ies, structural analysis has also 
been successfully implemented in ultrasound diagnostics for differen-
tiation of breast cancer [32–34]. Already in 1993, Garra et al. achieved 
a sensitivity of 100 % and a specificity of 80 % regarding the detection 
of malignant lesions in their examinations of 80 patients [32]. A recent 
investigation could analyze 364 structural parameters by means of so-
noelastography in 42 patients suffering from breast cancer and 75 pa-
tients with benign lesions. Seven sonoelastic characteristics were se-
lected that could predict malignancy with a sensitivity of 85.7 % and 
a specificity of 89.3 % [35]. A fluent transition of early structural ana-
lyses to modern radiomics can be observed.

In contrast to the detection of lung cancer where computed to-
mography plays a major role, magnetic resonance imaging is the 
adequate procedure for soft tissue visualization in breast cancer. Also 
here, the first structural analyses date back to the 1990ies. Already 
in 1997, Sinha et al. could differentiate benign from malignant breast 
lesions based on 8 structural characteristics combined with the pa-
tients' age with a sensitivity of 93 % and a specificity of 95 % [36]. Also 
in the following studies that had been performed with the purpose 
of differentiating malignant breast tumors, structural analyses could 
achieve good results. However, those were retrospective data ana-
lyses with a limited number of patients [37–39]. Cai et al. initiated a 
study with a relatively large cohort of 234 patients in which they 
could differentiate breast cancer from benign lesions with a sensiti-
vity of 85 % and a specificity of 89 %. By means of 3 classic machine-
learning algorithms, 28 structural parameters were examined and 
in order to avoid redundancy and to achieve improved significance, 
they were reduced to 5 features. The established 5 structural para-
meters in the diffusion-weighted MRI (apparent diffusion coefficient, 
sum average, entropy, elongation, sum variance) were validated in 
a second cohort of 93 patients with a sensitivity of 69 % and a speci-
ficity of 91 % [40]. Recently, Bickelhaupt et al. could show that one 
specific radiomic signature usefully completed the analytic signifi-
cance of the apparent diffusion coefficient alone for differentiation 
of malignant lesions in MRI [41]. Holli et al. succeeded in finding a 
histological subtyping between lobular and ductal breast cancer, 
however, only within a pilot study of 20 patients (n = 10 suffering 
from ductal breast cancer, n = 10 with lobular breast cancer) [42].

In terms of radiogenomics, a correlation of MRI-based characte-
ristics regarding the subtyping of 91 biopsies of invasive breast car-
cinomas with genomic data (TCGA/TCIA: The Cancer Genome Atlas/
The Cancer Imaging Archive) in a multicenter analysis of the Natio-
nal Cancer Institute could be found. By means of radiomics, Wang et 
al. identified breast cancers in DCE-MRI that did not have the typical 
genomic markers (“triple negative”) [43]. A combined approach of 
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38 radiomic parameters and 144 genetic properties was chosen by 
Guo et al. that were tested in combination and against each other. 
Radiomic features were more suitable for predicting the tumor stage 
whereas genomic features better described the receptor status. The 
data of the 91 included patients originated from the TCIA and TCGA 
databases. However, the research team admitted a reduced signifi-
cance of their trial because of the limited number of patients [44]. 
Recently, also Li et al. tested the predictive significance of MRI-based 
radiomics against genetic tests applied in clinical routine for breast 
cancer (MammaPrint, Oncotype DX, PAM50 Gene Assay) based on 
data of 84 patients and came to the conclusion that the radiomics-
based testing might play a role in the prognosis of recurrences [45].

The response of breast cancer to chemotherapy was evaluated by 
several research groups. Ahmed et al. and Parikh et al. could find si-
gnificant differences between chemotherapy responders and failu-
res based on 8 and 2 (entropy and uniformity) MRI-based structural 
parameters, respectively [46, 47]. A recent trial of Braman et al. did 
not only rely on tumor-based radiomics for prediction of therapy re-
sponse, but also examined the tumor-surrounding tissue. Insuffici-
ent response to neoadjuvant chemotherapy was associated with a 
higher peritumoral heterogeneity. The combined examination could 
significantly predict the treatment response, independently from 
the receptor status [48]. In this way, the field that is considered in ra-
diomic examinations was extended by this study. Not only the tumor 
itself provides relevant data.

In summary, it can be stated that the variance of examination me-
thods for breast cancer of which radiological structural parameters 
can be obtained is higher than for lung cancer. Since it is a primarily 
soft tissue-associated tumor, the classic examination methods of 
mammography, ultrasound including sonoelastography, and MRI 
are first-line techniques. Also in this context, studies have already 
been conducted that differentiate not only benign and malignant le-
sions as the endpoint, but that rather emphasize histological and ge-
netic foundations and predict the clinical outcome as well as the the-
rapy response. Data sources that were used for several analyses were 
not only own imaging data but larger accessible databases such as 
TCIA and TCGA. In order to obtain statistically more reliable results 
in the future and to validate radiomic signatures also trans-regio-
nally, they are certainly – even for other tumor entities – a suitable 
data source that should be taken into consideration.

Fewer radiomics trials exist for other solid carcinomas such as cer-
vix carcinomas [49], liver carcinomas [50], colon carcinomas [51], 
and prostate carcinomas [52–55]. Concerning glioblastomas and 
gliomas, radiomics-based correlations could be found with molecu-
lar information such as the EGFR status and the isocitrate dehydro-
genase 1 (IDH1) status [56–58]. Radiological structural characteris-
tics could also be determined for renal cell carcinomas that correla-
ted with the mutation status of BAP1 (BRCA2-associated protein 1) 
gene, VHL (von Hippel-Lindau) gene, or KDM5C gene as well as EGFR 
receptor status [59–61]. In a proof-of-concept pilot study that ana-
lyzed the structural characteristics of FLT-PET/MRI of patients with 
metastatic renal cell carcinoma, the therapeutic response to the re-
ceptor tyrosine kinase inhibitor Sunitinib could be predicted [62].

2.3 Radiomics in head and neck cancer
Regarding the head and neck area, radiomics-based investigations 
already exist for esophageal cancer, nasopharyngeal cancer, and 

“classic” squamous cell carcinomas of the oro- and hypopharynx, la-
rynx, and the oral cavity.

In a cohort of 41 patients suffering from esophageal cancer, Ti-
xier et al. evaluated the therapy response to combined radiochemo-
therapy (5-fluorouracil with carbo- or cisplatin). They analyzed 38 
radiomic parameters of pretherapeutically performed whole-body 
(18)F-FDG PET examinations. Hereby, complete and partial therapy 
responders as well as failures could be identified more reliably than 
with standard uptake values (SUV) alone [63].

The research team of Zhang et al. recently published 2 articles on 
radiomics of nasopharyngeal carcinomas. They were based on MRI 
for which 870 radiomic features were evaluated per patient. The first 
study encompassed 110 patients and 6 methods for parameter se-
lection and 9 classification methods were analyzed. An optimal ma-
chine-learning method was identified in order to perform biomarker 
screening of nasopharyngeal carcinomas [64]. In the second study, 
118 patients with primary diagnosis of advanced nasopharyngeal 
carcinomas (stage II-IVb) without distant metastasis were integra-
ted; 88 of them were examined in a training cohort and 30 in an in-
dependent validation cohort. A radiomic signature could be estab-
lished by means of a combination of CET1-weighted and T2-weigh-
ted images together with the TNM stage regarding the 
progression-free survival. This was superior to a signature of CET1-
weighted or T2-weighted images alone and also TNM classification 
alone [65]. The significance of radiomics was improved by the com-
bination with known clinical parameters – or vice versa – in the sense 
of multimodal modeling.

The team of Lambin et al. may be considered as pioneers in the 
field of radiomics in general and in particular of head and neck can-
cer. Their primary research in head and neck cancer is based on rou-
tinely performed CT scans. In cases of squamous cell carcinomas of 
the head and neck, there seem to be similar effects to small cell lung 
cancer. In 2014, 440 automatically extracted radiomic features were 
examined in computed tomographic scans of 1,019 patients who 
either had lung or head and neck cancer. They included phenotypic 
properties that reflected the tumor image intensity, shape, struc-
ture, and waves in several scalings. The stability of those characte-
ristics was first tested in 2 small cohorts (n = 31 and n = 21). A radio-
mic signature could then be established in a larger cohort of 422 lung 
cancer patients (Lung 1/Maastro) that was correlated with the clini-
cal outcome (Kaplan-Meier diagram) of the patients.

It contains 4 parameters: statistics energy, shape compactness, 
grey level nonuniformity, and grey level nonuniformity HLH. For va-
lidation, 4 additional cohorts were included. In 3 of them, indepen-
dence was already clear because they originated from different study 
centers (Lung 2/Radboud n = 225, H&N2/VU Amsterdam n = 95, Lung 
3/MUMC n = 89, H&N1/Maastro n = 422). The established signature 
could be validated in 3 cohorts (Lung 2, H&N1, H&N2). Astonishin-
gly, it was superior to the predictive significance of TNM staging 
alone in Lung 2 and also in H&N2 and comparable to the TNM clas-
sification in N&N1. A combination of the TNM staging with the ra-
diomic signature could further improve the prediction of the out-
come in all groups – independent from the patients’ treatment (ra-
diation or radiochemotherapy). In particular after publication of the 
revised TNM classification that had not been applied in the context 
of this study, it is additionally interesting if HPV (human papilloma-
virus) positive can be differentiated from HPV-negative patients by 
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means of a radiomic signature, especially because their outcome is 
different after radio(chemo)therapy [66, 67]. However, this was not 
the case although the outcome could be well predicted by the radio-
mic signature in particular in HPV-negative patients. In addition to 
clinical data correlation, the radiomic signature of the Lung 3 cohort 
was correlated with corresponding genetic data of the same cohort in 
a gene-set enrichment analysis (GSEA). Hereby, associations between 
the expression of different genetic groups and the radiological structu-
ral parameters could be defined. In particular, genetic expression vari-
ations of the cell cycle were depicted. Hence, also the molecular biolo-
gy on which the tumor is based can be revealed by imaging up to a cer-
tain degree [13] and thus the value of radiogenomics is supported.

The same 440 CT-based radiomic features were applied in another 
study of the group. This time they were correlated with further clini-
cal properties. The study was – similar to the previous one – subdivi-
ded into a training and a validation phase. Two cohorts with lung or 
head and neck cancer were assigned to a training cohort (Lung 1 
n = 422, HN1 n = 135) and the signatures were validated in 2 additio-
nal independent cohorts (Lung 2 n = 225, HN2 n = 95). Comparing head 
and neck with lung cancer, 143 characteristics were relevant for both 
tumor entities. In addition, 190 parameters characterized the outcome 
only for lung cancer and further 22 radiomic parameters were only re-
levant for head and neck cancer. Different clusters could be correlated 
with survival (lung and head and neck cancer), histology (lung cancer), 
and tumor stage (lung and head and neck cancer), however, the HPV 
status could not be revealed by a signature [68].

In order to further develop the methods of radiomics, the team 
established a machine-learning-based method that could predict 
the overall survival of head and neck cancer patients based on a ra-
diomic signature with high stability. The objective was to improve 
the practical application of a radiomic signature also for the clinical 
routine. This is necessary to introduce radiomics as a non-invasive, 
cost-effective method in the medium term. The already known 440 
radiomic features were tested by means of 13 methods for charac-
teristics selection and 11 machine-learning classification methods 
in a first cohort consisting of 101 head and neck cancer patients and 
validated in another independent cohort with 95 head and neck can-
cer patients. The endpoint was the overall survival. Hereby, a reliab-
le machine-learning method could be identified [69].

In summary, those 3 publications were able to correlate data of 
different origins (clinical, histological, and genetic information) with 
radiomics parameters and in this way characterize the tumor based 
on imaging. The radiomic signature alone was sometimes superior 
to single data resources that had been applied for characterization 
before. But even when this was not the case, their completion in the 
sense of multimodal modeling could improve the significance for the 
assessment of the carcinoma. The trials had been performed with 
relatively large patient cohorts from institutions in partly different 
locations so that they were methodically well designed and the reli-
ability of their significance could already be verified internally.

Recently an article of the “Head and Neck Quantitative Imaging 
Work Group of the M.D. Anderson Cancer Cancer/MICCA” was pub-
lished. In a newly initiated trial, 288 patients with oropharyngeal can-
cer and known HPV status were included. They had undergone pri-
mary radiotherapy with curative intention (iMRT) and a standardized 
pretherapeutic CT scan. As primary endpoints of the radiomics-
based analysis of the CT scans, the HPV status and the occurrence of 

local recurrences were defined. In an approach designed as a com-
petition with scoring, different researchers could test their algo-
rithms regarding the evaluation of the HPV status and the local re-
currences. During the annual meeting of the MICCAI 2106, the win-
ners were presented [70].

Also for the practical application of radiomics in clinical therapy, 
first studies are available for head and neck cancer. Based on CT 
scans, Ou et al. investigated, together with the team of Philippe Lam-
bin, 544 imaging characteristics in 120 patients with advanced head 
and neck cancer. The patients received radiochemotherapy or “bio-
radiotherapy”. Based on pretherapeutic planning CT scans, the ove-
rall survival (HR = 0.3; p = 0.02) and the progression-free survival 
(HR = 0.3, p = 0.01) could be predicted by means of a radiomic sig-
nature encompassing 24 characteristics. A combination with the p16 
status as indicator for the biomarker HPV further improved the sig-
nificance of the signature. Overall, this combination was more rele-
vant than the p16 status or the radiomic signature alone [71]. In ano-
ther trial, FDG-PET images of 174 patients with advanced stage III-IV 
oropharyngeal carcinoma were examined who received definitive 
radiochemotherapy. Imaging was performed before and after the-
rapy. As endpoints, the mortality, the local treatment failure, and di-
stant metastasis were defined. In this investigation, 24 representa-
tive radiomic features were included that reflected the tumor inten-
sity, shape, and structure. Predictive models for the mortality, the 
local treatment failure, and the occurrence of distant metastasis 
could be established that were cross-validated internally. Unfortuna-
tely, this model did not reach significance for local treatment failure 
during external validation. In addition, the models for mortality and 
distant metastasis could not be confirmed statistically although, ac-
cording to the authors, they had an acceptable predictive perfor-
mance [72].

Overall, many promising approaches exist for head and neck can-
cer to usefully establish and clinically integrate radiomics. Activities of 
other research teams that enrich the field with further independent 
investigations would be desirable. CT scanning as the standard ima-
ging procedure for head and neck cancer seems to be a reasonable 
basis, although further MRI-based examinations still have to be as-
sessed. At the same time, the available studies of head and neck and 
other carcinomas show that beside the data quality and quantity, the 
success of the studies is fundamentally determined by a structured 
approach in the context of radiomics. So, how to approach those data?

3. Practical Implementation of Radiomics
Meanwhile, a typical radiomics workflow has been defined that is 
used generally in nearly all studies.

First, a suitable standardized imaging procedure is identified. 
Then, the region of interest is determined, e. g. a tumor, which is then 
segmented. From the segmented areas, radiomic features are defi-
ned and extracted by means of specific algorithms. Together with 
data from other sources, they are included into a database and ac-
cordingly formatted and are then ready for processing. Using suita-
ble statistical methods, biomarkers and the radiomic signatures can 
be defined from those databases. This principle seems to be logical 
and relatively easy to handle.

However, despite the application of a standardized workflow, 
each of those steps bears the risk of errors, difficulties, and limita-
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tions that may impair, falsify and complicate the analysis. The qua-
lity of the analysis, its significance and comparability could potenti-
ally be impaired despite the availability of suitable imaging material. 
Already minor changes of the standard or the methods may have ef-
fects that reduce the reproducibility. As a consequence, the estab-
lished radiomic signature would not be stable and applicable. So al-
ways large cohorts with many possibly comparable datasets are pre-
ferred as the basis for establishing a radiomic signature. Validation 
in an independent cohort – ideally by an independent group of re-
searchers – according to standardized protocols is useful in order to 
minimize internal sources of errors that are sometimes difficult to 
identify. Typical sources of errors will be described in the following 
according to the single steps of the workflow.

3.1 Imaging
Imaging is the essential basis to practically perform radiomics. It has 
to be available as digital file. All imaging included in a study has to be 
performed based on the same standard in the same modality and if 
possible at a comparable stage of the disease. The suitable, high-
quality imaging modality, the appropriate examination protocol, and 
the most reasonable ROI have to be identified. Regarding the analy-
sis of solid carcinomas, the ROI is mainly the tumor, but it may also 
include the surrounding tissue or possible metastases. Even specific 
anatomical structures, disease foci etc. may be defined. Optimally, 
a standard imaging is chosen with the standard protocol for the most 
common questions.

Different imaging modalities lead to different radiomic features 
with potentially different significance and specificity. Depending on 
the question and the ROI, more information is expected in terms of 
a certain modality. However, if this is not the case, the investigator 
probably benefits most from the standard imaging of the analyzed 
disease where he has most images at his disposition without additi-
onal efforts. This is important because the larger the cohort is, the 
potentially higher is the statistical significance and the less errors 
occur due to outliers. If the modality is selected, the type of how ima-
ging is performed as well as the parameters of imaging may still be 
adjusted. These are very basic factors that nonetheless have to be 
defined exactly.

The use of different scanners can also have an impact. However, 
different scanners may already exist in separate institutions and re-
placing them is very expensive. Thus, particularly in the context of 
multicenter trials the scanner model should be taken into account. 
Regarding the acquisition of imaging, different slice thicknesses, pro-
grams, configurations, or details can be selected. Each of those pro-
gram features has an influence on the structure of the imaging data. 
In cases of contrast media application, the radiomic features vary 
potentially according to the type and quantity of the contrast agent, 
the time of application, and the physiology-related individual distri-
bution patterns of the patient. Not least, images taken at different 
times and stages as well as metabolic conditions of a disease may be 
acquired. In this way, the definition of the ROI and its segmentation 
can be modified. All these parameters influence the characteristics 
to be measured. Some of the above-mentioned variable parameters 
of imaging are difficult to influence and thus always a potential sour-
ce of error. So it is even more important to strictly standardize all 
those characteristics that allow standardization. They include in par-
ticular technical standards. The type of image acquisition, the ima-

ging mode, the matrices, the slices, resolutions, reconstruction as 
well as the type and adapted quantity of the contrast agent can be 
widely standardized allowing comparability between separate study 
centers. Fortunately, the introduction of standards for specific ques-
tions is increasingly accepted so that this prerequisite for radiomic 
analyses is structurally improved. Accurate clinical information about 
the type and stage of disease, metabolic diseases, and other clinical 
features help in cases of instable variables to identify influences and 
at least to take them into account in the context of data processing 
[73].

3.2 Segmentation
Segmentation defines the borders of the area that is analyzed by ra-
diomics, e. g. a tumor. So segmentation is an essential step and a 
basic precondition for performing radiomics. The region of interest 
(ROI) and the volume of interest (VOI) are identified. Slice per slice 
the ROI is marked in the images so that itself and its relation to the 
surrounding structures are finally depicted in a completely 3-dimen-
sional way. Only structures that are included, are considered later in 
the analysis. A definition and segmentation of several different ROIs 
as well as their later assessment, together or separated, is generally 
possible. Radiological features are relevantly influenced by segmen-
tation. Methodically, segmentation can be generally performed ma-
nually, semi-automatically, or automatically. Up to now, not all 3 me-
thods are available for each application. The more exact the borders 
are defined and the better they can be delineated from the surroun-
dings, the easier is the establishment of a semi-automatic or auto-
matic segmentation. ROIs that are more difficult to define are often 
manually segmented. Since for this purpose, the examiner has to de-
lineate the ROI slice per slice and its borders must be defined, this 
process is very time consuming and incompatible with clinical rou-
tine. Manual segmentation should always be performed by a speci-
alist because its quality is highly dependent on the examiner’s expe-
rience. Nonetheless, there is a high interobserver variability that in-
fluences the radiological signature. Even the same examiner may 
define segmentations of the same ROI in a different way at different 
times, according to the high intraobserver variability. The automa-
tic segmentation is performed by mathematical algorithms. Due to 
this gain in objectivity, the intra- and interobserver variability may 
be neglected. The segmentations have a better reproducibility and 
can be performed more rapidly. Thus, automatic segmentation is 
very suitable for large datasets, many datasets, and also multicenter 
approaches with many different examiners. However, it is not possi-
ble for every ROI. Blurred object borders, missing clear contrasts in 
the same narrow localizations or also artefacts are problematic in 
the context of automatic analysis limiting its applicability. This may 
lead to falsely defined ROIs – even if they are reproducible. The tumor 
might for example not be included completely or the software scans 
alternative areas. It is worth discussing if an automatic misinterpre-
tation of an automatized segmentation or the intra- and interobser-
ver variability of manual segmentation are the greater evil for the 
 application of radiomics. The compromise and at the same time 
often the precursor of automatic segmentation is semi-automatic 
segmentation. Hereby, the ROI is identified by the examiner and cir-
cumscribed for example in a slice of imaging. The software then per-
forms an automatic segmentation of the defined object and the ex-
aminer post-edits it. Semi-automatic segmentation simultaneously 
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includes sources of errors and advantages of the manual and auto-
matic approaches. It is more rapid than manual segmentation but it 
suffers from the intra- and interobserver variability of the manual 
segmentation [73].

3.3 Establishment of radiomic features
The ROI defined by segmentation is analyzed automatically by means 
of specific algorithms that compile numeric values by analyzing vo-
xels and pixels. Hundreds of features may be produced and varied. 
They describe for example localizations, intensities, shapes, struc-
tures and structural differences, greyscales, color intensities as well 
as correlations and relativity values of these features. The selected 
features should be verified before application in a study with regard 
to their stability within the examination and in different individuals 
of the study.

The ROI properties may be depicted in different ways and further 
processed. So ROI intensities may be visualized via a histogram that 
is based on fractionated volume data on voxel level. Data for examp-
le on the form of the ROI (volume, shape, surface markers, density 
etc.) provide additional accompanying statistical values. The analy-
sis of additional, secondary qualities, clusters, correlations – even 
beyond different image settings – may provide enormous amounts 
of data. One challenge is the exclusion of redundancies. Of course 
those large data quantities are difficult to handle regarding their pro-
cessing. With the help of statistical methods and machine-learning, 
the parameters have to be reduced to the informative and validated 
features that are relevant for the objective of the analysis and trial. 
Only in this way, the features gain their specific significance.

3.4 Establishment of databases
One particularity of radiomics is to reasonably analyze the radiologi-
cal characteristics in the clinical, genetic, and/or histopathological con-
text. For this purpose, according databases have to be compiled. Large 
data storage capacities that can be well accessed for analysis have to 
be available. The definition of the feature value should correspond to 
a selection of the possible variables that can be exactly delineated. For 
each clinical, genetic, or histological property, the type and source 
should be the same. Linking different databases, e. g. clinical, genetic, 
and radiological ones, may also be useful. However, the regulations of 
data protection should be strictly observed. Of course, all these data 
have to be digitally available for statistical evaluation.

3.5 Analysis of databases
With the compilation of the databases, the actual evaluation starts. 
The objective is the establishment of a radiomic signature that corre-
lates with a specific requirement or question. An alternative objective 
may be a multimodal modeling where the radiomic signature is eva-
luated together with other data which leads to an additional value re-
garding precision and/or information. A radiomic signature is extrac-
ted from all measured radiological values and may contain only one 
or several features at the same time. Those features may be trivial in 
the sense of already macroscopically known phenomena but also con-
sist of features that are more abstractly gained from voxels and pixels. 
There are radiomic signatures that contain a 3-digit number of single 
components. Taking into account that already hundreds of values of 
radiological characteristics are available per patient and further fea-
tures are added or that large data volumes from several sources are 

processed simultaneously (e. g. combined with genome analysis), it 
is clear that experienced statisticians and a suitable software are es-
sential. The software should be able to assess large data quantities in 
a reasonable timeframe and generate solid, reproducible, broadly ap-
plicable biomarker signatures. Of course, thorough approaches du-
ring the previous steps significantly improve the data quality. At that 
time, sources of errors can only scarcely be limited by analysis and sta-
tistics. A high number of well-defined datasets, possibly obtained from 
several centers by different examiners, limits errors due to outliers, in-
terobserver variability, local particularities, and measurement uncer-
tainty [73]. It is rather logistically difficult and cost-intensive to achie-
ve this objective. Ideally, a primary radiological signature is created 
based on a retrospective cohort, validated in another independent co-
hort, and tested prospectively in the clinical setting [13].

4. Radiomics: Study Objectives
In oncology, radiomics are currently used in particular for characte-
rization of solid tumors on different levels (histological, genetic, cli-
nics-associated), for prediction of the outcome, and for prediction 
of the therapy response in the context of primarily conservative the-
rapeutic measures. A transition into other reasonable correlations, 
however, seems to be possible.

Current tumor characterizations encompass clinical data, mac-
roscopically assessable imaging data, rarely functional data (e. g. mo-
bility of the vocal folds in cases of laryngeal cancer), and genetic, 
proteomic, and (immuno)histological information from tumor areas 
that are pretherapeutically gained from biopsies. The whole tumor 
can only be examined after surgical extirpation. Biopsies reflect a re-
presentative tissue image that may be characterized histopatholo-
gically and/or molecular-biologically. Unfortunately, however, many 
carcinomas are not homogenous. Various cell populations and clo-
nes with different histological and in particular molecular properties 
are found in different areas. Before biopsy, they cannot necessarily 
be differentiated. The biopsy area is determined by clinical factors, 
as its anatomical position and accessibility as well as the biopsy me-
thod and the capacities and experiences of the examiner who should 
succeed in obtaining more or less representative tissue. Studies, 
where biopsies were taken from different sites of the tumor, already 
revealed this phenomenon.

Radiomics have the advantage that they assess the whole tumor 
by means of morphological imaging with regard to its size, shape, sur-
face and internal structure as well as the anatomical context. If the de-
tection of radiomic signatures is successful for histological, genetic, 
and proteomic conditions of the tissue, they may potentially be as-
sessed by radiomics in the entirety of the tumor. Furthermore, radio-
mics may be extended to the surrounding tissue and metastases or 
metabolic conditions. Alternatively, radiomics might be used to bet-
ter distinguish subareas of the tumors that cannot be seen with the 
naked eye and thus contribute to improve the quality of biopsies and 
to indicate where biopsies should ideally be taken in order to histolo-
gically and molecularly characterize the tumor. However, it would be 
desirable to completely avoid invasive biopsies. So it would be bene-
ficial to improve the radiomic specificity to that extent that their cha-
racterization is equivalent to the quality of biopsy or even provides 
better results. If and for which applications this may be possible, will 
have to be proven in further studies. Up to now, radiomics should be 
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used in the context of clinical data and data of additional sources.
Some studies have already shown that an amalgamation of radio-

mic features with biomarkers and data from other sources may achie-
ve a better and more accurate subtyping of diseases and a better qua-
lity of outcome predictions. Until now, information from imaging are 
only indirectly included in tumor typing. They contribute for example 
to the TNM classification. In the context of the sometimes very rough 
radiological characteristics that were commonly considered such as 
tumor size, invasion, extracapsular spread etc. informative metadata 
from the background remain disregarded. Many of them get “lost” for 
the human examiner during processing of the images. So they may 
currently be considered as “dead” data source. In summary with the 
data of other sources, radiomics may refine the typing by other bio-
markers and reduce grey areas. Hereby, radiomics could become an 
integral part of multimodal prediction or typing models that are finally 
the basis of a broad spectrum of applications in the context of perso-
nalized medicine, which could be enriched and improved by radiomics. 
Because of the enormous data volume and in the context of a possib-
le standardized objective description, the development and applica-
tion of suitable software is essential.

Reasonable outcome correlations could contribute to the assess-
ment of the tumor aggressiveness. As part of a multimodal overall 
assessment as well as for specific applications as potential biopsy 
substitute, radiomics might improve the prediction and monitoring 
of the outcome as well as treatment options.

Regardless of the predictive character, radiomics-based exami-
nations also contribute to increasingly automatizing cancer scree-
ning in general and to improving the associated standardization. 
They foster cost- and time-effective diagnostics. The role of the dia-
gnosing examiner could be either supported or be pushed into the 
background. However, it must not be forgotten that radiomic algo-
rithms assess information that the human eye is not able to realize 
during visualization of the imaging. In this way, radiomics even pos-
sess the potential to achieve better diagnoses than humans.

And the major advantage is that the required data are already 
present in our standard imaging procedures in high quantities. They 
just wait for being explored. If relevant radiomic features are defined 
and validated, additional examinations will no longer be necessary.

5. Factors for Clinical Integration of Radiomics: 
A Future Vision

So what will be a future vision? Until now, radiomics in the sense of 
the current definition have not been introduced into clinical routine. 
This is mainly due to their newness. But they are increasingly recog-
nized as alternative source of biomarkers and promoted on the sci-
entific level. With further intensification of big data and IT-based 
model approaches, imaging might complete or replace information 
obtained by biopsies (histological, genetic/molecular). Uni- or mul-
timodal modeling could precisely predict the outcome and therapy 
response so that it does not only support medical decision but even 
replaces it in extreme cases. Those approaches are only possible with 
very strict and multicentric standardization of diagnostics and the-
rapy. Treatment individualization would be moved forward due to 
objective data. However, this also bears the risk of losing the indivi-
dualization because psychological, social, or generally spoken 
“human” characteristics would not be assessed. The physician – and 

thus also the patient – would be more and more subordinate to stan-
dardization and the power of the data situation, with all its advanta-
ges and disadvantages. A further development of radiomics and mo-
deling would support telemedicine and self-diagnosis and thus the 
centralization of medical service in specialized centers.

But what will have to happen to make radiomics practicable for 
clinicians? What are the wishes of the applying physician?

It is necessary that the user may rely on a constantly high specificity 
and sensitivity of the analysis because therapeutic and diagnostic deci-
sions depend on it. Ideally, radiomics should have a broad application 
spectrum. Based on cost-benefit calculations and the patient comfort, 
the use of standard imaging without additional efforts would be desi-
rable. It should be possible to integrate the respective software into the 
local IT systems and thus allow smooth processing when linking clinical 
data with genetic and (processed) imaging data, if necessary. The seg-
mentation should be automatized and integrated into the processing 
software. It should be user-friendly, i. e. intuitive and clear. The results 
of radiomic analysis are better accepted when they can be adequately 
visualized. Practically, radiomics may not only reduce or avoid biopsies 
but additionally allow for a more holistic assessment of the tumor. A link 
to the completing software programs, multimodally oriented outcome 
prognoses, or therapy concepts, would be further possible options.

6. Conclusion
Radiomics enlarge the field of biomarkers in an innovative way and 
the basic data of imaging that hereby gain in importance are inclu-
ded in the wide spectrum of “omics” and biomarkers. They could 
substantially contribute to personalized medicine. A major advan-
tage is that the data generally already exist and “only” have to be 
evaluated. Another advantage is that they may be retrieved without 
biopsies and their potentially complex and expensive assessment 
(e. g. genomics). Nonetheless, hereby an overall assessment of the 
tumor is generated and not only an excerpt due to a biopsy. Radio-
mic signatures could possibly serve alone as biomarkers and replace 
other clinical, histopathological, and genetic markers. In this way, 
the patient comfort might be improved and financial means may be 
saved. An additional benefit may also be generated by multimodal 
modeling, correlation with data from other resources and thus ex-
tend and improve their significance. For both purposes, however, it 
is necessary to process large data volumes, which requires a high ex-
pertise and bears the important risk of potential errors on all levels 
of establishment and validation. For clinical integration, not only a 
high measure of standardization is necessary but also the implemen-
tation of suitable segmenting and analyzing software that make the 
definition of radiomic signature realizable in clinical routine.

6.1 Big data instead of biopsy?
In the future, it might be that radiomics replace biopsies for specific 
questions. However, in the very near future it seems to be more pro-
bable that radiomics complete the findings of biopsies and that data 
models enriched by radiomics improve precision medicine.
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