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ABSTRACT Fluoroquinolones (FQs) have been used
effectively antimicrobial agents of choice for treatment
of various infections caused by E. coli and FQs-resis-
tance of E. coli from broiler breeders has been implicated
in its vertical transmission to their offspring. The objec-
tive of this study investigated the phenotypic and geno-
typic characteristics of FQ-resistant E. coli isolates from
broiler breeder farms in Korea. A total of 106 FQ-resis-
tant E. coli isolates were tested in this study and all iso-
lates had mutations in quinolone resistance determining
regions; all (100%) had mutations in gyrA, 89 (84.0%)
had mutations in parE, 8 (7.5%) isolates showed the
mutations with parC and parE, and none had mutations
in gyrB. The predominant mutation type was double
mutation in gyrA (S83L and D87N), and all FQ-resis-
tant E. coli isolates that had mutations in parC or parE
also had double mutations in gyrA. Especially, FQ-resis-
tant E. coli isolates which possessed double mutations in
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gyrA in combination with double mutations in parC or
single mutations in both parC and parE were shown
high levels of minimum inhibitory concentrations
rage. Of the 23 plasmid-mediated quinolone resistance
(PMQR)-positive E. coli isolates, qnrS was detected in
10 (9.4%) isolates, and followed by qnrA (7 isolates,
6.6%), qnrB (4 isolates, 3.8%), and aac(60)-Ib-cr (2 iso-
lates, 1.9%). Sixteen (69.6%) of the 23 PMQR-positive
E. coli isolates harbored class 1 integrons with four dif-
ferent gene cassette arrangements and total of 9 plasmid
replicon types were also identified in 23 PMQR-positive
E. coli isolates. This is the first study to investigate
the prevalence and characteristics of FQ-resistant and
PMQR-positive E. coli isolated from the broiler breeder
in Korea; it supports that constant monitoring and
studies at the broiler breeder level are required to pre-
vent the pyramidal transmission of FQ-resistant E. coli.
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INTRODUCTION

Fluoroquinolones (FQs) have been used effectively
antimicrobial agents of choice for treatment of various
infections caused by E. coli or other gram-negative bac-
teria. Because of clinical importance in both human and
animal medicine, the World Health Organization has
classified FQs as ‘‘critically important antimicrobials
(WHO, 2017). However, the continuous use of FQs in
livestock can lead to the emergence and maintenance of
FQ-resistant bacteria, and it is considered a significant
public health threat (Wasyl et al., 2013, Xu et al., 2015).
Especially, since enrofloxacin have been introduced to
the poultry industry in Korea in 1987, FQ-resistant
E. coli have developed over the time (Hu et al. 2017;
Seo and Lee, 2020).
FQ-resistance is mainly due to chromosomal muta-

tions that alter the drug target enzymes DNA gyrase
(gyrA and gyrB) and DNA topoisomerase IV (parC and
parE) (Jacoby, 2005). Moreover, 3 different plasmid-
mediated quinolone resistance (PMQR) determinants
have been described: the qnr genes that protect the
DNA gyrase and topoisomerase IV from quinolone inhi-
bition, the aac(6’)-Ib-cr gene that an aminoglycoside
acetyltransferase that confers reduced susceptibility to
ciprofloxacin, and the qepA gene that the major facilita-
tor superfamily-type quinolone efflux pump decreasing
susceptibility to quinolones ( Liu et al., 2012). Although
PMQR genes confer low-level resistance to FQ, they can
facilitate the selection of mutations in gyrase and topo-
isomerase genes which results in high-level FQ-resistance
(Yang et al., 2008).
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The broiler industry has a pyramidal structure in
which grandparent stock on the top through breeding
chickens parent stock that produce eggs for the produce
the broiler chickens on the bottom. In this structure,
antimicrobial resistant bacteria and drug-resistance
genes can be vertically transmitted through the broiler
breeding chain. Although studies from several countries
have documented the prevalence and characteristics of
FQ-resistance in commercial broiler level (Taylor et al.,
2008; Abdi-Hachesoo et al., 2017; Nishikawa et al.,
2019), there is still limited information regarding the
molecular characteristics of FQ-resistant and PMQR-
positive isolates at the broiler breeding level. Therefore,
this study investigated the phenotypic and genotypic
characteristics of FQ-resistant E. coli isolates from
broiler breeder farms in Korea.
MATERIALS AND METHODS

Sampling

Feces and dust were sampled from nine broiler breed-
ing farms including 69 flocks (20 wk of age) between
2016 and 2018 in accordance with the standards set by
the National Poultry Improvement Plan (United States
Department of Agriculture USDA, 2011). Briefly, 15 dif-
ferent spots were swabbed per flock in order to collect
10 g of dust sample using surgical gauze moistened with
12 mL of sterile double strength skim milk (Fluka, Neu-
Ulm, Germany). Approximately 10 g of feces were also
sampled from 15 different locations. Samples were trans-
ported to the laboratory in a cooler and stored at 4°C
until use.
Bacterial Identification

The samples were individually inoculated into 225 mL
of mEC (Merck, Darmstadt, Germany) and incubated at
37°C for 20 to 24 h. Pre-enriched mEC was streaked onto
MacConkey agar (BD Biosciences, Sparks, MD) plates
and incubated at 37℃ for 24 h. Five typical colonies
selected from each sample were identified by PCR as pre-
viously described (Candrian et al., 1991), and plated on
Mueller-Hinton agar (BD Biosciences) plates supple-
mented with 4 mg/mL ciprofloxacin (Sigma-Aldrich, St.
Louis, MO) to select FQ-resistant E. coli. If isolates of
the same origin showed the same antimicrobial suscepti-
bility patterns, only one isolate was randomly chosen
Table 1. Distribution of 106 ciprofloxacin-resistant E. coli isolated fro

I Ⅱ Ⅲ Ⅳ

No. of flocks tested 6 9 10 17
No. of positive flocks (%) 5 (83.3) 8 (88.9) 9 (90.0) 13 (7
No. fluoroquinolone-resistant E. coli1 9 12 18 22
No. of PMQR-positive E. coli2 2 4 5 5

1If several isolates from same origin showed the same antimicrobial susceptib
2PMQR, plasmid-mediated quinolone resistance.
and included in the analysis. As a result, a total of 106
FQ-resistant E. coli were tested in this study (Table 1).
Antimicrobial Susceptibility Testing

All FQ-resistant E. coli isolates were investigated for
their antimicrobial resistance with the disc diffusion test
using the following discs (BD Biosciences): amoxicillin-
clavulanate (20/10 mg), ampicillin (10 mg), cefazolin
(30 mg), cephalothin (30 mg), cefadroxil (30 mg), cefoxi-
tin (30 mg), chloramphenicol (30 mg), gentamicin (10
mg), imipenem (10 mg), nalidixic acid (30 mg), tetracy-
cline (30 mg), and trimethoprim-sulfamethoxazole
(1.25/23.75 mg). Minimum inhibitory concentrations
(MICs) ranging from 0.06 to 512 mg/L to nalidixic
acid, ciprofloxacin, and enrofloxacin (Sigma-Aldrich)
were determined using standard agar dilution methods
according to recommendations of the Clinical & Labora-
tory Standards Institute (CLSI, 2015, 2020). E. coli
ATCC 25922 was included as a quality control. Multi-
drug-resistance (MDR) was defined as acquired resis-
tance to at least one agent in 3 or more antimicrobial
classes (Magiorakos et al., 2012).
Identification of Mutations in QRDRs and
Detection of PMQRs

PCR was carried out to amplify the target genes
(gyrA, gyrB, parC, and parE) in quinolone resistance
determining regions (QRDRs) to identify mutations in
106 FQ-resistant E. coli isolates using primers and con-
ditions described previously (Fendukly et al., 2003;
Dutta et al., 2005; Bai et al., 2012). The PCR products
were purified using GFX PCR DNA and the Gel band
purification kit (Amersham Bioscience, Freiburg, Ger-
many), and sequenced by automatic sequencer (Cosmo-
genetech, Seoul, Korea). The sequences were confirmed
with those in the GenBank nucleotide database using
the Basic Local Alignment Search Tool (BLAST) pro-
gram available through the National Center for Biotech-
nology Information website (http://www.ncbi.nlm.nih.
gov/BLAST). PMQR genes (qnrA, qnrB, qnrC, qnrD,
qnrS, aac(6’)-Ib-cr, and qepA) were also detected by
PCR amplification and sequencing analysis, as described
in previous studies (Yu et al., 2015).
m 9 broiler breeder farms.

Broiler breeder farms

Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Total

7 7 5 3 5 69
6.5) 7 (100.0) 5 (71.4) 4 (80.0) 3 (100.0) 4 (80.0) 58 (84.1)

14 10 8 6 7 106
2 2 0 0 3 23

ility patterns, only one isolate was included.

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
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Plasmid Replicon Typing and Detection of
Integrons and Gene Cassettes

For plasmid replicon typing and detection of integrons
and gene cassettes, PCR was performed using DNA
extracted from 23 PMQR-positive E. coli isolates. The
primers used in this study targeted 18 different replicons
(Johnson et al., 2007) and class 1 and 2 integrons
(Ng et al., 1999; S�aenz et al., 2004). Gene cassettes were
tested for integron-positive isolates (Ng et al., 1999;
S�aenz et al., 2004). The PCR products of the gene cas-
settes were sequenced as described above.
Transfer of Resistance Genes by
Conjugation

To determine the transferability of PMQR genes, con-
jugation assays were performed using the broth mating
method, with E. coli J53 used as the recipient as previ-
ously described (Tamang et al., 2012). Transconjugants
were selected on MacConkey agar (BD Biosciences)
plates containing sodium azide (100 mg/mL; Sigma-
Aldrich) and ampicillin or tetracycline (100 mg/mL;
Sigma-Aldrich). All transconjugants were tested for the
presence of PMQR genes, as described above.
Pulsed-Field Gel Electrophoresis

Pulsed-field gel electrophoresis (PFGE) was per-
formed on PMQR-positive E. coli isolates by digesting
the genomic DNA using the XbaI restriction enzyme
(Takara Bio Inc., Shiga, Japan) according to the stan-
dard protocol of the Center for Disease Control and Pre-
vention and CHEF-MAPPER apparatus (Bio-Rad
Laboratories, Hercules, CA), as previously described
(Liu et al., 2007). Gel images were analyzed using Info-
Quest FP software ver. 4.5 (Bio-Rad). The dice coeffi-
cient was used to calculate similarity, and the similarity
matrix was expressed graphically by an unweighted
average linkage.
Figure 1. Antimicrobial resistance classes (A) and spectrum (B) of 10
Abbreviations: AMGs, aminoglycosides; BL/BLICs, b-lactam/b-lactamase
folate pathway inhibitors; PCNs, penicillins; PHs, phenicols; Qs, quinolones;
RESULTS

Antimicrobial Resistance Profile

The antimicrobial resistance patterns of FQ-resistant
E. coli isolated from broiler breeder farms is shown in
Figure 1. FQ-resistant E. coli isolates showed the high-
est resistance to quinolones (100.0%) and cephems
(100.0%) followed by penicillins (90.6%), tetracyclines
(90.6%), folate pathway inhibitors (77.4%), phenicols
(72.6%), b-lactam/b-lactamase inhibitor combinations
(25.8%), aminoglycosides (13.2%), and carbapenems
(5.7%). Also, all FQ-resistant E. coli isolates were
identified as having MDR against 3 to 10 classes of anti-
microbial agents. The rate of resistance to 8 antimicro-
bial classes was the highest at 34.0% and 1 (0.9%)
FQ-resistant E. coli isolate showed resistance to 10
classes.

Presence of Amino Acid Substitutions in
QRDRs in FQ-Resistant E. coli

All 106 FQ-resistant E. coli isolates showed the
mutation in gyrA. But, 89 (84.0%) isolates showed
the mutation with parE, and 8 (7.5%) isolates showed
the mutations with parC and parE, simultaneously
(Table 2). The high gyrA amino acid substitutions
were S83L (99 isolates, 93.4%) and D87N (75 isolates,
70.8%), and 75 isolates showed double mutations of
S83L and D87N. The highest parC substitution were
S80I (74 isolates, 69.8%), but 25 isolates also showed
double mutations of S80I and E84A. In parE muta-
tions, I464F (5 isolates) and S458A (3 isolates) were
observed. The gyrB mutations were not detected in
any of the isolates in this study. MICs range of iso-
lates with double mutations in gyrA were relatively
higher than those of other isolates with single muta-
tions in gyrA. Especially, FQ-resistant E. coli isolates
with a high level of MICs rage (≥64 mg/L for cipro-
floxacin and ≥128 mg/L for enrofloxacin) were shown
to carry double mutations in gyrA in combination
6 fluoroquinolone-resistant E. coli isolated from broiler breeder farms.
inhibitor combinations; CARs, carbapenems; CEPs, cephems; FPIs,
TETs, tetracyclines.



Table 2. Amino acid changes in the QRDRs, MICs and PMQR determinants of 106 fluoroquinolone-resistant E. coli isolates.

QRDR mutations1 MICs rage (mg/mL)2

gyrA gyrB parC parE NA CIP ENR PMQR genes (No. of isolates)3 No. of fluoroquinolone-resistant E. coli (%)

S83L/D87N WT S80I/E84A I464F >512 256 256 - 4 (3.8)
S83L/D87N WT S80I/E84G WT >512 64-128 128-256 qnrA (4), qnrB (2) 21 (19.8)
S83L/D87N WT S80I S458A >512 128 128 aac(60)-Ib-cr (2) 2 (1.9)
S83L/D87Y WT S80I S458A >512 64 128 qnrS (1) 1 (0.9)
S83L/D87N WT S80R I464F >512 64 128 - 1 (0.9)
S83L/D87N WT S80I WT >512 16-64 16-64 qnrS (4), qnrA (2), qnrB (2) 37 (34.9)
S83L/D87Y WT S80I WT >512 16-32 32-64 qnrS (3) 9 (8.5)
S83L/D87N WT S80R WT >512 32 32-64 qnrS (2) 10 (9.4)
S83L/D87Y WT S80R WT >512 16-32 32 qnrA (1) 7 (6.6)
S83I/D87E WT WT WT >512 8 32 5 (4.7)
S83I WT WT WT >512 4 8 - 2 (1.9)
S83L WT WT WT >512 4 4-8 - 7 (6.6)

8 <0.06 <0.06 ATCC 25922
1QRDR, quinolone-resistance determining region; WT, wild type.
2MICs, minimum inhibitory concentrations; NA, nalidixic acid; CIP, ciprofloxacin; ENR, enrofloxacin.
3PMQR, plasmid-mediated quinolone resistance; -, not detected.
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with mutations in parC. PMQR genes were detected
in 23 (21.7%) of the 106 FQ-resistant E. coli isolates.
The qnrS was detected in 10 isolates (9.4%), and fol-
lowed by qnrA (7 isolates, 6.6%), qnrB (4 isolates,
3.8%), and aac(60)-Ib-cr (2 isolates, 1.9%).
Characteristics of PMQR-Positive E. coli

The phenotypic and genotypic characteristics of the
23 PMQR-positive isolates among the 106 FQ-resistant
E. coli isolates are shown in Figure 2. Sixteen (69.6%)
isolates were found to have class 1 integrons, with the
following 4 types of gene cassettes, dfrA1 (6 isolates),
dfrA17 (3 isolate), aadA2 (2 isolate), and dfrA1+ aadA1
(1 isolate). Four isolates did not carry any of the gene
Figure. 2. Pulsed-field gel electrophoresis patterns of XbaI-digested tota
The black color indicates that the trait is present, and the gray color indicate
gation experiments. Abbreviations: AM, ampicillin; AMC, amoxicillin-clavu
floxacin; CZ, cefazolin; CF, cephalothin; CFR, cefadroxil; FOX, cefoxitin;
mediated quinolone resistance; SXT, sulfamethoxazole/trimethoprim; QRD
cassettes. A total of 9 plasmid replicon types were also
identified in 23 PMQR-positive E. coli isolates. The
most common plasmid replicon was FIB (12 isolates,
52.2%), followed by FIA (9 isolates, 39.1%). Transfer-
ability of PMQR genes was only identified in ten
(43.5%) isolates among 23 PMQR-positive E. coli iso-
lates.
PFGE Analysis

In determination of the epidemiological genetic rela-
tionships by PFGE (Figure 2), 18 PFGE patterns show-
ing 85% similarity were observed in 23 PMQR-positive
E. coli isolates. In particular, isolates that included 3
PFGE patterns (PEP003, PEP011, and PEP018) were
l DNA of 23 PMQR-positive E. coli isolated from broiler breeder farms.
s that the trait is absent. Self-transfer of carrying PMQR genes in conju-
lanate; AMR, antimicrobial resistance; C, chloramphenicol; CIP, cipro-
G, gentamicin; IPM, imipenem; NA, nalidixic acid; PMQR, plasmid-
R, quinolone-resistance determining region; TE, tetracycline.
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originated from the same broiler breeder farm with the
same antimicrobial resistance genes, QRDR mutation,
and plasmid replicon types, and showed similar antimi-
crobial resistance patterns.
DISCUSSION

FQs are highly effective antimicrobial class with many
advantages including high oral absorption, large volume
of distribution, and broad-spectrum antimicrobial activ-
ity ( Patel and Goldman, 2016). In Korea, the mass med-
ication of poultry with FQs is still permitted, and the
sale volume of enrofloxacin is the highest among all anti-
microbials (APQA, 2017). However, resistance to FQs
has emerged following their widespread use in poultry
farms; thus, FQ-resistant E. coli isolates can be spread
in poultry production pyramid (Seo and Lee, 2020). In
this study, 106 FQ-resistant E. coli isolates showed co-
resistance to cephems (100.0%) penicillins (90.6%), and
tetracyclines (90.6%). Especially, all isolates showed
MDR against more than 3 antimicrobial agents, and
nine isolates showed resistance to more than 9 classes.
These results are consistent with those of recent studies
showing co-association of resistance to other classes of
antimicrobials and high MDR rates among FQ-resistant
E. coli (Mitra et al., 2019, Seo and Lee, 2020). It is
because FQ-resistant E. coli has plasmids harboring
resistant genes to diverse classes of antimicrobials
including PMQR genes (Mitra et al., 2019).

In this study, all FQ-resistant E. coli isolate showed
amino acid exchanges at gyrA. Especially, isolates that
had parC and parE mutations also had double muta-
tions in gyrA. Heisig et al. reported that because the
DNA gyrase activity is more sensitive to quinolones
than that of DNA topoisomerase IV, gyrA becomes the
primary target of quinolones and parC and parE are sec-
ond (Heisig, 1996). Also, previous studies showing that
mutations in the parC and/or parE are closely related to
double mutations in the gyrA (Khodursky et al., 1995;
Breines et al., 1997). Moreover, FQ-resistant E. coli iso-
lates had mutations at codons 83 (Ser) and 87 (Asp) in
gyrA and at codon 80 (Ser) in parC in the QRDRs, and
the most common type of amino acid substitution were
S83L and D87N in gyrA and S80I in parC as previous
studies (Yang et al., 2004; Uchida et al., 2010;
Yang et al., 2010). Also, MICs range of isolates with
double mutations in gyrA were relatively higher than
those of other isolates with single mutations in gyrA.
Vila et al., (1994) reported that high-level resistance
towards FQ is found if a second mutation accumulates
in gyrA. Especially, FQ-resistant E. coli isolates which
possessed double mutations in gyrA in combination with
double mutations in parC or single mutations in both
parC and parE were shown high levels of MICs rage.
These results were consistent with previous studies that
the total number of point mutations in QRDR has been
associated with the increased FQ-resistance levels
( Liu et al., 2012; Hu et al. 2017).

In this study, 23 (21.7%) of the 106 FQ-resistant E.
coli isolates detected PMQR genes. The prevalence of
PMQR genes in FQ-resistant E. coli was considerably
higher than that in a commercial broiler farm in Korea
(17.8%) (Seo and Lee, 2020). These findings indicate
that PMQR genes had already disseminated in broiler
breeder and that the risk of PMQR spread in broiler pro-
duction systems was considerable. Also, PMQR-positive
E. coli isolates were carried 4 types of PMQR genes,
qnrS, qnrA, qnrB and aac(60)-Ib-cr. These PMQR var-
iants have been previously detected in E. coli from live-
stock, including in healthy animals and retail meats in
United States (Pereira et al., 2020), Taiwan (Kuo et al.,
2009), Czech (R€oderova et al., 2017), and China
(Yu et al., 2015), as well as from commercial broiler
farms and chicken meat in Korea (Seo and Lee, 2019,
2020).
Class 1 integrons can act as vectors that transfer and

dissemination of antimicrobial resistance genes among
bacteria and carry gene cassettes, which harbor antimi-
crobial resistance genes (Fluit and Schmitz, 2004). In
this study, 16 (69.6%) PMQR-positive E. coli isolates
contained class 1 integrons and 12 isolates have gene cas-
sette that contains aadA or dfrA or both genes. In previ-
ous studies, aadA and dfrA gene were related resistance
to antimicrobials such as aminoglycosides and trimetho-
prim and isolates harboring the aadA or dfrA or both
genes showed higher antimicrobial resistance rates
(Seo and Lee, 2018). Therefore, integrons in PMQR-pos-
itive isolates from broiler breeder can have acquired the
mobile genetic elements of antimicrobial resistance,
which could become a serious public health concern.
Also, 10 transconjugants identified in this study carried
the same PMQR genes of the donor strains, demonstrat-
ing that PMQR-positive E. coli isolates may be trans-
ferred clonally to humans through contaminated food
products of poultry origin, leading to treatment failure
in humans.
Plasmids are important genetic elements responsible

for the dissemination of antimicrobial resistance through
horizontal gene transfer (Thomas and Nielsen, 2005;
Yang et al., 2015). Especially, IncFIA and IncFIB repli-
cons are reported as the most common types found in E.
coli from humans and animals (Carattoli, 2009,
Mitra et al., 2019, Son et al., 2019, Seo et al., 2020), and
this was seen in this study. These plasmid replicons,
which encode factors involved in iron uptake, toxin pro-
duction, enzymes, and a variety of resistance genes, for
example, PMQR genes, are widely spread in Enterobac-
teriaceae (Carattoli, 2009). Furthermore, other plasmid
replicons such as IncFIC, IncFII, IncFrep, IncI1, IncB/
O, and IncN identified in this study have also been previ-
ously reported (Carattoli, 2009, Poirel et al., 2011,
Mitra et al., 2019, Son et al., 2019). Our results indicate
that plasmid replicon types that are able to confer the
antimicrobial resistance function to bacteria are com-
mon in PMQR-positive E. coli isolated from broiler
breeder farms. Also, epidemiological relationships
among the PMQR-positive isolates were examined by
PFGE analysis in this study. Eight (34.8%) isolates
included 3 PFGE patterns identified the same QRDR
mutation, PMQR genes, plasmid replicon types, and
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originated from the same PS farm, respectively. This
results indicate the possibility that similar PFGE pat-
tern isolates may contribute to clonal expansion and
horizontal transmission as previously described
(Tamang et al., 2014; Jo and woo 2016). This is the first
study to investigate the prevalence and characteristics
of FQ-resistant and PMQR-positive E. coli isolated
from the broiler breeder in Korea; it supports that con-
stant monitoring and studies at the broiler breeder level
are required to prevent the pyramidal transmission of
FQ-resistant E. coli.
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