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Abstract: The oral poliovirus vaccine (OPV), which prevents person-to-person transmission of po-
liovirus by inducing robust intestinal immunity, has been a crucial tool for global polio eradication.
However, polio outbreaks, mainly caused by type 2 circulating vaccine-derived poliovirus (cVDPV2),
are increasing worldwide. Meanwhile, immunodeficiency-associated vaccine-derived poliovirus
(iVDPV) is considered another risk factor during the final stage of global polio eradication. Patients
with primary immunodeficiency diseases are associated with higher risks for long-term iVDPV
infections. Although a limited number of chronic iVDPV excretors were reported, the recent iden-
tification of a chronic type 2 iVDPV (iVDPV2) excretor in the Philippines highlights the potential
risk of inapparent iVDPV infection for expanding cVDPV outbreaks. Further research on the genetic
characterizations and molecular evolution of iVDPV2, based on comprehensive iVDPV surveillance,
will be critical for elucidating the remaining risk of iVDPV2 during the post-OPV era.

Keywords: poliovirus; oral poliovirus vaccine; vaccine-derived poliovirus; immunodeficiency-
associated vaccine-derived poliovirus; global polio eradication

1. Introduction

The Global Polio Eradication Initiative has completely eliminated 2 of 3 serotypes
of wild polioviruses worldwide with extensive immunization with poliovirus vaccines,
the Sabin oral poliovirus vaccine (OPV), and Salk inactivated poliovirus vaccine (IPV) [1].
After the identification of the last polio case caused by type 1 wild poliovirus in Africa in
2016 [2], Pakistan and Afghanistan were the only countries with endemic wild poliovirus
since 2017 [3]. The total number of wild polio cases was 140 in 2020 [4].

Trivalent OPV (tOPV), which contains three live-attenuated poliovirus serotypes (usu-
ally Sabin 1, 2, and 3 strains), was a crucial tool for global polio eradication by inducing a
high level of intestinal immunity to prevent person-to-person transmission of poliovirus in
communities. However, due to their intrinsic genetic instability, the OPV strains can evolve
into more neurovirulent revertants in the vaccinated individuals and then transmit in
communities, which are occasionally associated with polio outbreaks known as circulating
vaccine-derived polioviruses (VDPV; cVDPVs) [3,5–9]. All three OPV serotypes can be
associated with paralytic polio outbreaks. However, type 2 is the major causative agent of
cVDPV outbreaks, producing the highest numbers of events and cases with acute flaccid
paralysis (AFP). The number of polio outbreaks caused by type 2 cVDPV (cVDPV2) is
on the rise in different geographical areas; thus, suboptimal intestinal immunity against
type 2 poliovirus poses a serious public health threat during the final stage of global polio
eradication [3,10,11].

Even after cVDPV2 outbreaks were controlled, VDPV infections in immunocompro-
mised individuals, known as immunodeficiency-associated VDPV (iVDPV), remain a
potential risk factor for VDPV outbreaks [9,12,13]. The molecular evolution of RNA viruses

Viruses 2021, 13, 1407. https://doi.org/10.3390/v13071407 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0001-9692-8724
https://orcid.org/0000-0002-2987-2377
https://doi.org/10.3390/v13071407
https://doi.org/10.3390/v13071407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13071407
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13071407?type=check_update&version=2


Viruses 2021, 13, 1407 2 of 12

in chronic infections can lead to the emergence of unique genetic variants with distinct
phenotypes from the parental viruses, even for those that are commonly associated with
acute viral infections [14–17]. Thus, chronic infections of RNA viruses are a potential source
for future epidemics. In this study, we will examine the prevalence of iVDPV and molecular
analysis of iVDPV isolates, especially for type 2 iVDPV (iVDPV2). We then discuss the
future challenges in elucidating the molecular evolution and characterization of iVDPV2
and the remaining risk of iVDPV2 in the post-OPV era.

2. Definition and Classification of Vaccine-Derived Polioviruses

VDPVs are diverse OPV-derived variants with more than 1% nucleotide divergence
in the capsid VP1 region from the corresponding type 1 and type 3 Sabin strains and
more than 0.6% nucleotide divergence from the Sabin 2 strain [12]. VDPVs are categorized
by the source of samples and epidemiological information, including cVDPVs identified
in person-to-person transmission in the community, iVDPVs isolated from persons with
primary immunodeficiency (PID), and ambiguous VDPVs (aVDPVs) indicating neither
cVDPV nor iVDPV [12,18–20]. Some of the PID individuals may excrete iVDPV for a
prolonged period. In this study, we classified iVDPV excretors as long-term (6 months to
5 years) or chronic (more than 5 years) [12].

3. Status of Polio Outbreaks Due to cVDPV2

As previously mentioned, type 2 OPV strain (OPV2) was mainly associated with
cVDPV outbreaks. Recently, the World Health Organization (WHO) implemented a revised
polio immunization policy in the Global Polio Eradication Initiative Strategic Plan 2013–
2018 [21] that eliminates the type 2 component from tOPV in April 2016 [22], thereby
switching from the tOPV to the bivalent OPV (bOPV) including only types 1 and 3. At the
same time, WHO encouraged at least one dose of IPV for routine immunization [22,23]
to maintain the population immunity against type 2 poliovirus. In addition, a global
stockpile of monovalent type 2 OPV (mOPV2) was prepared and maintained for response
to cVDPV2 outbreaks.

As expected, immediately after the switch to bOPV, few cVDPV2 epidemics were
identified, only in the Democratic Republic of the Congo and Syria, in 2017. However, the
number of cVDPV2 outbreaks has been growing since 2018. There were 71 AFP cases in
5 countries in 2018, 366 cases in 16 countries in 2019, and 1054 cases in 24 countries in 2020 (a
WHO weekly report as of 1 June 2021) [24]. Molecular epidemiological analysis of cVDPV2
isolates revealed that most of the cVDPV2 outbreaks were derived from supplemental
immunization with mOPV2 after switching to bOPV in 2016, presumably in areas with
suboptimal intestinal immunity against type 2 poliovirus [8,25].

There is a critical dilemma in the creation of new cVDPV2 outbreaks by mOPV2
immunization in high-risk areas. Novel type 2 OPVs (nOPV2s), type 2 OPV candidates
more genetically stable than the conventional Sabin 2 strain, were developed and intro-
duced in some countries with endemic cVDPV2 transmissions as emergency responses
to the ongoing cVDPV2 outbreaks [26–28]. The coronavirus disease 2019 (COVID-19)
pandemic disrupted the surveillance and immunization activities for vaccine-preventable
diseases, including polio, since 2020 [11,29]. However, nOPV2 was already introduced to
two cVDPV2-affected countries, Nigeria and Liberia in Africa, by the end of May 2021 [30].
The risk of transmission of type 2 poliovirus will be significantly reduced after controlling
the cVDPV2 outbreaks. However, the presence of chronic iVDPV2 excretors will remain a
potential source of cVDPV2 transmission in communities with lowered intestinal immunity
against type 2 poliovirus.

4. Prevalence of iVDPV2-Positive Cases

According to Macklin et al. [12], 149 cases of iVDPV (with or without AFP) were
reported to the WHO from 1961 to 2019. About 60% of the iVDPV cases involved the
type 2 OPV strain, including 83 (56%) single iVDPV2 infections, 3 (2%) infections with a
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mixed serotype of types 1 and 2, and 3 (2%) infections with a mixed serotype of types 2
and 3. After the switch from tOPV to bOPV in 2016, the risk of iVDPV2 emergence was
expected to decrease substantially. In fact, only two iVDPV2 cases were identified during
2017–2019 [12,31], including a chronic iVDPV2 excretor in the Philippines (see Section 6).

Among the different types of PID, patients with common variable immunodeficiency
(CVID) or severe combined immunodeficiency (SCID) are associated with higher risks for
long-term iVDPV infections; thus, they are less likely to clear iVDPVs spontaneously before
death. However, only a limited number of chronic iVDPV excretors were reported, partly
due to the low probability of survival of the PID patients and insufficient surveillance to
monitor the iVDPV cases with or without AFP, especially in low-income countries. Among
the 10 reported cases of chronic iVDPV excretors (Table 1), 8 were reported to be CVID,
and 5 were associated with iVDPV2 [12,32,33]. Among the patients with predominantly
antibody deficiencies, CVID patients are more associated with asymptomatic and prolonged
iVDPV infection than those with agammaglobulinemia and hypogammaglobulinemia [32].

Table 1. Chronic iVDPV excretors.

Case No. Year
Detected Localization PID Type Serotype Maximum VP1

Divergence (%)

Estimated
Replication

Period (years)
Reference

1 1981 USA CVID 1 10 † 7.6 † [32]

2 § 1986
1992 USA CVID 1

2
5.4 †

11.8 †
4.7 ‡

9.6 † [32,33]

3 1990 Germany CVID 1 8.3 † 9.5 † [32]
4 1995 UK CVID 2 17.9 † 27.83 † [32]
5 2000 Germany CVID 1 8.5 † 8.5 † [32]
6 2002 UK CVID 2 6.3 † 6.3 † [32]
7 2009 India CVID 1 5.2 † 5 † [32]
8 2009 USA CVID 2 12.3 † 11.9 † [32]
9 2015 India SCID 3 10.2 † 6 † [32]

10 2019 Philippines Hypokalemia and
infectious diarrhea 2 7.6 || 5.0 || [12]

† Referenced from Supplementary Table 4 of Reference [32]. ‡ Referenced from Table 2 of Reference [33]. § Two iVDPVs were isolated from
the same patient at different times. || Referenced from Table 2 of Reference [12]. CVID: common variable immunodeficiency. SCID: severe
combined immunodeficiency.

5. Genetic Analysis and Molecular Characterization of iVDPV2 Isolates
5.1. Available Sequence Dataset of iVDPV2 Isolates

The sequence information on cVDPV isolates is expanding due to the current cVDPV
outbreaks [34]. Accordingly, there is increasing information on the molecular evolution of
cVDPV [18,25,35]. However, it remains difficult to characterize iVDPVs genetically and
elucidate the trends in the molecular evolution of iVDPV because of the limited availability
of the sequences and clinical information of iVDPV and the lack of appropriate annotation
of each iVDPV case [36,37]. The histories of the patients with long-term iVDPV infections
vary greatly in terms of the duration of infection, immunological status, treatment and
formulation of intravenous immunoglobulin products, and the kinds of clinical speci-
mens. There are also lingering concerns about the reliability of molecular analyses using
limited and potentially biased sequence datasets of the iVDPV isolates. Moreover, very
little information on the capsid or full-genome sequences of the iVDPVs is available for
investigating the evolutionary dynamics of iVDPV in the microenvironment in a long-term
iVDPV excretor.

Therefore, in this study, we have updated the iVDPV2 sequence dataset in reference
to the previous reports [36–47] (Table 2). Our dataset is based on the sequence information
in GenBank; thus, some of the clinical and epidemiological information is incomplete. In
addition, it should be noted that there is no direct evidence of long-term excretion in the
suspected iVDPV isolates from the environmental samples, although the involvement of
iVDPV excretion has been highly suggested [43,44]. According to the phylogenetic analysis
of the VP1 regions in our iVDPV2 dataset, the iVDPV2 isolates derived from a certain
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long-term iVDPV excretor are genetically closely related to each other and form a unique
genetic cluster, and are not related to those from other iVDPV cases (Figure 1). In addition,
these iVDPV2 sequences are not genetically related to those of the cVDPV2 or aVDPV2
available in the GenBank database (data not shown).

Table 2. Sequence dataset of probable type 2 iVDPV strains.

GenBank Accession
No. Genome Region Year Detected Localization Source of Samples VP1 Divergence

(%)

Estimated
Replication

Period (years)
Reference

GU390704 P1 1992 USA NA 10.4 NA [39]
KR817050-817060

AJ544513
P1

Full genome 1995-2013 UK Chronic excretor
(Case 4 in Table 1) 17.9 28 [45]

AJ288062 P1 1998 Israel Environmental
samples 9.4 NA [44]

AY177685 Full genome 2000 Italy iVDPV2 case 0.88 1.42 [42]
DQ890387 Full genome 2002 Nigeria iVDPV2 case 2.5 1.5 [41]

JX913541-913647 VP1 2003-2005 Slovakia Environmental
samples 3.4 NA [43]

FJ517648 P1 2007 Belarus iVDPV2 case (AFP) 1.88 1.6 [40]

FJ517649 P1 2007 Russia iVDPV2 case (AFP) 1.44 NA (no OPV
history) [40]

GU390707 Full genome 2009 USA Chronic excretor
(Case 8 in Table 1) 11.83 11.9 [39]

KR709241 VP1 2013 Germany iVDPV2 case 1.0 0.5–0.9 [38]
KR709242 VP1 2013 Germany iVDPV2 case 4.4 2.4–2.8 [38]

MK660464-660492 VP1 2015 Israel iVDPV2 case >0.8 NA [46,47]

NA: not available.

Figure 1. The phylogenetic tree of VP1 sequences in 157 iVDPV2 isolates. The sequence alignment was constructed using
Clustal Omega, and the tree was inferred using the FastTree 2.1.10 [48] with the GTR model and gamma distribution and
visualized with FigTree. Large genetic clusters of each case study are indicated by different colors, red for a chronic excretor
in the United Kingdom 1995–2013 [45], blue for the environmental samples from Slovakia in 2003–2005 [43], and green for
the stool and oropharyngeal samples from Israel in 2018 [46,47].

5.2. Molecular Evolution of iVDPV2

During the community transmission of type 1 wild polioviruses, the rate of nu-
cleotide substitution at all the sites in the entire capsid P1 region was estimated to be
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1.03 × 10−2 substitutions/site/year [49]. Similarly, the average estimated substitution rate
was 1.14 × 10−2 substitutions/site/year for the major genetic lineages of cVDPV2 isolates
in Nigeria [18]. In the case of iVDPV2, the rate of nucleotide substitution in the VP1 region
was 1.51 × 10−2 substitutions/site/year for the most long-term iVDPV2 excretor in the
United Kingdom (for approximately 28 years at the time) [45]. Shaghaghi et al. observed
rapid molecular evolution in some iVDPV cases at the initial stages of virus replication
after OPV administration [32]. After the initial replication period of the OPV strains, the
subsequent mutations would accumulate at a nearly uniform rate of 1 to 2% nucleotide
changes per year [32,50,51]. Due to a strong positive selection in vaccinees immunized
with type 2 OPV, the so-called gatekeeper mutations from the attenuated Sabin 2 strain,
including three mutations at A481G, U2909C (VP1-I143T), and U398C, are rapidly selected
and fixed in the first several weeks post-vaccination [35,52,53]. Those gatekeeper mutations
may contribute to the virus replication fitness in the human intestine and higher initial
evolution rates of iVDPV and cVDPV immediately after the OPV administration.

5.3. Amino Acid Substitutions in Phenotypic Determinants

Consistent with Zhao et al. [37], it is difficult to distinguish between the iVDPV and
cVDPV strains in our iVDPV2 dataset by only comparing the nucleotide and amino acid
sequences in the VP1 region (data not shown). However, a codon-by-codon comparison
throughout the VP1 region using SNAP [54] showed that the rates of non-synonymous
substitutions in the iVDPV strains were higher than those in cVDPV2 (Figure 2). These data
suggest that the molecular evolution of the capsid proteins associated with phenotypic
determinants, including antigenic sites, is more likely to occur in the iVDPV strains than in
the cVDPV strains, especially for long-term iVDPV infections. Among the 19 iVDPV2 cases,
amino acid substitutions are frequently identified in some of the neutralizing antigenic
sites (NAgs) and a hypervariable region at the N-terminus of VP1 and VP1–143 in the
non-NAg sites (Figure 3). The N-terminus of VP1 forms an amphipathic helix and is
presumably involved in the interaction with the host cell membrane. Regardless of the high
variability of this domain, the predicted amphipathic helix is maintained [55]. McDonald
et al. reported a decline in neutralizing capacity of human sera immunized with IPV and
OPV against the highly evolved iVDPV2 from long-term excretors due to the amino acid
substitutions in the NAgs [36]. On the other hand, there was no significant change in the
neutralization titers of the human sera against a series of iVDPV2 variants from a chronic
iVDPV2 excretor in the United Kingdom, compared with those against the parental Sabin
2 strain, regardless of amino acid substitutions in the NAgs in the Sabin 2 strain [46]. No
significant changes in neutralizing capacity were observed in the highly evolved cVDPV2
isolates in Nigeria compared to those in the Sabin 2 strain, suggesting that the changes
in the NAgs of the cVDPV2 were lower than those in the iVDPV2 [36,37,55] (Figure 4).
Non-synonymous substitutions frequently occurred not only in the NAg sites but also in
the non-NAg sites located on the surface of the capsid (Figure 4), potentially affecting the
antigenicity or in vivo fitness of the VDPVs.
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Figure 2. The frequency of synonymous and non-synonymous substitutions of the VP1 amino acid sequences from
157 iVDPV2 and 567 cVDPV2 isolates. Sequence divergence was analyzed using SNAP (Synonymous Non-synonymous
Analysis Program, https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html (accessed on 28 May 2021)) [54]. The
synonymous (blue crosses) and non-synonymous substitutions (red circles) of the VDPV sequence relative to the Sabin 2
strain are depicted. (A) iVDPV2. (B) cVDPV2.

Figure 3. The number of amino acid substitutions in each position of the P1 capsid region of 19 iVDPV2 isolates. The amino
acid substitutions in the neutralizing antigenic (NAg) sites are shown in red. The positions of hypervariable residues (HVRs)
at the N-terminal and a gatekeeper substitution at VP1–143 of VP1 are indicated.

https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html
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Figure 4. The locations of amino acid substitutions in selected iVDPV2 isolates. The three-dimensional structure of type 2
wild poliovirus strain MEF-1 was obtained from PDB 1EAH and represented as a pentameric unit ((A): outside; (B): inside
of capsid). Each protomer contains a single copy of VP1, VP2, VP3, and VP4 distinguished by gray colors. The location
of frequent amino acid substitutions (more than 4 out of 19 iVDPV2 isolates) relative to the Sabin 2 strain is colored. The
neutralizing antigenic sites are red. The hypervariable residues and the gatekeeper substitution of VP1-143 are green. Other
amino acid changes are blue. The image was generated using PyMOL 2.4.2 (Schrödinger).

G481 and VP1-I143T were identified as the major attenuation determinants for the
Sabin 2 strain [9,19]. As previously mentioned, these two sites are gatekeeper mutations
that are rapidly selected and fixed immediately after the administration of OPV2 [35]; most
of the iVDPV2 isolates very likely have those mutations in the attenuation sites. In fact, a
series of highly evolved iVDPV2 isolates from a chronic excretor in the United Kingdom
are more neurovirulent than the parental Sabin 2 strain in a human poliovirus receptor
transgenic mouse model [45].

5.4. Genomic Recombination

Most of the cVDPV isolates associated with polio outbreaks are recombinants of OPV-
derived capsid sequences and non-capsid sequences derived from non-polio enteroviruses
(NPEVs), particularly those belonging to Enterovirus C [9,18–20,56–61]. To our knowledge,
there is no concrete evidence of long-term excretion or local transmission of iVDPV strains
recombinant with NPEV in part due to limited information on the full-genome sequences
of iVDPV isolates. The recombinant viruses derived from the Sabin 2 capsid sequences
with the non-capsid sequences from Sabin 3 or Sabin 1 are frequently detected in healthy
vaccinees and VAPP cases in the early stages of virus replication after tOPV immuniza-
tion [55,62,63]. The recombination between different genetic lineages among genetically
divergent iVDPV variants was identified in a long-term type 1 iVDPV excretor in Tai-
wan [64]; therefore, recombinations, as well as mutations, may contribute to the molecular
evolution and viral fitness in the microenvironment of iVDPV infection. However, the
virological significance of viral recombination in the host is still uncertain because only a
few reports based on the full-genome sequences of iVDPV are available.

5.5. In Vivo Fitness and Quasi-Species

In individuals with long-term iVDPV infections, genetically diverse iVDPV variants
may co-exist as viral quasi-species. The role of quasi-species in the molecular evolution of
iVDPV remains unclear; however, in general, the genetic diversity of polioviruses within
infected individuals is known to be involved in the in vivo molecular evolution and the
rise of certain viral phenotypes, including neurovirulence [65–67]. Historically, poliovirus
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quasi-species were analyzed by the conventional plaque cloning and Sanger sequencing of
virus isolates. Recently, next-generation sequencing (NGS) technologies were applied to
study viral quasi-species and the molecular evolution of various RNA viruses, including
those of the OPV strains and cVDPVs, but not for those from iVDPV cases [25,52,53]. In
the future, more comprehensive and quantitative analyses on the genetic diversity of the
quasi-species of iVDPV variants in infected individuals, compared to those in cVDPV and
OPV strains, using NGS will be required.

6. Current and Future Risk of iVDPV2

Although there is no substantial evidence of polio outbreaks caused by cVDPV2
derived from iVDPV2 excretors, the relative risk of long-term iVDPV2 infection will rise as
the population with lower intestinal immunity to type 2 poliovirus among the individuals
immunized with bOPV and IPV increase [10,13,68,69]. The WHO Western Pacific Region
(WPR) was certified to be wild polio-free since 2000, except for several importations of wild
polioviruses from endemic countries [70–72]. Since 2001, several cVDPV outbreaks were
reported in the WPR; however, all of them were effectively controlled using supplemental
OPV immunization [60,73,74]. In September 2019, type 1 VDPV isolates (more than 3%
nucleotide divergence from the Sabin 1 strain in the VP1 region) were identified from
environmental sewage samples collected in the National Capital Region (NCR) in the
Philippines. Highly evolved type 2 VDPV isolates (more than 7% nucleotide divergence
from the Sabin 2 strain in the VP1 region) were concomitantly detected in some of the same
sewage samples [8,25].

Meanwhile, more extensive AFP and environmental surveillance identified many
VDPV1 and VDPV2 isolates from AFP cases and environmental samples from different geo-
graphical areas, confirming that the simultaneous and widespread transmission of cVDPV1
and cVDPV2 was associated with paralytic polio outbreaks in the Philippines and Malaysia
in 2019–2020. At the same time, intensified surveillance identified highly divergent VDPV2
isolates (more than 7% nucleotide difference in the VP1) from a 5-year-old male with re-
duced antibody levels who had received three doses of tOPV from August 2014 to February
2015 in Laguna province, close to the NCR in the Philippines [12]. Follow-up samplings
demonstrated that genetically related VDPV2 variants were continuously detected in stool
samples of the patient from August 2019 to now (as of May 2021), indicating that the patient
is a chronic iVDPV2 excretor.

At least in the VP1 region, the cVDPV2 isolates in the Philippines in 2019–2020 are not
genetically related to the iVDPV2 isolates from the chronic excretor in Laguna. Macklin et al.
estimated that the cVDPV2 isolates in the Philippines were seeded by tOPV immunization
around 2014 before the switch to bOPV in 2016 [25]. According to the genetic diversity of
the iVDPV2 isolates from the Sabin 2 strain and the history of OPV immunization of the
patient, the chronic iVDPV2 infection might have been initiated in 2014–2015 at almost the
same time with the emergence of cVDPV2. The origin and evolution of both cVDPV2 and
iVDPV2 remain uncertain epidemiologically and genetically, partly due to the lack of any
iVDPV2 and cVDPV2 cases for nearly 5 years in the Philippines.

Recently, Valesano et al. found that most OPV2-derived variants with the gatekeeper
mutations that appeared in OPV recipients rapidly could not survive during virus trans-
mission to the close contacts of the recipients due to the tight transmission bottleneck. This
finding suggests distinct mechanisms of molecular evolution between viral replication in
the hosts and during community transmission [52]. More detailed and comprehensive
genetic characterization, taking the previously mentioned points on the molecular charac-
teristics of iVDPV2 into account, is in progress to elucidate the relationship and molecular
evolution of cVDPV2 and iVDPV2 in the Philippines.

7. Conclusions

The last cVDPV2 isolate in the Philippines was detected from an environmental sample
collected in January 2020. No cVDPV2 was identified from AFP and environmental samples
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after that. However, the incidences of cVDPV2 and iVDPV2 in the Philippines and Malaysia
in 2019–2020 highlight the risk of inapparent infections or silent VDPV transmission
or both, even in areas with a long-standing polio-free status. Further research on the
genetic characterization and molecular evolution of iVDPV2 will enable us to mitigate the
remaining risk of widespread transmission of iVDPV2 during the post-OPV era.
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