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Background. The incidence of esophageal squamous cell carcinoma in China ranks first in the world. The early diagnosis
technology is underdeveloped, and the prognosis is poor, which seriously threatens the quality of life of the Chinese people.
Epidemiological findings are related to factors such as diet, living habits, and age. The specific mechanism is not clear yet.
Metabolomics is a kind of omics that simultaneously and quantitatively analyzes the comprehensive profile of metabolites in
living systems. It has unique advantages in the study of the diagnosis and pathogenesis of tumor-related diseases, especially in
the search for biomarkers. Therefore, it is desirable to perform metabolic profiling analysis of cancer tissues through
metabolomics to find potential biomarkers for the diagnosis and treatment of esophageal squamous cell carcinoma. Methods.
HPLC-TOF-MS/MS technology and Illumina Hiseq Xten Sequencing was used for the analysis of 210 pairs of matched
esophageal squamous cell carcinoma tissues and normal tissues in Zhenjiang City, Jiangsu Province, a high-incidence area of
esophageal cancer in China. Bioinformatics analysis was also performed. Results. Through metabolomic and transcriptomic
analysis, this study found that a total of 269 differential metabolites were obtained in esophageal squamous cell carcinoma and
normal tissues, and 48 differential metabolic pathways were obtained through KEGG enrichment analysis. After further
screening and identification, 12 metabolites with potential biomarkers to differentiate esophageal squamous cell carcinoma
from normal tissues were obtained. Conclusions. From the metabolomic data, 4 unknown compounds were found to be
abnormally expressed in esophageal squamous cell carcinoma for the first time, such as 9,10-epoxy-12,15-octadecadienoate; 3
metabolites were found in multiple abnormal expression in another tumor, but upregulation or downregulation was found for
the first time in esophageal cancer, such as oleoyl glycine; at the same time, it was further confirmed that five metabolites were
abnormally expressed in esophageal squamous cell carcinoma, which was similar to the results of other studies, such as PE.

1. Introduction

Esophageal cancer (EC) is a malignant tumor originating
from the esophagus, which can occur in any segment of
the esophagus and originates from esophageal epithelial
cells. It is the eighth most common cancer in the world.
Early symptoms are not obvious, often manifested as dys-

phagia, lack of early diagnostic biomarkers, the diagnosis is
often advanced, and it is difficult to cure; globally, the overall
five-year survival rate of patients with esophageal cancer is
as low as 15% to 20%, indicating that it is associated with a
poor prognosis [1, 2]. EC mainly includes two subtypes,
esophageal adenocarcinoma (EAC) and esophageal squa-
mous cell carcinoma (ESCC), which account for more than
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95% of esophageal malignancies. Among them, squamous
cell carcinoma mainly occurs in Asian and African coun-
tries, accounting for 90% of global cases. It is known as a
“disease of developing countries,” and China has the highest
incidence [3, 4]. Esophageal adenocarcinoma is the predom-
inant type of esophageal cancer in North America and
Europe, with a fivefold higher risk in whites compared with
blacks [5, 6]. Therefore, esophageal cancer has more obvious
geographical distribution characteristics than other common
malignant tumors. According to the GLOBOCAN2020
database statistics (http://gco.iarc.fr/today), there will be
324,000 new cases of esophageal cancer in China in
2020, and the number of deaths will also be as high as
301,000, accounting for about 50% of the world and 60%
of developing countries, with obvious local high incidence
characteristics, especially in North China, forming typical
epidemiological characteristics (Table 1) [7]. This also
indicates that the incidence of esophageal cancer is closely
related to factors such as geographical environment, and it
is urgent to find and develop common and region-specific
markers with the clinical application for the detection and
treatment of esophageal cancer.

Metabolomics is the omics of simultaneous quantitative
analysis of comprehensive profiles of metabolites in living
systems, mainly using nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS), two common
analytical techniques, for the analysis of findings in urine,
plasma, or tissue. Characterization of small molecules, espe-
cially tissue analysis (especially valuable in the context of
heterogeneous tissues such as the brain and cancer), can
yield unambiguous biochemical information about disease
mechanisms and thus provide new insights into disease-
affected cell signaling pathways, generating new diagnostic
biomarkers and new therapeutic approaches, maybe the
most powerful way to study local and specific stimulus
responses and pathogenesis today, and is now widely used
in biomedicine, drug research, and other fields [8–12]. It is
generally known that a distinctive feature in the develop-
ment of malignant tumors is the alteration of metabolic pro-
cesses and metabolic reprogramming, which is considered to
be a new hallmark of cancer [13]. The changes of these
metabolites represent important information about human
diseases; multiple studies have used metabolomics-related
techniques to find that the metabolic profiles of thyroid
tumor tissue and normal tissue are different and found sig-
nificantly upregulated or downregulated metabolites as an
auxiliary diagnosis of thyroid potential biomarkers and ther-
apeutic targets of cancer, and metabolic pathway analysis
provides new ideas for exploring the mechanism of thyroid
tumorigenesis and development [11, 14, 15]. There are also
studies using gas chromatography-time-of-flight mass spec-
trometry (GC-TOF-MS) metabolomics technology to suc-
cessfully screen six metabolites that can be used as oral
squamous cell carcinoma saliva biomarkers in the oral squa-
mous cell carcinoma [16]. In the field of endometrial cancer,
a common gynecological malignancy, metabolomics was
used to study related metabolites in patients through blood,
urine, and other samples and found that related metabolites
can be used as tumor markers and new therapeutic targets

for early diagnosis and prediction recurrence and prognosis
[17–19]. Therefore, metabolomics has unique advantages in
studying the diagnosis and pathogenesis of human diseases,
especially in the search for biomarkers, especially in the field
of tumors [20–23].

Esophageal squamous cell carcinoma (ESCC) is the most
common subtype of esophageal cancer in my country. The
increase in the incidence of esophageal squamous cell carci-
noma has led to a significant increase in the number of
esophageal cancer cases in my country. In recent years, with
the continuous maturity of metabolomics technology, many
laboratories at home and abroad have used MRS or MS
metabolomics technology to detect metabolic profiles in tis-
sues, blood, or urine of patients with esophageal cancer; try-
ing to the pathogenesis of esophageal cancer was found from
the significantly changed metabolites [24–27]. Unfortu-
nately, there is still no clear disease mechanism, but the
results suggest that there are indeed changes in metabolites
and metabolic pathways in the development of esophageal
cancer, which accumulated important data for subsequent
metabolomic research analysis, since the typical epidemio-
logical survey of esophageal cancer shows that the incidence
is related to the patient’s diet, occupational habits, gender,
age, and other factors [28–33]. And compared with MRS
[34], MS can provide higher sensitivity for the identification
and quantification of metabolites and reduce the complexity
of metabolite separation; therefore, this study used HPLC-
TOF-MS/MS technology. Differential metabolites were
obtained by analyzing the tumor tissue and matched normal
tissues of 210 patients with esophageal cancer in Zhenjiang,
Jiangsu Province, a high-incidence area of esophageal cancer
in China. Firstly, control tumor tissue and normal tissue as a
single variable as much as possible to eliminate the influence
of epidemiological factors to obtain common differential
metabolites, and secondly, compare the experimental results
obtained from other countries or regions as much as possible
to obtain regional specific metabolites. Therefore, this exper-
iment intends to analyze the differential metabolites of
esophageal squamous cell carcinoma from the perspective
of metabolomics, to find abnormal metabolic pathways, to
explore potential biomarkers and therapeutic targets of

Table 1: Estimated number of new and death cases in high-
incidence countries in 2020, both sexes and all ages.

Estimated number of new and death cases in high-incidence
countries

Country
New
cases

Morbidity
Death
cases

Mortality

China 324422 53.75% 301135 55.30%

India 63180 10.50% 58342 10.70%

Japan 26262 4.30% 12270 2.30%

Bangladesh 21745 3.60% 20319 3.70%

United States of
America

18309 3% 16209 3%

Others 150182 24.90% 135801 25%

Note: data cited from GLOBOCAN2020 database (IARC website, http://gco
.iarc.fr/today).
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esophageal cancer, and to provide a theoretical basis for the
diagnosis and treatment of esophageal cancer.

2. Materials and Methods

2.1. Sample Collection. All patients were recruited from the
Department of Cardiothoracic Surgery of the First People’s
Hospital of Zhenjiang City, Jiangsu Province, China. Tumor
samples and clinical information were approved by the local
Ethics Committee of Affiliated People’s Hospital of Jiangsu
University. All relevant ethical regulations involving human
participants were followed. A total of 210 fresh primary
tumor tissues and adjacent normal tissue samples were
histopathologically confirmed as esophageal squamous cell
carcinoma patients, which had not previously received any
special antitumor treatment before surgery. The basic char-
acteristics of the patients are shown in Table 2. The adjacent
noncancerous tissues were more than 2 cm away from the
tumor margin and pathologically confirmed as normal tissue
at the resection margin. Tumor and normal tissues were
loaded separately with tissue-protective fluid, frozen in liq-
uid nitrogen, and then, stored in solid carbon dioxide at
−80°C.

2.2. Sample Preparation. Samples previously stored at −80°C
in solid carbon dioxide are transferred to a –80°C ultralow
temperature refrigerator and then thawed for 30 minutes
in a 4°C refrigerator. The cancer tissues from each sample
are then accurately weighed and placed in liquid nitrogen
for grinding and mixing. After mixing, it is then put in an
EP tube to form a mixture of cancerous tissues. The adjacent
tissues are treated in the same way as the cancer tissues.

2.3. Metabolite Extraction. All solid mixed samples were
ground (6 replicates for cancer and adjacent tissues), and
50mg was placed in a 2mL centrifuge tube (50mg solid
sample was accurately weighed), and the metabolites were
extracted using a 400μL methanol : water (4 : 1, v/v) solution
with 0.02mg/mL L-2-chlorophenyl alanine as an internal
standard. The mixture was allowed to settle at -10°C before
being treated with a high-throughput tissue crusher
Wonbio-96c (Shanghai Wanbo Biotechnology Co., Ltd.) at
50Hz for 6min, then followed by ultrasound at 40 kHz for
30min at 5°C. The samples were placed at -20°C for
30min to precipitate proteins. After centrifugation at
13000 g at 4°C for 15min, the supernatant was carefully
transferred to sample vials for LC-MS/MS analysis. Then,
20μL of the supernatant was pipetted from all samples and
mixed with the same volume to prepare a quality control
sample (Quality control, QC). The volume of each QC was
the same as that of the sample. It was processed and tested
in the same way as the analysis sample, inserting a QC sam-
ple in every 4 samples to examine the repeatability of the
entire analysis process.

2.4. UPLC-MS Analysis. Chromatographic separation of the
metabolites was performed on an ExionLCTMAD system
(AB Sciex, USA) equipped with an ACQUITY UPLC HSS
T3 column (100mm × 2:1mm i.d., 1.8μm; waters, Milford,
USA). The mobile phase consisted of 0.1% formic acid in

water : acetonitrile (95 : 5, v/v) (solvent A) and 0.1% formic
acid in acetonitrile : isopropanol : water (47.5 : 47.5, v/v)(sol-
vent B). The solvent gradient changed according to the fol-
lowing conditions: from 0 to 0.5min, 0% B to 0% B; from
0.5 to 2.5min, 0% B to 25% B; from 2.5 to 9min, 25% B to
100% B; from 9 to 13min, 100% B to 100% B; from 13 to
13.1min, 100% B to 0% B, and from 13.1 to 16min, 0% B
to 5% 0 for equilibrating the systems. The sample injection
volume was 10μL, and the flow rate was set to 0.4mL/min.
The column temperature was maintained at 40°C. During
the period of analysis, all these samples were stored at 4°C.

The UPLC system was coupled to a quadrupole time-of-
flight mass spectrometer (Triple TOFTM5600+, AB Sciex,
USA) equipped with an electrospray ionization (ESI) source
operating in positive mode and negative mode. The optimal
conditions were set as follows: source temperature, 550°C;
curtain gas (CUR), 30 psi; ion source, GS1, and GS2, 50 psi;
ion-spray voltage floating (ISVF), -4000V in negative mode
and 5000V in positive mode, respectively; declustering
potential, 80V; collision energy (CE), 40 ± 20V rolling for
MS/MS; and cycle time, 510mins. Data acquisition was per-
formed in the data-dependent acquisition (DDA) mode. The
detection was carried out over a mass range of 50-
10002009m/z.

2.5. Metabolomic Data Analysis

2.5.1. Data Preprocessing and Annotation. The components
flowing out of the sample through chromatographic separa-
tion continuously enter the mass spectrum for continuous
scanning for data acquisition, scanned once to obtain a mass
spectrum, and then, added all ion intensities in all mass
spectra to obtain the total ion current intensity.

After UPLC-TOF/MS analyses, the raw data were
imported into the Progenesis QI 2.3 (Nonlinear Dynamics,
Waters, USA) for peak detection and alignment. The

Table 2: Clinical sample characteristic information statistics.

Characteristic Quantity Percentage %

Gender

Male 159 75.7

Female 51 24.3

Age

n < 60 36 17.14

60 ≤ n < 70 102 48.57

n ≥ 70 72 34.29

Smoking status

Ever 90 42.9

Never 120 57.1

BMI

Underweight 18 8.57

Normal 157 74.76

Overweight 26 12.38

Obese 9 4.29
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preprocessing results generated a data matrix that consisted
of the retention time (RT), mass-to-charge ratio (m/z)
values, and peak intensity.

The mass spectra of these metabolic features were iden-
tified by searching reliable biochemical databases such as
the human metabolome database (HMDB) (http://www
.hmdb.ca/) and Metlin database (https://metlin.scripps.edu/)
for accurate mass, MS/MS fragment spectra, and isotope ratio
difference.

2.5.2. Multivariate Statistical Analysis. The standard devia-
tion of total expression in cancer tissues and tissues was
compared and analyzed to determine if there was a signifi-
cant difference at the metabolomics level.

A multivariate statistical analysis was performed using
the ropls (Version1.6.2, http://bioconductor.org/packages/
release/bioc/html/ropls.html) R package from Bioconductor
on Majorbio Cloud Platform (https://cloud.majorbio.com),
mainly including principal component analysis (PCA), partial
least squares-discriminant analysis (PLS-DA), and orthogonal
partial least squares discriminant analysis (OPLS-DA). PCA
analysis was used for data overview and outlier detection.
PLS-DA model was used to analyze the metabolite profile of
cancer tissue and tissue samples. OPLS-DA removes the vari-
ation factors unrelated or orthogonal to the Y variable in X
data variables; to better distinguish the differences, PLS-DA
and OPLS-DA models were verified by 200 permutation tests
to reveal the simple structure hidden behind the complex data.

2.5.3. Differential Metabolites Analysis. After the optimal
model was successfully constructed and selected, SciPy. Stats
(Python package) (https://docs.scipy.org/doc/scipy/) was
exploited to perform a one-way analysis of variance and fold
change (FC) analysis on the detection results of cancer tissue
and tissue samples using the OPLS-DA model. Combined
with VIP value of more than 1 and P value less than 0.05
were further screened for target differential compounds,
which were obtained by pattern recognition. Differential
metabolite information was identified, and relevant metabo-
lomics databases were consulted to screen and determine
differential metabolites between the two groups.

The differential metabolites were clustered, and thermal
images of metabolic profiles were used to show the overall
trend of each metabolite between cancer tissues and tissues.
The screened metabolites were used to establish a metabolic
set with all metabolites of this species combined as the
enrichment background for KEGG pathway enrichment
analysis and topological analysis. The corrected P value
was set lower than 0.05 to select the statistically significant
result pathways.

2.5.4. Validation of Potential Biomarkers. The receiver-
operator characteristic curve (ROC curve) was used to ana-
lyze the similarity between cancer tissues and corresponding
normal tissues for differential metabolites, and the discrimi-
nation ability of potential biomarkers was evaluated. The
area under the ROC curve ðAUCÞ > 0:9 and the 95% confi-
dence interval (CI) of AUC calculated based on the nonpara-

metric resampling method >0.8 were used as the screening
criteria for diagnostic value.

2.6. Cer Transcriptomic Analysis Validation

2.6.1. RNA Extraction, Library Preparation, and Illumina
Hiseq Xten Sequencing. Total RNA was extracted from the
tissue using Trizol Reagent according to the manufacturer’s
instructions (Invitrogen), and genomic DNA was removed
using rDNase I RNase-free (Takara). RNA quality was veri-
fied using a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA) and the ND-2000 (NanoDrop Technolo-
gies). Only high-quality RNA samples
(OD260/280 = 1:8 ~ 2:2, OD260/230 ≥ 2:0, RIN ≥ 8, 28S
: 18S ≥ 1:0, >10μg) were used to construct the sequencing
library. RNA-seq transcriptome strand library was prepared
following the TruSeqTM Stranded Total RNA Library Prep
Kit from Illumina (San Diego, CA) using 5μg of total
RNA. Libraries were size selected for cDNA target fragments
of 200–300 bp on 2% low-range ultra-agarose followed by
PCR amplified using Phusion DNA polymerase (NEB) for
15 PCR cycles. After quantified by TBS380, the paired-end
RNA-seq sequencing library was sequenced with the Illu-
mina HiSeq Xten.

2.6.2. Data Preprocessing and Quantification of Gene
Expression Levels. The raw paired-end reads were trimmed
and quality controlled by SeqPrep (https://github.com/
jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/
sickle) with default parameters. Then, clean reads were sep-
arately aligned to the reference genome with orientation
mode (GRCh38.p13, http://asia.ensembl.org/Homo_
sapiens/Info/Index) using HIASAT (https://ccb.jhu.edu/
software/hisat2/index.shtml) software. The mapped reads
of each sample were assembled by StringTie (https://ccb
.jhu.edu/software/stringtie/index.shtml?t=example) in a
reference-based approach. And the expression level of each
transcript was calculated according to the Transcripts Per
Million reads (TPM) method based on the length of the gene
and the number of reads mapped to the gene. RSEM (http://
deweylab.biostat.wisc.edu/rsem/) was used to quantify gene
abundances.

2.6.3. Differential Expression Analysis and Functional
Enrichment. Differential expression analysis was performed
using the DESeq2. The P values were adjusted using Ben-
jamini and Hochberg’s approach for controlling the false
discovery rate. Genes with fold change ðFCÞ > 2 or <-2
and P value < 0.05 were considered to be significantly dif-
ferent expressed mRNAs (DEmRNAs). In addition,
functional-enrichment analyses including GO and KEGG
were performed to identify which DEGs were significantly
enriched in GO terms and metabolic pathways at Bonferroni-
corrected P value ≤ 0.05 compared with the whole-
transcriptome background. GO functional enrichment and
KEGG pathway analysis were carried out by Goatools
(https://github.com/tanghaibao/Goatools) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do).
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2.6.4. Combined Transcriptomics and Metabolomics
Analysis. Fisher’s exact test was used to carry out an enrich-
ment analysis of the two omics to improve the reliability of
the study and to identify the biological process most related
to biological phenomena. At the same time, the KEGG path-
way was visualized and analyzed, and the differential genes
obtained by transcriptomics were compared with those
obtained by transcriptomics. The differential metabolites
obtained by metabolomics are also mapped to a KEGG path-
way picture, so the differential metabolites and differential
genes are enriched to explore whether Cer has a relationship
with differential genes, and to explore the mechanism of its
low expression. From the perspective of side verification,
the authenticity of metabolomics data and the reliability of
the above differential metabolites are candidate biomarkers
for esophageal squamous cell carcinoma.

3. Results

3.1. Total Ion Chromatogram and Quality Control. Here, we
applied UPLC to obtain the metabolic profiles of the tissue
of 210 normal and cancer in the positive and negative ESI
models (Figure 1). In positive and negative ion mode, the
total ion chromatogram of the quality control sample and
the sample evaluation chart shows that under the detection
conditions, the peak shape is good, and the distribution is
relatively uniform (Figures 1(a) and 1(b)), and RSD < 0:3,
and the proportion of peaks > 90% (Figures 1(c) and 1(b)).
All data are indicated that the stability of the whole detection
process and the data are excellent, and the obtained data
could be used for the next analysis.

3.2. Sample Comparison and Pattern Discriminant Analysis.
After preprocessing the raw data obtained by UPLC-MS, a
total of 9,842 mass peaks were obtained (6482 in positive
ion mode, 3360 in negative ion mode), and total expression
and standard deviation and variance analysis of the expres-
sion data of 9842 ions were detected in all biological samples
(cancer and adjacent tissues both had 6 biological replicates).
The results (Figure 2) showed that the difference in the total
expression of metabolites between cancer tissue samples and
adjacent noncancerous tissue samples is small, and the P
value is more than 0.05, indicating that the difference is
not significant. It also indicated that the metabolites may
be systematic in the two samples, and different metabolites
have different expression trends in the tissues, resulting in
metabolic balance. Therefore, it is necessary to further ana-
lyze the metabolites with different specific expressions
between the experimental group and the control group.

Through the primary and secondary mass spectrometry
data, the number of annotated cationic substances was
finally 501 and the number of anionic substances was 334
in the library (self-built library, Metlin, HMDB, etc.). The
PCA analysis was performed for this (Figures 3(a) and 3(b)).
The results of QC samples were relatively concentrated, dem-
onstrating that the whole process of analysis was stable, and
there were significant differences between cancer and normal
samples, with significant differences in metabolic profiles
and good overall condition. The results of PLS-DA metabolite

profiling (Figures 3(c) and 3(e)) show that there were signifi-
cant differences in metabolomics data between cancer and
adjacent noncancerous tissue in the cationic mode
[R2X ðcumÞ = 0:639, R2Y ðcumÞ = 0:975, Q2 ðcumÞ = 0:95]
and the anionic mode [R2X ðcumÞ = 0:664, R2Y ðcumÞ =
0:949, Q2 ðcumÞ = 0:932]. Both modes underwent 200 per-
mutation tests, the results in cationic mode are shown in
Figure 3(d), R2Y = 0:6702, Q2Y = −0:4111, the results in
anionic mode are shown in Figure 3(f), R2Y = 0:6624, Q2Y
= −0:5455; and Q2 regression line showed an upward trend
in two modes, indicating that the model was robust and reli-
able, no overfitting occurred, and the PLS-DA model was
effective. The results of further OPLS-DA analysis showed that
there were no outlying samples and no significant within-
group differences (Figures 3(g) and 3(i)). In the cationic mode
(Figure 3(g)), the separation was better, and there were sig-
nificant metabolomics differences [R2X ðcumÞ = 0:635, R2Y
ðcumÞ = 0:998, Q2 ðcumÞ = 0:984], 200 permutation tests
were performed, and the results showed that R2 intercept
was 0.8294, and Q2 intercept was -0.1546 (Figure 3(h)).
Significant metabolic profile differences are also seen in
the same anionic mode [R2XðcumÞ = 0:637, R2YðcumÞ =
0:999, Q2ðcumÞ = 0:986] (Figure 3(i)), the results of 200
permutation tests were shown in Figure 3(j), the R2 inter-
cept was 0.8744, and the intercept of Q2 was -0.0711.
The above-obtained results indicate that there was no
“overfitting” of the model in the negative and positive ion
models and that the model was reliable and could be used
to distinguish tumors from normal tissue.

The comprehensive score plot showed that in more com-
plex multivariate models, the PLS-DA model outperformed
PCA in classification and separation, while the OPLS-DA
model had higher discrimination and prediction rates than
the former two.

3.3. Metabolic Pathway Analysis and Classification
Annotation. A total of 685 metabolites were annotated in
the preprocessed dataset alignment HMDB 4.0 database,
and all of them belonged to organic compounds in the
first-level kingdom classification, and then, the annotated
metabolites were classified according to different hierarchi-
cal levels (superclass, class, and subclass); names, the num-
ber of metabolites, and percentage of the selected HMDB
hierarchy are displayed (Supplementary Table 1). And the
classification of the same substance at different levels is
different. After metabolic pathway analysis, ten pathways
containing the highest number of identified metabolites were
selected, indicating that metabolites are more active in these
biological pathways (Figure 4); there are mainly neuroactive
ligand-receptor interaction, sphingolipid metabolism, central
carbon metabolism in cancer, linoleic acid metabolism, ABC
transporter, protein digestion, and absorption. It is suggested
that the above pathways play a key role in esophageal
squamous cell carcinoma.

3.4. Differential Metabolite Identification Results. After the
screening of the above conditions, a total of 269 differential
metabolites were obtained under the negative and positive
ion mode in the OPLS-DA model, and 164 metabolites were
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upregulated, and 105 were downregulated (Figure 5(a)). The
cluster analysis of metabolites was continued for these differ-
ential metabolites, showing that the trend of metabolite
expression was different between the two groups of samples;
the expression pattern was quite different obviously (Figure 6);
more importantly, KEGG pathway analysis enriched 48 chan-
nels, and 8 metabolic pathways were obtained after setting the
P value less than 0.05, and the analysis results showed that the
significant metabolic differences of ESCC tissues and normal
tissues were involved in choline metabolism (in cancer),
sphingolipid metabolism, glycerophospholipid metabolism,
sphingolipid signaling pathway, phenylalanine metabolism,
neuroactive ligand-receptor interaction, and the formation of
necroptosis and African trypanosomiasis (Figure 7), which
may be related to tumor pathogenesis, and the topological
analysis results showed that tryptophan metabolism, glycero-
phospholipid metabolism, sphingolipid metabolism, and
other pathways were significant abnormalities in ESCC, with

topological analysis of the tryptophan metabolic pathway hav-
ing the strongest influence (Table 3, Figure 8).

3.5. Potential Biomarker. Increasing the screening criteria FC
to greater than 2 resulted in representative differential
metabolites (Figures 5(b) and 5(c)), with 10 representative
differential metabolisms in the cationic mode, 3 in the
anionic mode, and in both modes, the number of metabo-
lites upregulated was 8 and downregulated was 5, and these
metabolites could be analyzed as potential diagnostic candi-
dates (Table 4), including 8 lipids and their related metabo-
lites, 2 alkaloids and derivatives, 2 organic acids and
derivatives, and 1 organic heterocyclic compound.

Clustering and VIP analysis of the 13 metabolites with
significant differences (Figure 9) showed that the expression
patterns of the 13 metabolites were quite different between
cancer tissues and normal tissues, with ganglioside GA2
(d18 : 1/9Z-18 : 1) having the highest VIP value, indicating
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that it contributed the most important to the differences
between the two groups.

The receiver-operator characteristic curve (ROC curve)
was used to deeply evaluate and analyze the differential abil-
ity of the above 13 potential biomarkers. Figure 10 showed
that the area under the curve (AUC) of all metabolites was
greater than 0.9, and the 95% confidence interval (CI) was
greater than 0.8. Therefore, these 13 metabolites with differ-
ent expressions had the potential to distinguish ESCC sam-
ples from the normal samples and could be used as
potential metabolic biomarkers;

3.6. Transcriptome Data Overview. The RNA quality of the
sample was qualified, and the sequencing quality was high.
After data preprocessing, the mapping efficiency was high.
A total of 84,630 transcripts were obtained for differential
analysis. Using DESeq2 software, with jlog 2FCj > 1, P adjust
< 0:05 as differential gene screening criteria for differential
analysis, 8549 differential mRNAs (DEmRNA) were obtained,
and 4138 mRNAs were upregulated, and 4366 mRNAs were
downregulated on tumors. The screened major DE mRNAs
were annotated by GO and KEGG, and a total of 55 GO path-
ways and 187 KEGG metabolic pathways were annotated
(Figure 11). The biological process (BP) pathways mainly
annotated by GO are cellular process (GO:0009987) and bio-
logical regulation (GO:0065007), indicating that these differen-
tial genes are mainly used to regulate biological processes; the
functional pathway with the most DE mRNAs annotated by
KEGG is the protein digestion and absorption pathway
(map04974) in the secondary category digestive system, includ-
ing 113 transcripts, indicating that the occurrence of esopha-
geal squamous cell carcinoma has the greatest impact on the
functions related to protein digestion and absorption. It may
be closely related to the clinical features of the patient’s signif-
icant weight loss in the later stage of the tumor (Figure 12).

3.7. Transcription-Metabolism Combined Omics Analysis of
Cer Metabolic Pathway. Using R language, the obtained dif-

ferential genes and differential metabolites are used for
KEGG pathway comparative analysis and enrichment analy-
sis, which not only compares the pathways involved in genes
in the transcriptome and the pathways involved in metabo-
lites in the metabolome but obtains the number of com-
monly involved pathways and also identifies the top 10
KEGG pathways with the largest number of identified differ-
ential genes, and differential metabolites were identified to
identify the biological processes most related to biological
phenomena (Figure 12). As shown in Figure 12(b), it can
be seen that there are more metabolites including Cer
enriched in the sphingosine pathway and the most enriched
genes in the protein digestion and absorption pathway.

Cer is one of the important lipids in esophageal
squamous cell carcinoma. The enrichment analysis of 13
representative differential metabolites found that only Cer
involved in the sphingolipid metabolism pathway was signif-
icant (Figure 12(b)). Therefore, we took Cer as the represen-
tative substance of this joint transcription-metabolism
analysis. We analyzed the sphingolipid metabolism pathway
in which CER participates through a joint transcription-
metabolism analysis and mapped the differential genes
obtained by transcriptomics and the differential metabolites
obtained by metabolomics into a pathway picture at the
same time, which can integrate pathway data intuitively
and comprehensively (Figure 13). Firstly, it is dehydroge-
nated from dihydroceramide (dhCer) by DEGS and then
forms SM through Golgi. SM enters lysosomes and can be
converted into lysosomes by acid sphingomyelinase
(ASMase). Cer is transported out of lysosomes and con-
verted to sphingosine by cytosine deaminase (CDase), while
sphingosine can also be converted back to Cer by ceramide
synthase (Cers); secondly, Cer plays an indispensable role
in the formation of cancer. For example, Cer affects apopto-
sis through the synthesis of p38 and can also be converted
into sphingosine to further affect the MAPK signal pathway
and PI3K-Akt signal pathway. Previous studies have shown
that these signal pathways are critical for tumors. Metabolo-
mics data shows that Cer (FC: 0.419) and SM (FC: 0.57) are
downregulated in tumors; sphingosine (FC: 1.08) and sphin-
gosine 1-phosphate (FC: 1.41) are upregulated. From the
transcriptomic data, the expressions of DEGS2 (FC:0.27)
and CDase (FC:0.09) were downregulated, while the expres-
sions of SMS, CerS, and A-SMases, which are related to Cer
synthesis and metabolism, did not change significantly.
Therefore, the decreased expression of Cer in esophageal
squamous cell carcinoma is due to less synthesis (decreased
expression of DEGS2) and increased metabolism (increased
expression of Sph and SIP). And we also enriched the sphin-
golipid biosynthetic process (GO: 0030148) in the GO
enrichment analysis of DEmRNAs. Therefore, we believe
that the transcriptome analysis results can indirectly confirm
the authenticity and reliability of the metabolomic data from
an upstream perspective.

4. Discussion

Esophageal squamous cell carcinoma (ESCC) is a complex
malignant tumor with a low degree of differentiation, high
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Figure 2: Comparison of total expression levels of metabolites
between cancer and adjacent noncancerous tissues.
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Figure 3: Continued.
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degree of malignancy, rapid growth rate, and a mortality rate
of up to 90%. By researching the metabolic state of malig-
nant ESCC tissues, we can obtain local information on path-
ologically altered tissues and gain insight into the biological
processes of ESCC. Therefore, to obtain the common and
universal differential metabolites of ESCC in this study, large
sample data were used to analyze the metabolic profiles of
paired tumor tissues using HPLC-TOF-MS/MS technology
to eliminate differences in age and gender. At the same time,
because esophageal squamous cell carcinoma has obvious
localized high incidence and epidemiological characteristics
related to regional dietary structure [7], only patients in
Zhenjiang, Jiangsu Province, was selected, and the region
was taken as a large variable, to obtain region-specific data

representative metabolites. From the analysis results, it was
found that the metabolic profiles of ESCC tissues and paired
normal tissues were significantly different. 685 metabolites
were annotated and active in the metabolic pathway of glyc-
erophospholipids after KEGG pathway analysis. Then,
OPLS-DA pattern discriminant analysis showed that 269
metabolites were differentially expressed, and they were
enriched into 48 metabolic pathways. After screening by P,
8 metabolic pathways were significant, most of them were
amino acid metabolism or lipid metabolism. The topological
analysis found that the tryptophan metabolic pathway had
the highest impact value; to further discover candidate
metabolites with specificity, sensitivity, and potential diag-
nostic significance, the screening criteria were increased to
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Figure 3: Multivariate analysis and identification by PCA, PLS-DA, and OPLS-DA. (a, b) Scatter plots analyzed by PCA; (c, e, g, i) PLS-DA
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FC > 2 and the discrimination ability was evaluated and ana-
lyzed. 13 biological metabolites were found to be potential
metabolic biomarkers to differentiate ESCC tissues from
normal tissues. And they have high confidence.

Cytochalasin was first isolated as a metabolite from the
long peristaltic genus when Tel and colleague Turner

screened anticancer drugs in the drug laboratory in 1964
[35]; more than ten species have been found so far, with
the main effects of inhibiting cytoplasmic division, inhibiting
cell motility and phagocytosis [36]. Both cytochalasin B (CB)
and cytochalasin D (CD) can induce malignant cells includ-
ing human esophageal cancer to form multinucleated cells,
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Figure 5: Volcano diagram of the difference between esophageal squamous cell carcinoma tissue and adjacent noncancerous tissue. (a)
volcano plot of differential metabolites between esophageal squamous cell carcinoma tissue and adjacent noncancerous tissue; (b)
volcano plot of representative differential metabolites in cationic mode; (c) volcano plot of representative differential metabolites in anion
mode. Note: log2FC is the fold change value of the difference in the expression of metabolites between the two groups; -log10 (P value)
is the statistics of the difference in the expression of metabolites.
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which are teratogenic [37–40]. The results of this study
found that the cytochalasin Ppho level in the tumor cytocha-
lasin family was increased, which has similar chemical struc-
tures as CB and CD. Somers and Murphey found that the
coincidence rate between CB multinucleated effects and
carcinogenesis in vivo was extremely large, indicating that

cytochalasin is associated with tumor formation [41]; later
study has found that four cytochalasins inhibit the energy
metabolism of tumor cells through the creatine metabolism
pathway, thereby playing an effective antiproliferative effect,
such as cytochalasin Q (CQ) [42]; cytochalasin P-1 was
found to be cytotoxic in four tumor cells from the marine
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Figure 6: Cluster analysis of 269 differential metabolites between esophageal squamous cell carcinoma tissue and adjacent noncancerous
tissue. Note: each column in the figure represents a sample, each row represents a metabolite, the right side is the name of the
metabolite, and the upper side is the name of the sample. The color in the figure represents the relative expression level of the
metabolites in this group of samples. For the changing trend of the specific expression level, see the numerical annotation under the
color bar at the lower right.
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fungus Charcoal sp., such as hepatic carcinoma and lung
cancer [43]. Therefore, whether cytochalasin is an advantage
or disadvantage for tumor formation, the specific mecha-
nism is still unknown. In the results of this study, it was
found that the level of cytochalasin Ppho (CP) in the cyto-
chalasin family was increased in tumor tissues compared
with normal tissues (Table 4). It has a chemical structure
similar to CB, CD, and CQ. The relationship between CP
and cancer has not been reported (including esophageal can-
cer). However, in this experiment, it was found that it was
significantly highly expressed in ESCC, suggesting that it
may have a similar function to CB, leading to the occurrence
of ESCC, or is one of the immune substances in the human

antitumor generation, like CQ. From the analysis of metabo-
lomic data, it can be concluded that CP has the potential as a
biomarker to distinguish cancer tissue from normal tissue,
which can be used for the subsequent detection of esopha-
geal squamous cell carcinoma. Dextrorphan O-glucuronide,
which is the same alkaloid and its derivatives, is a natural
human drug metabolite of dextrorphan produced by UDP-
glucuronosyltransferases (UGTs) in the liver, and dextror-
phan is commonly used for analgesia and belongs to the
antipyretic and analgesic drugs [44], so it is not an endogenous
metabolite and cannot be used as an endogenous metabolic
biomarker to diagnose esophageal cancer. Interestingly, in
the results of this experiment, the content of dextrorphan O-
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metabolites enriched in this pathway (metabolite number). The ratio of the number of metabolites annotated to the pathway
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Table 3: KEGG pathway topology analysis detailed table.

Pathway description Match-status (A|B) Impact value P value corrected

Tryptophan metabolism 3|56 0.2481 0.01486

Glycerophospholipid metabolism 3|48 0.1101 0.01284

Sphingolipid metabolism 3|21 0.0691 0.001685

Phenylalanine metabolizes 2|46 0.03904 0.08317

Phenylalanine, tyrosine, and tryptophan biosynthesis 2|33 0.03785 0.05449

Purine metabolism 2|81 0.02886 0.1624

Steroid hormone synthesis 2|89 0.01454 0.1506

Note: match-status indicates the situation that which the metabolites are involved in the pathway. A indicates the number of metabolites involved in the
pathway in the current metabolic set, and B indicates the total number of metabolites in the current pathway; impact value: the comprehensive
importance score of the pathway, with a total score of 1; P value corrected value is the corrected of the enrichment significance P value of metabolites
involved in the pathway.
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glucuronide in cancer tissues is significantly higher than that
in normal tissues (Table 4), and it was speculated that the rea-
son for its high expression may be that dextrorphan taken by
cancer patients due to pain tends to act on cancer tissues when
they are metabolized in vivo, suggesting that dextrorphan may
have the potential to be used as a drug carrier for targeting
esophageal cancer.

Both PE and PI belong to the class of glycerophospholip-
ids, which are the main components of biofilms and are
involved in regulating a variety of life activity processes.
Increasingly, basic studies have found that abnormal lipid
metabolism may be an important factor in the occurrence
and development of malignant tumors and is the potential
pathogenesis of a variety of tumors [45, 46]. In this study,
we found that glycerophospholipid metabolism was abnor-
mal in cancer tissues (Table 3), and the expression of PE
in cancer tissues was higher than in normal tissues, while
PI was opposite (Table 4), speculating that it may be related
to the metabolic pathway because it was found that the
interconversion between the metabolism of different phos-
pholipids, including PI and PE, constitutes a complex phos-
pholipid metabolic network (see the left side of Figure 12),
for example, phosphatidic acid (PA), as an important phos-
pholipid intermediate reactant or intermediate product,
could generate PE and PI, while PE could generate phospha-
tidylcholine (PC) through PEMT pathway, and PC could

interconvert with PS (phosphatidylserine) and sphingomye-
lin (SM), indicating that abnormal PC metabolism is a major
marker of cancer cells. Studies in a variety of cancers, includ-
ing ovarian and endometrial cancer, have shown that PCS
may differ between carcinomas and adjacent tissues [47, 48];
for example, the expression of PC was significantly downregu-
lated in squamous cervical cancer (SCC) patients compared
with uterine fibroids (UF) patients [49]. So, it is believed that
the PC metabolic pathway involved in PE may be necessary
for tumor growth and development, while the main pathway
of PC production is the conversion from PE to PC by the
PEMT enzyme. PEMT gene expression and activity are down-
regulated in patients with hepatic carcinoma [50], and PEMT
expression is significantly upregulated in patients with non-
small-cell lung cancer [51]. It indicates that the expression of
phospholipid metabolism in different types of tumors does
not necessarily have a unique direction. Therefore, it can be
further speculated that PEMT enzyme activity may be
decreased in esophageal cancer, and abnormal PCmetabolism
leads to the occurrence of esophageal cancer. Some studies
have suggested that PC metabolism-related metabolic
enzymes have the potential to act through or associate with
estrogen and its receptors [47, 48], and the specific mechanism
has not been clarified. Mass spectrometry results show that the
expression of PI in cancer tissues is reduced (Table 4), PI exists
in three alternative forms in vivo, PI, phosphatidylinositol 4-
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Table 4: Representative differential metabolites between esophageal squamous cell carcinoma tissue and adjacent noncancerous tissue.

Number Metabolite Formula ID
Retention

time
M/Z VIP P Exp FC

1 Cytochalasin Ppho C30H41NO6 HMDB0035368 7.30 510.28 2.31 0.00001057 ↑ 2.087

2 PE (15:0/20:1(11Z)) C40H78NO8P HMDB0008900 11.91 732.55 2.21 0.0001900 ↑ 2.125

3
Methyl 9,10-epoxy-12,15-

octadecadienoate
C19H32O3 LMFA01070012 7.41 309.24 1.79 0.005736 ↑ 2.057

4 Oleoyl glycine C20H37NO3 HMDB0013631 5.09 381.31 1.66 0.00000792 ↑ 2.099

5 Dextrorphan O-glucuronide C23H31NO7 HMDB0010341 3.01 398.19 1.50 0.002671 ↑ 2.473

6
Butyl (S)-3-hydroxybutyrate

glucoside
C14H26O8 HMDB0031694 6.27 303.14 2.02 0.00000238 ↓ 0.393

7
(R)-1-O-[b-D-Apiofuranosyl-(1->2)-
b-D-glucopyranoside]-1,3-octanediol

C22H40O9 HMDB0032798 5.77 473.21 1.58 0.001802 ↓ 0.466

8 2-Amino-5-phenylpyridine C12H10N2 HMDB0029747 3.10 212.11 1.70 0.00005654 ↓ 0.419

9 Cer (t18:0/16:0(2OH)) C34H69NO5 LMSP02030015 10.80 572.52 2.24 0.00009182 ↓ 0.386

10 Janthitrem G C39H51NO6 HMDB0030531 6.65 612.37 2.20 0.00007879 ↓ 0.451

11 PI (20:0/20:4(5Z,8Z,11Z,14Z)) C49H87O13P HMDB0009869 6.53 469.29 2.40 0.0000000019 ↓ 0.428

12 Ganglioside GA2 C56H102N2O18 HMDB0004889 6.48 557.35 2.17 0.004054 ↓ 0.404

13 13-Hydroxy-5′-O-methylmelledonal C24H30O9 HMDB0035864 5.10 507.15 1.53 0.003510 ↓ 0.453

Note: formula: chemical formula of metabolite; library ID: accession number of metabolites in the corresponding database; HMDB: HMDB database number;
LMSP and LMFA: lipid MAP database number; retention time: refers to the retention time of charged ions in the chromatogram; M/Z: mass charge ratio,
refers to the ratio of the mass of charged ion to the charge charged; VIP: VIP value of this metabolite in OPLS-DA model between the two groups; P: the
result of significance test of difference of this metabolite between the two groups; Exp: indicates that the expression level of the substance is upregulated in
cancer tissues; indicates that the expression level of the substance is downregulated in cancer tissues; FC: the fold change of differential expression of this
metabolite between the two groups; as well as CA/NO.
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phosphate (PIP), and phosphatidylinositol 4,5-diphosphate
(PIP2), and the reason for the downregulation of expression
may be that multiple factors lead to the formation of various
products such as PIP/PIP2 during cancer tissue cell prolifera-
tion, which is involved in the occurrence of cancer, and the
expression of PI3K enzyme content is significantly increased
in esophageal squamous cell carcinoma [52–54]; PI3K can
phosphorylate the third carbon atom on the PI inositol ring
so that the formed products have the functions of promoting
cell proliferation and enhancing resistance to apoptosis, which
have important effects on the occurrence and development of
cancer. Multiple studies have shown that increased PI metab-
olism is closely related to growth [55, 56]. The decrease in the

expression of PI in this study reflects the increase in the con-
tent of the PI3K enzyme. Therefore, it confirms the results of
other studies. It can also be proposed to use PI and PI3K
enzymes as a combined marker to jointly diagnose ESCC to
achieve higher sensitivity and accuracy and precision medical
testing.

In addition to phospholipids, lipids also include sphin-
golipids, such as ceramide (Cer) and sphingomyelin (SM),
and mass spectrometry results show that ceramide levels
are decreased, and sphingolipid metabolism is abnormal in
tumor tissues compared with normal tissues (Table 3 and
Table 4). Cer is closely related to cell growth, senescence,
apoptosis, and other life cycle-related activities and is
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Figure 10: Plot of ROC curve analysis for 13 significant differential metabolites. (a–m) [(a) cytochalasin Ppho; (b) PE (15:0/20:1(11Z));
(c) methyl 9,10-epoxy-12,15-octadecadienoate; (d) oleoyl glycine; (e) dextrorphan O-glucuronide; (f) butyl (S)-3-hydroxybutyrate
glucoside; (g) (R)-1-O-[b-D-apiofuranosyl-(1->2)-b-D-glucopyranoside]-1,3-octanediol; (h) 2-amino-5-phenylpyridine; (i) Cer (t18:0/
16:0(2OH)); (j) janthitrem G; (k) PI (20:0/20:4(5Z,8Z,11Z,14Z)); (l) ganglioside GA2 (d18:1/9Z-18:1); (m) 13-hydroxy-5′-O-
methylmelledonal]. Note: The X-axis is 1-specificity; Y-axis is sensitivity; the point indicated on the curve is the optimal critical value; the
“bar” on the point is the corresponding point confidence interval of specificity and sensitivity; AUC indicated in the figure is the area
under the corresponding curve.
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considered to be one of the tumor inhibitors [57]. Abnormal
expression of ceramide has been found in many cancer tis-
sues. In ovarian cancer, it is found that the total Cer content
of cancer tissues is reduced compared with paired normal
tissues; thus, reducing the apoptosis of tumor cells and pro-
moting tumor development, as well as Cer in clinical sam-
ples, the reduction is associated with malignancy and poor
prognosis of astrocytomas [58]. In head and neck squamous
cell carcinoma, the expression of cl8-Cer is significantly
reduced [59]; in addition, Cer metabolism-related enzymes,
such as neutral SM hydrolase 2 (nSMase2 or SMPD3), can
increase the level of Cer by hydrolyzing SM to inhibit cell
proliferation and prolong cell cycle. However, the relation-
ship between esophageal squamous cell carcinoma and cer-
amide has not been supported by the literature. From the
results of this study, it can be known that the content of
Cer (t18:0/16 : 0(2OH)) in esophageal squamous cell carci-
noma is lower than that in matched normal tissues. Therefore,
combined with the expression of Cer in other cancer tissues, it
is proposed that the total Cer content in tissues is one of the
criteria for judging ESCC and adjacent cancer [60, 61]. At
the same time, the results of transcriptome and metabolomic
analysis showed that the inhibition of Cer anabolic enzymes

and the activation of catabolic enzymes led to the loss of Cer
in esophageal cancer tissues, suggesting that the loss of Cer
anabolic enzyme expression in esophageal squamous cell car-
cinoma is passive selection during disease progression.

Gangliosides (GLS) are sialic acid-containing glyco-
sphingolipids distributed on the surface of various tissue
cells. It is located on the cell membrane mainly by inserting
the hydrophobic ceramide part into the outer plasma mem-
brane of the lipid double molecule layer, and its oligosaccha-
ride part is exposed to the cell surface, which can interact
with other components of the cell membrane, such as adhe-
sion molecules and receptors [62], regulate receptor-
mediated signal transmembrane transmission, and thus, reg-
ulate cell differentiation and motility and migration. GLS is
involved in tumor cell metastasis and development [63,
64]. Monosialoganglioside GM2 in GLS can downregulate
the phosphorylation of EGFR at position 1045, inhibit the
phosphorylation of growth factors and the activation of
growth factors, and then, inhibit the motility and migration
of tumor cells [64–66]; GM2 (also known as GA2) expres-
sion level is lower in cancer tissues, and the ability to inhibit
cell growth is poor. At the same time, it can block the infor-
mation transmission of nucleic acid factors in the early stage
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of tumor necrosis factor (TNF) transcription, interrupt the
information transmission, and inhibit the production of
TNF by cells. The simultaneous action of the two leads to
abnormal cell proliferation and weakens the immune capac-
ity of patients [67]. There have been early reports on the use
of the GM3 :GD3 ratio as an indicator for early diagnosis of
melanoma and dynamic observation of efficacy [68], indicat-
ing that it is feasible to use ganglioside GM2 as a clinical
diagnosis; therefore, in this study, it was found that the con-
tent of ganglioside GA2 (also called ganglioside GM2, GM2)
was reduced (Table 4), and the ability to inhibit cell growth
was weakened, leading to the occurrence of ESCC. There-
fore, the content of GM2 in tissue can be used as one of
the markers for the diagnosis of esophageal cancer, and
GM2 may also become one of the targets of ESCC therapy.

The significant differential metabolites belonging to both
lipids and analogs also include 13-hydroxy-5′-O-methyl-
melledona, which is a class of lipids that exist in both the cell

membrane system, intracellular and extracellular, and widely
distributed [69, 70]; 13-hydroxy-5′-O-methylmelledona is
involved in many cell life activities and has a certain inhibi-
tory effect on cell proliferation [69]. In this study, it was
found that the expression level of 13-hydroxy-5′-O-methyl-
melledona in cancer tissues was lower than that in normal
tissues (Table 4). It was speculated that 13-hydroxy-5′-O-
methylmelledona may have peroxidation of free radicals in
cancer tissues, resulting in high concentrations of lipid per-
oxide (LPO), inducing cellular DNA damage which causes
cellular senescence and tumor production, resulting in its
decreased expression; meanwhile, studies have demonstrated
that the concentration of LPO in thyroid cancer tissues and
esophageal cancer cells is indeed significantly higher than
that in normal tissues [70–74]. Significant differential
metabolites that are also involved in lipid peroxidation and
have cell membrane stabilizing functions are butyl (S)-3-
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hydroxybutyrate glucoside and (R)-1-O-[b-D-apiofurano-
syl-(1->2)-b-D-glucopyranoside]-1,3-octanedio (Table 4)
[69], both of which are present in body fluids and on cell
membranes and can be excreted through urine; the ROC
analysis of both is greater than 0.9, and the results are good.
It is speculated that the three lipids can be used as biomark-
ers and combined analysis of LPO levels in tissues to distin-
guish esophageal cancer from adjacent tissues.

Oleoyl glycine (OLGly) is upregulated in esophageal
cancer tissues by HPLC-MS results (Table 4). It is an endog-
enous organic acid and an analog distributed on the cell
membrane [70] and has biological effects such as regulating
body temperature and exercise in rats [75] and increasing
insulin sensitivity [76]. Metabolomics examination of secre-
tions from patients with colorectal cancer revealed that
OLGly was abnormally expressed in the feces of patients
with cancer and was considered to be associated with cancer
[77]. OLGly treatment of cell experiments revealed that
OLGly could dose-dependently promote protein production
to increase total cellular protein content [78], speculating
that the increased expression of OLGly in esophageal cancer
tissues endogenously promotes protein synthesis and pro-
vides raw materials for the continuous proliferation of can-
cer cells. Therefore, in future research, we can focus on
whether the occurrence of esophageal cancer is related to
the increase of OLGly. If so, OLGly can be used as both a
marker for the diagnosis of esophageal cancer and a target
for treatment.

The differential metabolites belonging to organic acids
and analogs also include Janthitrem G, which is structurally

similar to NLF-ii, is involved in the process of cell signal
transduction, and has the effect of a cell membrane stabi-
lizer. The results showed that the expression in cancer tis-
sues was lower than that in normal tissues (Table 4). Some
studies predicted that it was related to epilepsy caused by
neoplastic effects on the brain, spinal cord, or peripheral
nerves, resulting in sudden and involuntary skeletal muscle
contraction of the brain or brainstem origin [70]. But its
association with the mechanism of tumorigenesis has not
been specifically studied.

In esophageal cancer tissues, 2-amino-5-phenylpyridine
(Phe-P-1, 2-APP) was found to be downregulated, as it
belongs to an endogenous mutagenic aromatic amine in
the metabolism of phenylalanine in the differential meta-
bolic pathway [79]; it is a pyrolysis product of phenylalanine
in protein, which is mutagenic to strains and can be used as
an initiator for the second-stage mouse skin model [80], and
is similar in structure to 4-aminobiphenyl (4-ABP), an aro-
matic amine carcinogen that can induce human bladder can-
cer [81]. It is speculated that it may also interact with DNA
leading to the occurrence of cancer resulting in reduced
expression [82].

Methyl 9, 10-epoxy-12, 15-octadecadienoate have not
yet been reported, but it was first found to be upregulated
in esophageal cancer in this experiment.

5. Conclusion

The metabolic complexity of ESCC is evident, affecting
myriad metabolites and metabolic pathways. Therefore, we
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believe that relying on a metabolic biomarker to comprehen-
sively reflect the pathological state of ESCC is difficult to
provide a high enough diagnostic value. Therefore, com-
bined biomarkers are the trend in the future diagnosis of
ESCC [83, 84]. And its successful application in the predic-
tion of colorectal cancer and urinary bladder cancer has
been reported [84, 85]. Multiomics technology can perform
large-scale and comprehensive detection of tissue, blood,
and other samples, so it is inevitable to use multiomics tech-
nology to find potential biomarkers. From the differences in
the metabolic profiles of esophageal squamous cell carci-
noma tumor tissue and normal tissue in this experiment,
we learned that, as a metabolic disease, esophageal squa-
mous cell carcinoma is closely related to the metabolic
reprogramming and metabolic pathways of various sub-
stances. Figure 14 shows that 12 potential biomarkers that
are significantly upregulated (red) or downregulated (blue)
are mainly related to biological processes such as lipid
metabolism, immune-related regulation, phenylalanine met-
abolic pathways, and cell proliferation [86, 87]. Importantly,
we found that these twelve significantly different substances
have the potential to be diagnostic biomarkers for ESCC in
the future, and transcriptomic analysis also confirmed the
reliability of the metabolic profile. However, there is still a
considerable distance for differential metabolites to become
biomarkers or combined biomarkers for clinical use, but
our study provides a preliminary validated candidate for
the next biomarker research. In addition, this study further
explored the metabolic reprogramming characteristics of
esophageal squamous cell carcinoma in high-incidence areas
of China, which has reference significance for exploring the
pathogenesis of esophageal squamous cell carcinoma.
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