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There is increasing evidence that sex differences in the brain may contribute to gender-
related behavioral differences, including cognitive function. Literature has revealed
gender dimorphisms in cognitive function between males and females. Additionally,
several risk factors associated with cognitive decline depend on chronological age. It
is well recognized that the process of aging is associated with a decline in cognitive
ability and brain function. Various explanations may account for these gender-related
cognitive differences and age-associated cognitive changes. Recent investigations have
highlighted the importance of vitamin C in maintaining brain health and its association
with cognitive function in both cognitively intact and impaired cohorts. The present
review explores previous literature that has evaluated differences in plasma/brain vitamin
C between genders and during aging. It then assesses whether these age and
gender-related differences may affect the relationship between plasma/brain vitamin
C and cognition. The purpose of this review was to examine the evidence for
a link between plasma/brain vitamin C and cognition and the impact of gender
and age on this relationship. Epidemiological studies have frequently shown higher
vitamin C plasma concentrations in women. Similarly, aging has been systematically
associated with reductions in plasma vitamin C levels. A range of animal studies has
demonstrated potential gender and age-related differences in vitamin C brain distribution
and utilization. The reviewed literature suggests that gender differences in plasma and
brain vitamin C may potentially contribute to differences in gender-associated cognitive
ability, particularly while females are pre-menopausal. Additionally, we can propose that
age-associated differences in plasma and brain vitamin C may be potentially linked to
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age-associated cognitive differences, with older cohorts appearing more vulnerable to
experience declines in plasma vitamin C concentrations alongside compromised vitamin
C brain regulation. This review encourages future investigations to take into account
both gender and age when assessing the link between plasma vitamin C concentrations
and cognitive function. Further large scale investigations are required to assess whether
differences in cognitive function between genders and age groups may be causally
attributed to plasma vitamin C status and brain distribution and utilization.

Keywords: ascorbic acid, cognition, central nervous system, dimorphism, aging

INTRODUCTION

For centuries, scientists have been fascinated by differences
in gender-related behaviors, particularly cognitive function.
Differences in cognitive performance between cognitively intact
gender groups have been demonstrated (Linn and Petersen,
1985) with comprehensive meta-analyses revealing that (Hyde,
2005; Lindberg et al., 2010) women outperform men on tasks
relating to verbal memory, verbal recognition, and semantic
fluency (Linn and Petersen, 1985). While women have higher
attention (Liu et al., 2013) and inhibition (Yuan et al., 2008),
males tend to demonstrate a higher visuospatial ability (de
Frias et al., 2006) and complex visual-spatial episodic memory
(Andreano and Cahill, 2009). Numerous explanations have
been postulated for the cognitive differences (Gur et al., 1999;
Janowsky, 2006; Cosgrove et al., 2007; Kander et al., 2017) but
have not been confirmed.

There is a clear age-associated decline in cognitive ability
(Murman, 2015). Multiple underlying pathophysiologies that are
associated with cognitive decline depend on chronological age
(years since birth), many of which arise during midlife (Legdeur
et al., 2018). From early adulthood, there are declines in several
cognitive domains such as processing speed, reasoning, memory,
and executive functions, some of which are underpinned
by a decline in a general cognitive function (Deary et al.,
2009). Structural and functional changes in the brain correlate
with these age-related cognitive changes, including alterations
in neuronal structure, loss of synapses, and dysfunction of
neuronal networks (Murman, 2015). Although various structural
differences have been identified during aging, numerous
factors involved in preventing these changes and potentially
preserving cognitive decline across the lifespan have become
of interest.

Variations in nutritional status, within both blood and brain
tissue, amongst different ages and genders may be linked to
cognitive changes throughout the life span as well as potentially
influence cognitive differences between males and females. This
may encompass a variety of nutrients, including vitamin C, which
has been studied in both animalmodels and humans, displaying a
possible association with the various vital central nervous system
and cognitive functions (Kocot et al., 2017).

The present review highlights the results from previous
investigations that have assessed the pharmacokinetics and
biological roles of vitamin C on the central nervous system and
the link between plasma vitamin C and cognitive function. This

is followed by an assessment of studies that have investigated
the differences in plasma vitamin C concentrations between
genders and during aging. This is followed by an evaluation
of whether age and gender may play a role in the relationship
between plasma/brain vitamin C and cognition. The purpose
of this review was to examine the evidence for an association
between plasma/brain vitamin C and cognition which may be
affected by gender and age.

Vitamin C and Its Central Nervous System
Functions
A vast array of nutrients have been implemented to play roles in
cognitive function (Kidd, 1999; Gómez-Pinilla, 2008), including
vitamin C (Travica et al., 2017). Ascorbic acid, the reduced form
of vitamin C, is a potent water-soluble antioxidant, not being
synthesized in any human tissues, including the brain. Studies
have demonstrated the vitamin’s key role in neuromodulation, by
being involved as a cofactor for the synthesis of catecholamines
(Gupta et al., 2014), serotonin (Gupta et al., 2014) and synaptic
release of acetylcholine (Kuo et al., 1979). The vitamin has
further been implicated in neurodevelopment (Hansen et al.,
2014), stimulation of brain-derived neurotrophic factor (Grant
et al., 2005), cardiovascular support through collagen production,
angiogenesis, reduced nitric oxide metabolism, and neuronal
energy production and sustainability through the biosynthesis of
carnitine (Johnston et al., 2006).

Vitamin C’s neuroprotective roles include prevention of
neuronal overstimulation by glutamate (excitotoxicity; Qiu
et al., 2007); regeneration of other antioxidants such as
urate, glutathione, β-carotene, and α-tocopherol (vitamin E;
Lykkesfeldt et al., 2007); reduction of lipid peroxidation (May
and Qu, 2010); and the reduction of pro-inflammatory cytokines
by binding onto nuclear factor kappa B (NF-kB; Bowie and
O’Neill, 2000). Both in vitro and in vivo experiments have
supported the vitamin’s crucial role in the brain as a scavenger
of reactive oxygen species (ROS; Duarte and Lunec, 2005).

Vitamin C Transport and Distribution into
the Central Nervous System
Human autopsy studies have indicated that vitamin C is most
abundant in the cerebral cortex, hippocampus, and amygdala
(Oke et al., 1987). Ascorbic acid is maintained at concentrations
as high as 10mM in neurons, 100 times higher than those present
in the circulating plasma (Rice, 2000), suggestive of the vitamin’s

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 August 2020 | Volume 14 | Article 47

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Travica et al. Gender, Age, Vitamin C and Cognition

FIGURE 1 | A two-stage uptake mechanism from blood to cerebrospinal fluid (CSF) and from CSF to neuron. Ascorbic acid is transported by an active mechanism
from plasma into CSF and from CSF into the neuron through SVCT2, whereas dehydroascorbic acid is transported through GLUT1 and GLUT 3 (glucose receptors).
Concentrations of ascorbate range between 100–500 µmol/L within CSF and extracellular space, eventually reaching concentrations as high as 10 mM within
neurons. There is an efflux of neuronal ascorbic acid following synaptic activity and secretion of excitatory amino acids. GLUT1, Glucose transporter 1; GLUT3,
Glucose transporter 3; SVCT2, Sodium dependent vitamin transporter 2; µmol/L, Micromole per liter; mM, Millimole.

importance in brain functioning. These high concentrations are
a result of extracellular dehydroascorbic acid (DHAA-oxidized
ascorbate) being recycled by glutathione dependant reductases
(e.g., glutathione-disulfide reductase) and nicotinamide adenine
dinucleotide phosphate (NADPH), within astrocytes, back into
ascorbate and being compartmentalized into neurons and reused
intracellularly (Covarrubias-Pinto et al., 2015). Based on animal
research, concentrations can change depending on brain activity
and circadian rhythms, with studies demonstrating a neuronal
efflux and increase in extracellular ascorbate levels following
synaptic activity (depolarization), the secretion of excitatory
amino acids (glutamate and aspartate; Dodd and Bradford, 1974)
and possible co-release with catecholamines (Figure 1).

A range of factors influences CNS vitamin C distribution,
including aging that is associated with depletion of vitamin C
in brain tissue, especially within the cerebral cortex, pituitary
gland, and hippocampus (Schaus, 1957; Siqueira et al., 2011).
Additionally, the glucose transporter (GLUT) which also
transports DHAA is competitively inhibited by glucose, with
excess glucose in plasma or intestine blocking the receptor-
binding site and decreasing GLUT-facilitated DHAA transport
(Wilson, 2003).

Several studies have examined the relationship between
vitamin C concentrations in plasma and the CNS. An active
transport mechanism conveys plasma vitamin C predominantly
through the choroid plexus, into the cerebrospinal fluid (CSF),
where ascorbate concentrations are 2.5–4 times higher than in
plasma. From the CSF, ascorbate diffuses into extracellular fluid
(ECF) which maintains equal concentrations of ascorbate and

provides the ascorbate for neuronal uptake (Rice, 2000). Despite
wide fluctuations of plasma ascorbate levels, CSF concentrations
have been shown to remain relatively stable (Paraskevas et al.,
1997). Under conditions of ascorbic acid deficiency, the brain
content of ascorbic acid is retained tenaciously, with decreases
of less than 2% per day (Rice, 2000).

A recent in vivo study displayed that the choroid plexus
is a vital peripheral and brain circadian clock, suggestive of a
circadian rhythm of vitamin C availability and homeostasis in
the brain (Myung et al., 2018) and that peripheral feedback to the
brain may be modulated by circadian time. Additional factors,
discussed below may contribute to the distribution of vitamin C
within the brain.

Although higher plasma vitamin C concentrations are
generally associated with higher CSF levels (Tallaksen et al.,
1992), CSF concentrations start to plateau once blood
concentrations surpass 45 µmol/L (Paraskevas et al., 1997).
Interestingly, studies have demonstrated a higher CSF-to-
plasma ratio in patients with Alzheimer’s disease and major
depression as compared to healthy controls (Bowman et al., 2009;
Hashimoto et al., 2017). This may reflect an increased utilization
of ascorbate by the stressed brain, leading to lower plasma levels
(Reiber et al., 1993; Bowman et al., 2009; Hashimoto et al.,
2017), or the increased release of ascorbate into extracellular
neuronal spaces (Ghasemzedah et al., 1991). One study (Barabás
et al., 1995) demonstrated the ratio of dehydroascorbic acid
to ascorbate to be higher in CSF than within blood plasma
in patients with senile dementia, suggestive of the increased
oxidation of ascorbate in the CNS.
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Plasma Vitamin C and Cognitive Function
Given the extensive literature on the biological effects of
vitamin C on the CNS, several different human clinical trials
have assessed whether plasma vitamin C concentrations affect
cognitive function. A meta-analysis of prospective cohort studies
showed that the relative risk for dementia was significantly
decreased with a higher intake of vitamin C [RR: 0.89 (95% CI:
0.74, 1.06); p = 0.192; Cao et al., 2016]. Another meta-analysis
assessing plasma vitamin C concentrations in patients with
Alzheimer’s disease showed significantly lower values of plasma-
based vitamin C (−33%) than those of healthy controls (da Silva
et al., 2014).

Based on 50 studies, our recent systematic review examined
the link between plasma vitamin C concentrations and cognitive
function (Travica et al., 2017). Results revealed higher mean
plasma vitamin C concentrations in cognitively intact cohorts
compared to those cohorts that were cognitively impaired
(Travica et al., 2017). A further qualitative assessment revealed
a potential association between plasma vitamin C concentrations
and cognition in cognitively intact participants with the need for
further research that utilized plasma vitamin C concentrations
and sensitive cognitive assessments that would be suitable for
cognitively intact adults.

In our recent cross-sectional study, cognitively intact
participants presenting with adequate plasma vitamin C
levels (≥28 µmol/L), as compared with those with deficient
levels (<28 µmol/L), demonstrated significantly better
performance on age-sensitive cognitive assessments involving
immediate and delayed recall, attention, focus and recognition
(Travica et al., 2019). Additionally, a recent randomized
controlled trial (Denniss et al., 2019) assessed the effect of a
multivitamin/mineral supplement with vitamin C on cognitive
function over 8 weeks, in middle-aged adults that revealed
significant improvements in verbal and visual memory, visual-
motor performance and processing speed. Nonetheless, larger-
scale studies, particularly randomized controlled trials, would
help reinforce the link between plasma vitamin C and cognition.

GENDER REGULATION

Plasma vitamin C variability between males and females has
been explored by animal and human studies. Additionally,
preliminary studies have examined gender differences in

brain ascorbate content and potential factors involved in
changing the vitamin distribution and utilization in the brain
between genders. A handful of clinical studies have explored
a potential interaction between age, plasma vitamin C, and
cognitive function.

Plasma Vitamin C Gender Dimorphisms
A summary of human clinical studies comparing plasma vitamin
C concentrations between gender groups is displayed in Table 1.
Epidemiological studies have frequently shown higher vitamin C
serum/plasma concentrations in women than in men (Birlouez-
Aragon et al., 2001; Hampl et al., 2004; Schleicher et al., 2009).
Furthermore, with equal vitamin C intake, women achieve
higher serum/plasma concentrations than men (Levine et al.,
2001; Schleicher et al., 2009). The recent CHALICE study
(n = 389) demonstrated substantially lower mean plasma vitamin
C concentrations in men than in women (M = 47.40 µmol/L
vs. 40.60 µmol/L, p = 0.005) with significantly higher rates
of deficiency in men (Pearson et al., 2017). Male gender has
also been identified as a risk factor for vitamin C deficiency in
hospitalized patients (Fain et al., 2003).

Based on our recent cross-sectional study (Travica et al.,
2019) which assessed plasma vitamin C concentrations and
cognitive function, a retrospective pilot analysis revealed a
marginal, non-significant difference in mean plasma vitamin C
levels between genders (males 44.46 µmol/L ± 4.43, females
48.45 µmol/L ± 3.13, p = 0.46; Travica et al., 2020). The
percentage of males presenting with deficient plasma vitamin
C levels (26%) was higher than the deficiency rates of female
participants (11%). Those presenting with adequate levels
comprised predominantly of females, consisting of 47 females
(70%) and 20 males (30%). Additional analyses revealed that the
proportion of females with adequate plasma vitamin C levels was
higher than males (p = 0.001).

Overall, no conclusive gender-related mechanistic differences
in the pharmacokinetics of vitamin C have been observed
in humans (Counsell and Hornig, 1981; Garry et al., 1982;
Blanchard, 1991; Bachar et al., 2016). Although higher urinary
excretion of vitamin C has been demonstrated in male rats
(Kuo et al., 2004), the expression of vitamin C transporters
localized in the proximal tubule brush-border exhibited
no differences in their expression between gender groups
(Kuo et al., 2004). The tubular maximum reabsorptions
and renal thresholds for ascorbic acid are lower in females

TABLE 1 | Summary of human clinical studies comparing plasma vitamin C concentrations between gender groups.

Study/Year Sample size Age group Health status Result

Birlouez-Aragon et al. (2001) 2,584 >60 years Healthy Males 31.6 µmol/L vs. females 40.3 µmol/L, p = 0.001
Hampl et al. (2004) 15,769 12–74 years Healthy Females exhibited a higher mean serum vitamin C concentration at every age group.
Schleicher et al. (2009) 7,277 >6 years Healthy Females reported higher mean serum vitamin C concentration at every age group,

particularly in those of 60 years.
Pearson et al. (2017) 404 50 years Healthy 45.1% of females and 28.7% of males presented with adequate vitamin C
Ness et al. (1996) 1,018 40–59 years Healthy Fasting plasma vitamin C levels were significantly higher in women
Fain et al. (2003) 184 >18 years Hospitalized Hospitalized males presented with significantly lower mean serum vitamin C

concentrations.
Travica et al. (2019) 80 >18 years Healthy Females slightly higher concentrations (p = 0.46), adequate plasma levels =

47 females (70%) vs. 20 males (30%)
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(86 µmol/L vs. 71 µmol/L; Bachar et al., 2016), suggesting
that plasma differences are not explained by differences
in the renal handling of ascorbic acid (Oreopoulos et al.,
1993).

One proposed mechanism may be variability in the section
of cortisol between males and females, with various studies
demonstrating higher salivary and plasma cortisol levels (Van
Cauter et al., 1996; Seeman et al., 2001). There appeared
to be a strong inverse correlation between the ability of an
animal to endogenously produce vitamin C and the cortisol
response (Hooper et al., 2019). This is observed in guinea pigs
that are made deficient in vitamin C hyper-secrete cortisol
(Enwonwu et al., 1995) and vitamin C supplementation reducing
cortisol levels (Brody et al., 2002). However, a study is yet to
directly explore the link between cortisol, and gender plasma
vitamin C.

A handful of studies have explored the effects of sex
hormones on plasma vitamin C concentrations. Some of the
first evidence to postulate a link between hormones and
plasma vitamin C came from a rat model which reported
that adrenalectomy decreases ascorbic acid and dehydroascorbic
acid in the rat liver, the organ primarily responsible for the
synthesis and secretion of ascorbate into plasma (Nathani et al.,
1971). This investigation was indicative of the importance
that adrenal corticoids play in ascorbic acid metabolism.
The same authors indicated that mineralocorticoids, such as
aldosterone, can influence the metabolism of liver ascorbic
acid by reducing the activities of ascorbate degrading enzymes,
with its insufficiency possibly being related to elevated ascorbic
liver catabolism in males (Nathani and Nath, 1972) and
consequently, lower plasma concentrations. Castration in rats
was found to lead to a decrease in the activities of biosynthetic
enzymes within the liver of ascorbic acid. Additionally,
testosterone was also found to restore the increased activity of
both renal and hepatic dehydroascorbate following castration
(Khandwekar et al., 1974).

One study using female guinea pigs has shown estinyl and
progestogen containing contraceptives to reduce circulating
ascorbate concentrations (Basu et al., 1974) and estinyl alone to
reduce plasma and liver ascorbate concentrations (Basu et al.,
1986). The authors hypothesized that these results may be
due to these hormones increasing ascorbic acid oxidation and
impairing its gastrointestinal absorption. These older studies,
primarily restricted to animal studies, demonstrate a potential
involvement of hormones in affecting circulating plasma vitamin
C concentrations and may potentially play a role in the observed
differences in plasma vitamin C concentrations between males
and females.

One recent study aimed to assess the effects of gender on
serum ascorbate circadian rhythms in humans by collecting
serum ascorbate from 162 participants every 6 h for 24 h (Singh
et al., 2018). Circadian rhythm characteristics including rhythm-
adjusted mean (MESOR) and circadian acrophase (timing of
overall high ascorbate values recurring each day) were compared
between males and females. However, no gender differences
were overserved in these serum circadian rhythm characteristics
(Singh et al., 2018).

Recent studies indicate that body weight is considered to
be an essential factor for gender-related differences in the
pharmacokinetics of vitamin C [German Nutrition Society
(DGE) (2015)]. A recent study demonstrated/showed that a
higher absolute fat-free mass (FFM) to muscle mass ratio, and
thus a higher distribution volume of vitamin C, contributes to
lower vitamin C plasma concentrations in men than women
(Jungert and Neuhäuser-Berthold, 2015). However, the observed
depleted vitamin C levels in obesity are associated with indirect
risk factors such as ROS, reduced cardiovascular health, and poor
nutrition (Fernández-Sánchez et al., 2011).

Possible lifestyle differences between gender groups may also
play a role. Some of these include higher levels of physical
activity, alcohol consumption, and smoking amongst males and
higher intake of vitamin C containing foods and supplements
amongst females (Galan et al., 2005; Jungert and Neuhäuser-
Berthold, 2015). Excessive alcohol consumption and smoking
have been systematically identified as risk factors for vitamin
C deficiency (Lim et al., 2018), leading to the decreased
consumption of vitamin C containing foods and increased
oxidative stress which biochemically depletes plasma vitamin
C concentrations (Schectman et al., 1989). Physical activity,
including exercise, has been shown to cause a decline in plasma
vitamin C below pre-activity levels during the days following
prolonged physical activity (Peake, 2003). This may be a result
of physical activity-induced oxidative stress.

Major studies have estimated that only 21–37% of men and
29–45% of women aged 65 and older achieve the recommended
fruit and vegetable intake per day (Drewnowski and Shultz,
2001). These differences suggest that increased ROS leads to
possible vitamin C utilization in males compared to females. As
a consequence, studies have recommended higher daily intakes
of vitamin C for males [Levine et al., 2001; German Nutrition
Society (DGE), 2015].

Vitamin C Brain Tissue Gender
Dimorphisms
Predominantly animal studies have investigated whether there
may be a presence of gender-related differences of vitamin C
concentrations in brain tissue. Several studies have revealed
female rats have lower basal brain ascorbate concentrations
compared to males (Ferris et al., 1995; Kume-Kick et al., 1996).

One of these rat models demonstrated that although male
rats had higher cortical vitamin C concentrations (by 7–10%),
they demonstrated a greater cerebral vitamin C loss in response
to stress and ROS generated during ischemia than females
(Ferris et al., 1995).

Male mice with induced Huntington disease (HD) exhibited
a 20–40% decrease in striatal ascorbate during behavioral
activation that was not observed in females (Dorner et al., 2007).
This may have been attributed to higher hypokinesia and a
higher susceptibility to oxidative stress within the striatum in
males. The authors further postulated that gonadal hormones
such as estrogen may contribute to the differences and play
a role in modulating striatal ascorbate release. A suggested
mechanism is that estrogen could have been involved in the
inhibition of striatal oxidative stress associated with HD and
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(Dorner et al., 2007) preventing glutamate excitotoxicity by direct
inhibition of N methyl D aspartate (NMDA) receptors (Weaver
et al., 1997).

One study revealed higher basal brain ascorbate
concentrations in male rats. However, following gonadectomy,
it appeared that loss of the female sex hormones caused a
significant ascorbate increase in brain tissue (specifically the
hippocampus and cerebellum), comparable to levels in males
(Kume-Kick et al., 1996), which was indicative of increased
oxidative stress. Moreover, following the induction of oxidative
stress through ischemia, female rats who did not undergo
gonadectomy experienced three times less brain ascorbate
loss than males, whereas increased ascorbate loss was seen in
all of these brain regions in females who had undergone the
gonadectomy (Kume-Kick et al., 1996). However, only a small
subgroup of those who had undergone the gonadectomy was
also subjected to ischemia.

The same authors conducted another study that established
that in rats, the gender difference in brain ascorbate
content did not appear until puberty when sex hormones
had reached adult levels (Kume-Kick and Rice, 1998).
Furthermore, results demonstrated that changes in sex
hormone levels in adult rats can have regionally selective
effects on brain ascorbate regulation. This was exemplified by
an ascorbate content increase in the hippocampus following
ovariectomy in the adult female hippocampus (Kume-Kick
and Rice, 1998). Supplementation with 17β-estradiol (E2)
treatment following ovariectomy was shown to reduce the
ascorbate loss within the hippocampus. The study further
revealed that estrogen treatment after ovariectomy prevented
enhanced ischemia-induced ascorbate loss, particularly within
the hippocampus.

A summary of the studies comparing the distribution of
vitamin C in the brain between gender groups is displayed in
Table 2.

Potential Mechanisms Associated With Brain
Ascorbate Gender Differences
Several studies have not directly assessed gender brain
tissue ascorbate concentrations; however, their results

may explain gender differences in the way ascorbic acid
is absorbed, distributed, and regulated throughout the
CNS which may ultimately affect cognitive function. These
results may form the basis for future studies exploring the
possible mechanisms associated with gender-related brain
vitamin C differences.

Previous reports have indicated increased antioxidant
enzymes in the male gender, which may be associated with
greater basal oxidative stress and enhanced brain ascorbate
levels to compensate for oxidative stress. In the prefrontal
cortex, hippocampus and cerebellum, males have 13–50% times
greater superoxide dismutase (SOD; Carrillo et al., 1992), with
SOD constituting a very important antioxidant defense against
oxidative stress in the body (Landis and Tower, 2005).

Recent studies report that female mitochondria generate half
the amount of hydrogen peroxide compared to mitochondria
of males and contain higher levels of antioxidant enzymes and
compounds (Ostan et al., 2016). Moreover, GSH peroxidase
activity is lower in males, leading to a greater generation of
hydrogen peroxide and ROS in the brain (Ferris et al., 1995).
Additionally, male mice seem to experience a more dramatic
age-associated decline in GSH content than female mice in many
tissues, including the brain (Wang et al., 2003). The lowered
defenses against ROS imply that themale brainmay requiremore
vitamin C for neuroprotective purposes.

Also linked with oxidative stress is mitochondrial function,
which has recently shown gender variations in the human
brain. Using H-magnetic resonance spectroscopy, a recent pilot
study revealed significantly higher mitochondrial content within
the female brain and consequently higher concentrations of
the metabolite N-acetyl aspartate (NAA; Silaidos et al., 2018).
This is in line with a study conducted by Rutkai et al. (2015)
which observed higher mitochondrial respiration in freshly
harvested cerebral arteries from adult female rats compared
to males. Based on these findings, it has been postulated
that mitochondrial dysfunction, as a result of higher levels
of oxidative stress, may account for the lower apparent NAA
levels in males. Mitochondria from females exhibit better
coping with stressful conditions and are relatively resilient
to DNA damage and mutations (Demarest and McCarthy,

TABLE 2 | Summary of pre-clinical animal studies comparing vitamin C brain distribution between gender groups.

Study/Year Health status/condition Brian region differences Result

Ferris et al. (1995) Ischemia The prefrontal cortex,
hippocampus, cerebellum

Female rats had lower basal brain ascorbate concentrations. Cerebellum
and hippocampus concentrations only fell in males following ischemia.

Kume-Kick et al. (1996) Ischemia/ gonadectomy Frontal cortex,
hippocampus, cerebellum

Ischemia-induced losses in the brain ascorbate greater in males than
females. After gonadectomy, increased ascorbate loss was seen in
all-female brain regions.

Kuo et al. (1979) Ischemia/ gonadectomy Frontal cortex,
hippocampus, cerebellum

Gender differences in brain ascorbate contentwere absent before
puberty and persisted only in cortex in aging rats. Estradiol replacement.
Ovariectomy prevented enhanced ischemia-induced ascorbate loss in
the female hippocampus.

Dorner et al. (2007) Induced Huntington’s disease Striatum Male mice decreased in striatal ascorbate during behavioral activation.
Kuo et al. (2004) Not specified Not specified The male mouse brain exhibited more ascorbate vitamin C receptors

than the female brain.
Kume-Kick and Rice (1998) Ischemia/ gonadectomy Frontal cortex,

hippocampus, cerebellum
Gender differences in brain ascorbate content were absent before
puberty and persisted only in cortex in aging rats. Estradiol replacement.
Ovariectomy prevented enhanced ischemia-induced ascorbate loss in
female hippocampus.
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2015). These differences in CNS mitochondrial function
may influence the diverse regulation of the brain ascorbate
between genders.

Also, the aging male brain may be more vulnerable to
experiencing excitotoxicity as a result of higher extracellular
glutamate levels (Sailasuta et al., 2008), which can result in a
higher efflux of ascorbic acid into the extracellular space as a
means of preventing neuronal loss.

Differences in the distribution of brain vitamin C receptors
may result in absorption differences between males and females.
Vitamin C is primarily transported into the CSF and neurons
through sodium-dependent vitamin C transporters 2 (SVCT2;
Portugal et al., 2017). Although a study revealed comparable
numbers in SVCT2 expression between young female and male
mice (Kuo et al., 2004), the expression of SVCT2 receptors
is mediated by inflammation and oxidative stress. Increases
in extracellular ascorbic acid induce increases in SVCT2 on
neuronal cell surfaces, leading to increased intracellular uptake of
ascorbic acid (Acuña et al., 2013) which may explain the higher
concentrations in males as a result of increased oxidative stress.

Furthermore, following a pro-inflammatory challenge,
microglia, defined as the brain’s resident macrophages, reduce
the expression of their SVCT2 receptors (Portugal et al.,
2017). As a result, reduced ascorbate uptake in microglia
leads to ineffective inhibition of NF-κB and the induction of
pro-inflammatory mediators such as TNFα, IL-1β, IL-6, and
iNOS. This highlights the importance of intracellular vitamin
C transport and needs by brain cells, regardless of the amount
that is present within the CSF. To date, there is a lack of research
comparing the CSF to plasma vitamin C ratios between healthy
or clinically diagnosed gender groups.

Moreover, there appears to be gender differences in vitamin
C brain turnover as a result of hormonal factors. The studies
mentioned earlier conducted by Kume-Kick et al. (1996) and
Kume-Kick and Rice (1998) indicated that hormones such as
estrogen can modulate not only brain ascorbate levels but
also brain redox status in a region-specific manner. This was
exemplified by gonadectomy particularly reducing levels in the
hippocampus in female rats and gonadectomy leading to an
even wider spread of ascorbate loss during oxidative stress than
non-gonadectomy in females. Taken together, these findings
support the hypothesis that sex hormones influence ascorbate
levels and overall redox balance in the female brain differently
to the male brain.

Other studies have investigated the effects of the hormones on
a more molecular level within the brain. Ovariectomy decreased
brain mitochondrial oxidative phosphorylation and increased
oxidative stress (Razmara et al., 2007) while Gaignard et al. (2015)
demonstrated a sex difference in brain mitochondrial respiration
and oxidative stress that is suppressed with ovariectomy.

Further supporting the potential role of hormones in ascorbic
brain regulation are the results from a study which assessed
the role of hormones on the gene expression of choroid
plexus (CP) circadian rhythms, which were compared between
females and males using cultured CP cells (Quintela et al.,
2015). The preliminary results demonstrated gender-associated
differences in the circadian expression of CP clock genes. Results

further suggested that gender hormones can regulate circadian
rhythmicity in the choroid plexus and potentially affect the
regulation and homeostasis of ascorbate concentrations within
the brain. However, the way these differences influence the
regulation of ascorbate CSF directly has not been examined.

An additional study conducted by the same authors addressed
differences between males and females on the effects of sex
hormones in the CSF production and composition (Quintela
et al., 2016) by identifying sex-related differences in the choroid
plexus transcriptome and CSF proteome (Quintela et al., 2016).
There were five down-regulated proteins in the CSF of male
rats compared to females. One of these proteins (APOA1) was
the main protein component of high-density lipoprotein-like
particles that play an important role in lipid metabolism in CSF.
APOA I has antioxidant and anti-inflammatory properties and
plays a role in amyloid β (Aβ) aggregation. These potentially
lower antioxidant and higher inflammatory properties may affect
ascorbate regulation within the CSF of males. Interestingly,
orchidectomy in males up regulated a majority of these
proteins whereas ovariectomy did not induce changes in the
CSF proteome.

Growing evidence suggests that telomere length is a marker
of biological aging, with telomere shortening potentially being
linked to age-related disease and longevity (Codd et al., 2013).
Recently, it has been proposed that shorter leukocyte telomere
length may be associated with increased brain aging, marked by
structural brain changes in cortical thickness (Puhlmann et al.,
2019) and the volume of multiple brain regions (Jacobs et al.,
2014), possibly predicting preclinical cognitive decline (Rask
et al., 2016). Consistent findings have put forward that females
have longer average telomere lengths than males (Gardner
et al., 2014). Moreover, gender differences in plasma vitamin
C concentrations and oxidative stress may play a role in the
gender-related telomere differences, with studies postulating a
link between telomere length and vitamin C intake in addition
to plasma vitamin C concentrations (Sen et al., 2014; Mazidi
et al., 2017). Taken together, gender-associated variances in
brain aging may be affected by differences in telomere length
which are influenced by gender-related plasma vitamin C and
oxidative stress. The variability in brain aging could consequently
contribute to gender-associated variance in brain vitamin C
regulation and cognitive function.

Additionally, structural brain differences between genders
may contribute to differences in brain ascorbate distribution.
One study assessed the neuronal density in four areas of the
hippocampus, and entorhinal and frontal cortices to analyze
the possible gender influence during normal aging (Martínez-
Pinilla et al., 2016). Results observed a higher neuronal
density of certain hippocampal areas of the non-pathological
brains of young men compared to women. Further studies on
the cerebral cortex show that men have 15% more cortical
neurons and 13% greater total neuronal density than women.
The largest single-sample study of structural and functional
sex differences in the human brain revealed that males had
substantially larger brain volumes and surface areas, whereas
females had thicker cortices (Ritchie et al., 2018). Previously
it has been suggested that ascorbate content increased linearly
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with increasing neuron density (Rice and Russo-Menna, 1998).
Given the larger volumes and neuronal density, this may be
suggestive that in males, ascorbate needs to be distributed across
a larger brain volume and possibly requires more ascorbate
to exert optimal function. This is also in line with lower
plasma levels in males being the result of a larger body
mass distribution.

Due to a larger abundance of cell bodies, ascorbate
concentrations are higher in the gray matter than in white
matter (Rice, 2000). Differences in the distribution of gray
matter between males and females have been identified. These
differences are thought to be due to the combination of the
neuroprotective effect of estrogen (which is more prominent
in females) tending to decrease the loss of gray matter (Taki
et al., 2011), particularly within the hippocampus (Österlund
et al., 1999). An MRI study revealed that the cerebellar gray
matter volume in males was significantly larger in the anterior
and middle posterior lobes (Taki et al., 2011) while others have
recently detected more gray matter volume within subcortical
temporal structures in men, which included the putamen,
anterior cerebellum and premotor cortex (Lotze et al., 2019).
These results could potentially account for differences in the
regional specific distribution of ascorbic acid throughout the
brain between genders.

Although plasma ascorbate is not primarily transported
through the blood-brain barrier (BBB), the integrity of this
barrier may impact the stability of ascorbate concentrations
within CSF (Bowman et al., 2009), with increased permeability
showing reductions in the ratio of CSF to plasma ascorbic acid.
This may result from elevated oxidative stress and the diffusion
of ascorbic acid out of the CNS according to its concentration
gradient (Bowman et al., 2009). Recently, a study examining
the impact of gender on the blood-CSF barrier discovered a
higher rate of a dysfunctional barrier in males than in females
(Castellazzi et al., 2020). Taken together, these findings may
explain the involvement of BBB integrity in differences within
CSF ascorbic acid concentrations between genders. However, this
research was limited to those diagnosed with neurodegenerative
conditions and needs to be confirmed using healthy cohorts.

The relationship between sex and cerebral blood flow (CBF)
were studied extensively in the past, and most authors have
reported higher CBF in women than in men (Aanerud et al.,
2017). This may be indicative of more efficient delivery of
blood ascorbate into the choroid plexus in females. Additionally,
differences in the density of the CSF have been observed
between males and females which could affect the distribution
of ascorbate in this fluid between genders (Lui et al., 1998).

Interaction Between Gender, Plasma
Vitamin C and Cognition—Human Clinical
Studies
A study conducted on a large cohort of elderly Korean
participants reported a significant relationship between vitamin
C consumption and Mini-Mental State Examination scores in
men, but not in women (Lee et al., 2001). Another study
revealed that men who reported lowMMSE scores consumed less

vitamin C than females with low MMSE scores, however, little
variability in vitamin C consumption was observed between both
gender groups in those who demonstrated high MMSE scores
(Ortega et al., 1997).

Sato et al. (2006) assessed the interaction between gender and
plasma vitamin C concentrations on cognitive function using a
cognitively intact sample. An analysis by gender was examined
in this study, showing that higher plasma concentrations were
associated with higher MMSE scores for men, albeit non-
significantly. Age was associated with lowerMMSE scores inmen
but not in women, despite a similar range of plasma vitamin C
concentrations andMMSE scores between genders. Digit Symbol
Substitution Test scores improved with increasing plasma
concentrations for both gender groups. The authors concluded
that more sensitive cognitive assessments were required to
determine true associations in cognitively intact cohorts.

Previous investigations that assessed vitamin C intake or
plasma concentrations controlled for gender as a potential
confounding factor rather than considering a potential
interaction between gender, plasma vitamin C, and cognitive
function (Gale et al., 1996; Perrig et al., 1997).

We conducted a retrospective, pilot analysis on data gathered
from our published cross-sectional study (Travica et al., 2019)
on healthy adults (n = 80, female = 52, male = 28, 24–96 years),
primarily consisting of blood plasma vitamin C concentrations
as well as cognitive function. Cognitive assessments included
the Swinburne University Computerized Cognitive Assessment
Battery (SUCCAB; Pipingas et al., 2010) which assessed reaction
time in milliseconds for each of the battery’s eight tasks as well
as a percentage relating to performance accuracy. Two pen and
paper tests, which included the Symbol Digits Modalities Test
(SDMT) and the Hopkins Verbal Learning Test-Revised (HVLT-
R) were also used to assess cognition.

After adjusting for several potential covariates such as
age, the number of prescribed medications and dose of
self-reported vitamin C supplementation, results indicated a
significant interaction (p < 0.001) between plasma vitamin C
and gender on cognitive function, on both the computerized
and pen and paper assessments (Travica et al., 2020). Both
males and females with adequate vitamin C concentrations
outperformed those with inadequate concentrations. Females
with adequate vitamin C levels also exhibited higher performance
than males on tasks involving recall, recognition, attention, and
focus. Additionally, the performance of males with inadequate
plasma vitamin C was poorer on tasks involving components
of memory (short/delayed), inhibition, and visual perception,
whereas females presenting with a vitamin C deficiency
were more compromised on tasks involving psychomotor
performance/motor speed.

AGE MODULATION

Plasma vitamin C variability during aging has been explored by
various animal and human studies. Additionally, studies have
aimed to examine changes in ascorbate content within the aging
brain and potential factors involved in changing the vitamin
distribution and utilization in the brain during aging. A handful
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of clinical studies have explored a potential interaction between
age, plasma vitamin C, and cognitive function.

Plasma Vitamin C and Age
Despite the possible modulatory action of gender, the literature
suggests that age may also affect plasma vitamin C and cognition
link. It has been established that plasma and erythrocyte
ascorbate concentrations significantly decline with age (Rizvi
et al., 2009; Bachar et al., 2016). This has been supported by
several population-based studies in which those aged above
60 years were more prone to present with plasma vitamin
C deficiencies (Bates et al., 1999). Similarly, 40% of elderly
individuals residing in nursing homes or residential homes
(n = 423) have been shown to display deficient plasma vitamin
C levels, with a mean level of 24.4 µmol/L (Bates et al., 1999).

Based on a population study, the percentages of 12–17-
year-old males and females who were vitamin C deficient
were low (5–6%) relative to other groups (Hampl et al.,
2004). Also, a meta-analysis of 36 publications examining
the relationship between vitamin C intake and plasma
concentrations of vitamin C concluded that older adults
(aged 60–96 years) have considerably lower plasma levels of
vitamin C following a certain intake of vitamin C compared with
younger individuals (aged 15–65 years; Brubacher et al., 2000),
suggesting a change in absorption and pharmacokinetics. Several
explanations have been postulated for the aged-associated
plasma vitamin C depletion. Multiple mechanisms could be
involved including increased usage, accelerated turnover,
decreased absorption/reabsorption, and reduced cellular uptake.

Pharmacokinetic studies in older adults have not yet been
conducted, but evidence suggests that the efficiency of one of
the molecular mechanisms for the cellular uptake of vitamin C
declines with age (Michels et al., 2003). When incubated with
100 µM of ascorbate, cells from old as compared to young rats
showed a 66% decline in both the rate of ascorbate transport
and the steady-state intracellular levels, with an SVCT1 decline
of 45% with age (Michels et al., 2003).

Higher blood glucose levels, that are commonly observed
in the elderly (Chia et al., 2018), may be linked with
compromised recycling of DHAA due to its transporters
being competitively inhibited by glucose, with excess glucose
in plasma or intestine blocking the receptor-binding site
and decreasing GLUT-facilitated DHAA transport (Wilson,
2003). Additionally, systemic inflammation, which is more
pronounced in the elderly (Sanada et al., 2018) affects gut
permeability. Prolonged inflammation and dysbiosis increase
the translocation of lipopolysaccharide gram-negative bacteria to
potentiate additional inflammation. Lipopolysaccharides inhibit
the absorption of ascorbate by decreasing sodium-dependent
vitamin C transporters (Subramanian et al., 2018a). Others
have postulated that tumor necrosis factor-α (NF-κB) inhibits
intestinal ascorbic acid uptake in both in vitro and in vivo
systems, and this inhibitory effect is partially mediated by the
transcription of the sodium-dependent vitamin C transporter-1
gene via the NF-κB pathway (Subramanian et al., 2018b).

Vitamin C is a strong reducing agent (i.e., an electron
donor), both in vivo and in vitro, and the lower levels of

blood vitamin C reported among the elderly may be due to a
higher turnover of vitamin C which is explained by increased
oxidative stress with increasing age (Institute of Medicine Panel
on Dietary and Related, 2000). Several key biochemical functions
rely on ascorbate donating electrons, a process that is amplified
during the aging process which results in reduced plasma
ascorbate levels.

Additionally, the ascorbate decline may be due to reduced
ascorbate recycling (Bachar et al., 2016) as a result of
aged-associated glutathione depletion. To compensate for the
aged-associated increases in oxidative stress, a compensatory
mechanism has been established whereby increased erythrocyte
ascorbate free radical (AFR) reductase is involved in the
reduction of AFR to ascorbate in the plasma (Rizvi et al.,
2009). Also, several age-associated hormonal changes that effect
corticosteroids and estrogen may affect circulating ascorbate
levels (Basu, 1986). Contrary to the observed plasma depletion
during aging, seniors are more likely than younger individuals to
purchase and use nutrient supplements, particularly vitamin C
(Loria et al., 1998; Vitolins et al., 2000). Although, on average,
older adults eat more servings of fruits and vegetables, which
might be nutritionally necessary given the change in metabolic
processes that occur in old age (Lichtenstein et al., 2008).

The intake of fruits and vegetables in the elderly fails to reach
recommended levels and most nutritious and health-promoting
foods have been reported to be under-consumed (Nicklett and
Kadell, 2013). One study found that 33% of community-dwelling
British adults 65 years or older (n = 1,310) consumed less
than the recommended intake for vitamin C (Bates, 1993).
Additionally, the vitamin C content present in foods consumed
by the elderly may be affected by storage, heating, freezing, and
food preparation techniques, particularly those in hospitals and
nursing homes (Armstrong et al., 2019). A recent systematic
review aimed to determine the extent that vitamin C is lost
from food, secondary to food cooking methods used in hospitals
and care facilities. Results identified significant vitamin C losses
between preparation and service resulting from food cooking
methods in hospitals and care facilities (Armstrong et al., 2019).
Older adults’ eating habits are also heterogeneous, and the
determinants of fruit and vegetable intake among older adults are
complex.With the population aging, the number and intensity of
barriers in accessing and consuming fruits and vegetable increase
(Nicklett and Kadell, 2013).

Older adults are at heightened risk of functional limitations,
disability, and chronic disease onset and complications (Hampl
et al., 2004). Being affected by these conditions makes
accessibility, preparation, and consumption of these important
nutrients problematic. Old age is often accompanied by changes
in appetite, declines in chewing efficiency, and compromised oral
health which could reduce fruit and vegetable intake (Whitelock
and Ensaff, 2018).

In both genders, older age was significantly associated with
higher levels of salivary cortisol measures, most consistently with
evening cortisol (Larsson et al., 2009). The negative feedback
regulation of the HPA-axis seems to become impaired in older
subjects (Wilkinson et al., 1997). As already mentioned, there
is a likely inverse correlation between the ability of an animal
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to endogenously produce vitamin C and the cortisol response
(Hooper et al., 2019).

With increasing age, circadian rhythms tend to fluctuate
more, which may influence plasma ascorbate levels. One recent
study specifically assessed how aging affects serum ascorbate
circadian rhythms by assessing the ascorbate rhythm-adjusted
mean (MESOR) and circadian amplitude (Singh et al., 2018). The
MESOR increased significantly until 46.5 years and the circadian
amplitude also started to decrease around 42 years of age. There
was a progressive decline of the circadian acrophase (timing of
overall high values recurring each day) of ascorbic acid with
increasing age.

Vitamin C Variations in Brain Tissue
Between Age Groups
Studies have predominantly focused on the effects of aging on
plasma vitamin C concentrations, with a handful of studies
aiming to raise insights into the effects of aging on CNS ascorbate
concentrations. These studies have consistently demonstrated an
age-related decrease of ascorbate levels in the brain, especially
within the cerebral cortex, pituitary gland, and hippocampus
(Schaus, 1957; Siqueira et al., 2011). One of these studies
demonstrated that the ascorbate level in the cerebral cortex is
decreased 77% from individuals at age 80 and older, compared
to individuals at age 50 and younger. Vitamin C levels in tissues,
such as the brain and muscle are reduced with age to as little as
25% of those found in children (Lewin, 1976).

Significant differences in CSF ascorbate content were
exhibited by premature and term babies, with premature
babies having up to 16-times higher values of vitamin C in
CSF than in plasma, whereas vitamin C concentrations in
CSF of controls were on average 2.5–3 times higher in CSF
than in plasma (Heinz-Erian et al., 1985). Furthermore, CSF
vitamin C was 4–5 times higher in premature babies than
in school children. These results, particularly those arising
from premature babies, postulate the body’s utilization of
ascorbate for important biological central nervous system
functions, such as neurodevelopment and neuroprotection
(Heinz-Erian et al., 1985).

A study that conducted 67 human autopsies revealed a
large depletion in brain vitamin C concentration with age, with
higher concentrations found in younger subjects (<10 years)
compared to those over 10 years of age (Yavorsky et al., 1934).
Similarly, research has demonstrated a gradual decline in vitamin
C concentration within CSF from the age of 10 years onwards
(Stephenson et al., 1941).

More recent research has used human brain spectroscopic
MRI imaging to compare ascorbate, glutathione, and lactate
concentrations in the brain on 22 young (20 years) vs.
22 normally aging (76.6 years) participants (Emir et al., 2011).
The study reported decreased glutathione and increased lactate
with age, indicating oxidative damage, but no change in
ascorbate between the groups. However, the sample consisted
of a cohort that was consuming low amounts of fruits and
vegetables and not supplementing vitamin C before assessment.
Additionally, the sample was on a controlled diet (food
containing 30 mg/1,000 kcal of vitamin C) during the trial as a

means of providing a recommended daily intake to participants,
thus, potential group differences wereminimized, and circulating
and brain ascorbate levels may still have been sub-optimal in all
subjects.

Animal studies have directly assessed the effects of aging on
brain ascorbate concentrations. One study revealed decreased
ascorbate uptake in hippocampal slices from old-aged rats, with
the decline in uptake being involved in greater susceptibility
to oxidative damage with advancing age (Siqueira et al.,
2011). A previous study by the same authors reported that
the observed compromises in hippocampal ascorbate uptake
may be the result of decreases in total reactive antioxidant
potential and total antioxidant reactivity levels, with both indexes
almost 30% lower in aged rats compared to younger ones
(Siqueira et al., 2005).

Based on an animal model, aging was associated with a
significant reduction in cerebral α-tocopherol, ascorbate and
glutathione contents (Sahoo and Chainy, 1997) and the activity
of enzymes such as SOD catalase, glutathione peroxidase and
glutathione reductase (Sahoo and Chainy, 1997). The results
suggest that through aging, increased free radicals could be the
causative agents of reductions in these enzymes which propagates
into diminished ascorbate recycling capacity. This trend has been
reiterated (Lykkesfeldt and Moos, 2005) in a study which found
plasma vitamin C status of the young guinea pigs (also unable
to synthesize vitamin C) to significantly decline to that of the
old animals within 3 months, suggestive of a possible decline
in plasma vitamin C status and neuronal tissue earlier than
old age.

Potential Mechanisms Involved in Age-Associated
Brain Vitamin C Variability
Various studies have examined several age-associated factors
that may contribute to changes in brain vitamin C absorption,
distribution, and utilization during aging. Although these studies
did not directly assess brain ascorbate concentrations, they
provide an insight into the potential mechanisms influencing
brain vitamin C.

Reductions in ascorbic acid and glutathione (GSH) may be
the result of age-related variations of total antioxidant defenses
in the brain, predisposing structures to oxidative stress, and
depleting ascorbate concentrations (Siqueira et al., 2005). A
reduction in mitochondrial functions, including the activity of
electron transport chain complexes, GSH levels as well as the
antioxidant defense enzymes such as SOD, was observed with
increasing age (Ighodaro and Akinloye, 2018). Given ascorbate’s
substantial involvement in neutralizing ROS, ascorbate would
be extensively utilized for neuroprotective purposes within
the aging brain, contributing to eventual neural reductions
of ascorbate.

CSF turnover can also be disrupted during aging. One recent
study demonstrated significantly reduced CSF flow during aging
by calculating ventricular and spinal CSF flow in a cohort of
elderly participants (Attier-Zmudka et al., 2019) which was
associated with cognitive performance. Since CSF is important
for transporting ascorbate into the extracellular neuronal space
and is the fluid which neurons are exposed to, possibly the
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impaired CSF flow during aging could be associated with reduced
transportation of ascorbic acid into neurons. This may also
compromise dehydroascorbic acid recycling within an ECF,
alongside the accumulation of metabolites that contribute to
added oxidative stress.

Additionally, resting CBF has been shown to significantly
slow during aging (Tarumi and Zhang, 2018) reflected
by decreased cerebral metabolic rate and cerebrovascular
dysfunction. This may affect the amount of ascorbate that
crosses the epithelial cells of the choroid plexus and reaches
the CSF, also potentially contributing to the accumulation of
metabolic products, and contributing to ascorbate loss. Brain
areas consisting of a large number of cell bodies, such as
gray matter volume, decreases with age in networks containing
subcortical structures, sensorimotor structures, and cingulate
cortices (Hafkemeijer et al., 2014). The cerebral cortex can also
display thinning and reduced cell bodies with age (Salat et al.,
2004). It is known that the concentrations of ascorbic acid
are most prominent in brain cells containing large numbers of
cell bodies and gray matter (Rice, 2000). Taken together, these
findings may suggest a reduction in ascorbic acid concentrations
in brain tissue due to the loss of gray matter and cell bodies.

Alterations in brain hormonal concentrations throughout
the lifespan may also affect brain ascorbate concentrations.
The decrease in gonadal hormone production during aging is
gradual in men (testosterone), but estrogen levels in women
promptly decrease after menopause (Gaignard et al., 2015). As
discussed earlier, alterations in hormonal levels may contribute
to changes in both plasma concentrations as well as brain
ascorbate concentrations. Estrogen plays an important role
during adulthood not only in the estrous cycle but also in the
brain via neuroprotective, neurotrophic, and antioxidant modes
of action (Lejri et al., 2018). Menopause in women, which is
characterized by significant reductions in brain ascorbate is
particularly linked with increased brain oxidative stress which
alters the way ascorbate is distributed and utilized in the brain, as
observed in female species following gonadectomy (Kume-Kick
et al., 1996).

Several studies have assessed the effects of aging on receptors
responsible for transporting vitamin C into and throughout the
brain. One rat study found that SVCT2 expression followed
an inverse relationship with ascorbate levels in the developing
brain (Meredith et al., 2011). Particularly within the cortex
and cerebellum, ascorbate levels were high throughout the late
embryonic stages and early post-natal stages and decreased with
age. Conversely, SVCT2 mRNA, and protein levels were low in
embryos and increased with age. Results further suggested that
even the relatively low levels of SVCT2 are adequate to maintain
the high ascorbate levels in cortex and cerebellum during
embryogenesis. The authors further suggested that the increase in
SVCT2mRNA and protein during post-natal development could
thus be linked to the increase in neurogenesis and increased
oxidative stress present after birth and may decrease ascorbate
content with age while also up-regulating the SVCT2 receptors
(Meredith et al., 2011).

Peripheral blood DHAA crosses the BBB through the glucose
receptors—GLUT1. The expression of BBB GLUT1 receptors

may be compromised during aging as observed in age-associated
cognitions such as Alzheimer’s and diabetes (Shah et al., 2012;
Winkler et al., 2015). Given the reduced expression of these
receptors, the absorption of DHAA into the CNS may be
reduced and restricted from being recycled into ascorbic acid.
Furthermore, elevated blood glucose levels, which are commonly
observed during aging, may also compete for the absorption of
DHAA through GLUT1 (Agus et al., 1997).

As discussed, BBB integrity may play a role in the brain’s
ability to maintain ascorbic acid within the CSF (Bowman et al.,
2009). Multiple age-related factors may contribute to increasing
the permeability of the BBB and potentially reducing CSF
ascorbic acid concentrations. These include age-related increases
in inflammation, mitochondrial dysfunction, and dysfunction
of transporters and receptors (Tiani et al., 2019). Recent
studies have demonstrated that BBB permeability is dynamically
controlled by circadian rhythms and sleep (Cuddapah et al.,
2019). Molecules such as cytokines, hormones, and peptides
which affect BBB integrity have been observed to undergo
circadian oscillations. Also, sleep promotes the clearance of
metabolites along with the BBB, and endocytosis of vital
molecules through the BBB. However, these functions may be
disrupted as a consequence of aging, as increasing age has been
shown to significantly affect circadian sleep and rest-activity
rhythms, with estimates of actual sleep time and sleep efficiency
decreasing significantly during aging (Huang et al., 2002).

As mentioned, telomere length may have implications on
brain aging and cognitive function (Jacobs et al., 2014).
It is known that the vulnerability of telomere shortening
is heightened in older individuals (Takubo et al., 2002).
Given the potential involvement of vitamin C in preserving
telomere length (Sen et al., 2014), it can be predicted that the
age-associated plasma vitamin C decline may be involved in
telomere shortening. Collectively, these findings propose that
age-associated telomere shortening, which is potentially linked
with plasma vitamin C, may contribute to brain aging and
therefore the regulation of vitamin C within the brain.

Another possible explanation for reductions in brain
ascorbate concentrations during aging may be the result of a
compromised ability of astrocytes to recycle DHAA within the
extracellular space. During aging, astrocytes are more vulnerable
to being exposed to oxidative stress, affecting astrocyte density
and dysfunction (Palmer and Ousman, 2018). Astrocytes that
are exposed to oxidative stress factors during aging begin to
undergo oxidative stress themselves, experiencing oxidized DNA
in their nuclei (Lei et al., 2008). They may also lead to a decline
in glutathione concentrations within the astrocyte and astrocytic
NADPH as observed during aging (Jiang and Cadenas, 2014).
This may ultimately compromise the ability of astrocytes to
recycle DHAA given that astrocytes need to reduce DHAA into
ascorbic acid, a process that depends on glutathione andNADPH
(Li et al., 2001).

Interaction Between Plasma Vitamin C,
Cognition and Age—Human Clinical Trials
Given the postulated changes in vitamin C concentrations within
plasma and CNS during aging, preliminary human clinical
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trials have assessed the interaction between age, vitamin C, and
cognition. A comprehensive review of the literature has shown
that age-associated neurodegenerative diseases are generally
associated with low plasma vitamin C levels and that maintaining
healthy vitamin C levels can have a protective function against
age-related cognitive decline, including Alzheimer’s (Harrison
and May, 2009). Plasma levels of vitamin C are lower in patients
with mild cognitive impairment and neurodegenerative diseases
including Alzheimer’s and dementia compared to controls
(Travica et al., 2017). Such severe cognitive declines that are
associated with these clinical conditions may be a reflection of
severe vitamin C depletion observed during aging.

Studies that targeted cognitively intact, middle-aged adults
revealed mixed results between vitamin C consumption and
cognition, but were restricted to assessing dietary intake instead
of blood concentrations of vitamin C, and failed to administer
cognitive assessments suitable for cognitively intact cohorts
(Peacock et al., 2000; Berti et al., 2015; Beydoun et al., 2015).
One of these included a cross-sectional study that assessed the
dietary intake, by using a 24-h recall diary, on a large cohort with
a mean age of 47.5 ± 9.3 years. Results failed to demonstrate
an association between self-reported dietary intake of vitamin C
and cognitive function on a broad range of cognitive assessments
(Beydoun et al., 2015). An additional cross-sectional study
assessed the association of dietary and supplemental vitamin
C intake with cognitive function in a cohort aged between
48–67 years, revealing no consistent associations between dietary
vitamin C intake or supplement use and any of the cognitive tests
(Peacock et al., 2000).

Another cross-sectional study assessed dietary vitamin C
consumption alongside other antioxidants in a cohort of women
with a mean age of 54 ± 12 years and an MMSE score over 27
(Berti et al., 2015). The study also assessed a marker of cerebral
glucose metabolism (METglc). A positive association between
dietary intake of vitamin C and METglc was overserved, with
higher vitamin C consumption being linked to more efficient
brain glucose metabolism.

A large prospective cohort study was conducted on a sample
between the ages of 45–60 years at baseline (Péneau et al., 2011).
A 13 year follow up, which consisted of a 2 monthly food
diary assessment, revealed that vitamin C intake was positively
associated with verbal memory scores in particular.

On the other hand, studies testing older (>65 years),
cognitively intact participants have incorporated plasma vitamin
C assessments more readily. These studies consistently displayed
a significant link between plasma vitamin C concentrations and
a range of cognitive domains, including free recall, recognition,
and vocabulary (Goodwin et al., 1983; Perrig et al., 1997; Sato
et al., 2006).

Several previous investigations that have assessed a broader
range of age groups have statistically controlled for age as a
potential covariate (Peacock et al., 2000; Travica et al., 2019). One
study conducted by Chaudhari et al. (2016) consisted of a rural
cohort with a broad range of ages between 40–96 years. In an
analysis that did not control for age as a potential confounder
(unadjusted model), self-reported vitamin C supplementation
was associated with significantly better immediate memory,

visuospatial skills, and global cognitive functioning across the
entire cohort. However, participants were not stratified into
specific age groups and compared for any variations in vitamin
C intake and cognition.

There is a scarcity of research assessing the interaction
between age, plasma vitamin C, and cognition. Based on the
previous clinical studies that assessed the link between vitamin
C concentrations and cognitive function, a majority of studies
were conducted on participants over the ages of 65 years, with
limited data on middle-aged and younger adult populations.
The few studies that did incorporate mid-aged adult groups,
relied on cross-sectional designs and failed to assess vitamin C
concentrations using blood tests, relying heavily on FFQs alone,
which have only demonstrated moderate correlations with blood
concentrations (Dehghan et al., 2007).

Furthermore, a majority of these studies failed to administer
cognitive assessments suitable for a broad range of age groups,
primarily relying on theMini-Mental State Examination to assess
cognitive function (Travica et al., 2017). As a result, it is not
clear how cognition in certain age groups, particularly in those
under the ages of 65 years. is affected by plasma vitamin C
concentrations and whether this varies with older age groups
(>60 years). At this point, a high heterogeneity between study
designs makes the assessment of a potential interaction between
age, plasma vitamin C, and cognition difficult.

LIMITATIONS AND FUTURE DIRECTIONS

The link between plasma vitamin C and cognitive function
in cognitively intact participants has recently come to light,
with recent clinical investigations suggesting a possible link
between plasma vitamin C and cognition. Nonetheless, larger-
scale studies, assessing vitamin C using blood samples,
suitable cognitive assessments, and even assessing brain tissue
concentrations will help further confirm the link between plasma
vitamin C and cognition. Additionally, investigations into the
link between plasma vitamin C and brain tissue regulation
are further needed to help determine how plasma vitamin C
concentrations affect brain tissue vitamin C.

Previous research directly exploring vitamin C brain tissue
gender dimorphisms and age variability is limited to animal
studies, particularly rats who can synthesize vitamin C (unlike
humans) and have significantly lower neuron density than
humans (Rice and Russo-Menna, 1998). Although these animal
models offer preliminary findings which could be potentially
generalized to humans, future research should endeavor to
incorporate human participants for more conclusive results.

The pharmacokinetics of vitamin C, including the absorption,
distribution, metabolism, and elimination are quite complex
and involve several different active and passive transport
mechanisms (Lindblad et al., 2013), alongside intracellular
reduction permitting the recycling of vitamin C within the brain.
This may account for the limited available evidence directly
assessing brain vitamin C variability between gender and age
groups. This opens a scope of research for future investigations
which could aim to explore the possibility of variations in these
pharmacokinetics between age and gender groups.
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Additionally, the proposed mechanisms that potentially relate
to differences in plasma and especially brain vitamin C between
genders and aging need to be interpreted with caution. Although
multiple general differences have been observed in the CNS
between gender groups and during aging, these studies have
failed to directly assess their effects on vitamin C concentrations
within the brain. The proposed mechanisms involved in affecting
the brain and plasma vitamin C regulation require further focus,
particularly assessing whether these may vary between gender
and age groups. Future research could focus on establishing
which factors may be linked to brain vitamin C absorption,
distribution, and utilization during aging. Furthermore, the
distribution of vitamin C within the brain and CNS according
to varying plasma vitamin C concentrations between gender and
age groups is warranted.

More clinical studies investigating the interaction between
age and gender, with plasma vitamin C and cognition are
needed. This will clarify whether variations in plasma vitamin
C may be linked to gender and aged-associated differences
in cognition. To date, a majority of studies were conducted
on participants over the ages of 65 years, with limited data
on middle-aged and younger adult populations. Future studies
should aim to determine which cognitive abilities would
be affected differently as a result of the gender vitamin
C variation. Our pilot study has briefly examined this by
suggesting that certain tasks are affected differently. At this
stage, it is unknown whether variations in ascorbate status affect

different cognitive tasks diversely between gender and age groups
(Travica et al., 2020).

Studies that do take into account gender and age should
aim to assess both peripheral blood and brain levels of
oxidative stress through SOD, glutathione peroxidase, and
malondialdehyde. This would give a clearer indication of any
variability between gender and age groups. Assessing DHAA
concentrations between genders should be implemented to
determine the amount of ascorbic acid that is being oxidized,
as well as SVCT2 receptor variations. These studies should
also take sex hormones into account and determine whether
female samples are post-menopausal, a factor that seemingly
affects brain vitamin C concentrations based on animal models.
As discussed in our previous work, future human studies
should continue to use cognitive measurements suitable for
distinguishing subtle differences in cognitively intact samples
and cognitive assessments that are suitable for a broad range of
age groups.

SUMMARY AND CONCLUSION

Thus far, epidemiological studies have frequently shown higher
vitamin C serum/plasma concentrations in women than in
men. The exact mechanisms responsible for plasma vitamin C
differences between males and females have not been confirmed,
however, both pharmacokinetic and/or lifestyle variability have
been proposed. Based on previous animal investigations that

FIGURE 2 | Various factors have been proposed that may contribute to both plasma vitamin C and brain variability between males and females. This variability in
plasma and brain vitamin C may then contribute to gender-related cognitive differences.
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FIGURE 3 | A range of factors has been proposed that may contribute to both plasma vitamin C and brain variability during aging. This variability in plasma and
brain vitamin C may then contribute to age-related cognitive differences.

measured brain vitamin C concentrations directly, results
demonstrated that the CNS distribution and utilization of
ascorbate may vary between gender groups, particularly while
females are pre-menopausal. Several proposed mechanisms may
account for gender differences in brain vitamin C regulation
and utilization, which include differences in brain hormones,
oxidative stress, CBF, choroid plexus, SVCT2 distribution,
et cetera (Figure 2).

As highlighted in previous studies, aging has been
predominantly associated with significant reductions in plasma
vitamin C levels. As with gender, both pharmacokinetic and/or
lifestyle variability have been proposed to contribute to this
aged-associated decline. Based on a range of animal and human
studies that directly measured brain vitamin C, a reduction in
vitamin C concentrations, as well as alterations in the vitamin’s
absorption and distribution in the brain have been observed
during aging. A series of proposed mechanisms may contribute
to changes in brain vitamin C regulation and utilization
during aging, these may include changes in brain hormones,
oxidative stress, receptor distribution, astrocyte function, etc
(Figure 3).

Collectively, this mini-review points to a possible effect
of gender and age on the association between plasma/brain
vitamin C and cognition. The reviewed literature suggests that
there may be a link between gender differences in plasma/

brain vitamin C and gender-associated cognitive differences,
particularly while females are pre-menopausal. However, it
is still too early to conclude which cognitive abilities would
be affected differently as a result of the gender vitamin C
variation. Additionally, based on the reviewed literature, we
can postulate that aged-associated differences in plasma/brain
vitamin C may be linked with aged-associated cognitive
differences, with older cohorts appearing more vulnerable
to experience declines in plasma vitamin C concentrations
alongside compromised distribution and regulation of the
vitamin in the brain. Nonetheless, the results encourage
future investigations to take into account both gender and
age when assessing the link between plasma vitamin C and
cognitive function. This will help increase our understanding
of how gender and age-related differences in plasma and brain
vitamin C may mediate differences in gender and age-related
cognitive ability.
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