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Backgroud: Skin cutaneous melanoma (SKCM) is an extremely metastatic form

of skin cancer. However, there are few valuable molecular biomarkers, and

accurate diagnosis is still a challenge. Hypercoagulable state encourages the

infiltration and development of tumor cells and is significantly associated with

poor prognosis in cancer patients. However, the use of a coagulation-related

gene (CRG) signature for prognosis in SKCM, on the other hand, has yet to be

determined.

Method: We used data from The Cancer Genome Atlas (TCGA) and Genotype

Tissue Expression (GTEx) databases to identify differentially expressed CRGs,

then designed a prognostic model by using the LASSO algorithm, univariate

and multivariate Cox regression analysis, and constructed a nomogram which

was evaluated by calibration curves. Moreover, the Gene Expression Omnibus

(GEO), GSE54467 was used as an independent validation. The correlation

between risk score and clinicopathological characteristics, tumor

microenvironment (TME), and immunotherapy was further analyzed.

Results: To develop a prognostic model, seven CRGs in SKCM patients related

to overall survival (OS) were selected: ANG, C1QA, CFB, DUSP6, KLKB1, MMP7,

and RABIF. According to the Kaplan-Meier survival analysis, an increased OS

was observed in the low-risk group than in the high-risk group (P<0.05).

Immunotherapy was much more beneficial in the low-risk group, as per

immune infiltration, functional enrichment, and immunotherapy analysis.
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Conclusions: The prognosis of SKCM patients may now be predicted with the

use of a CRG prognostic model, thus guiding the development of treatment

plans for SKCM patients and promoting OS rates.
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Introduction

Skin cutaneous melanoma (SKCM) is an extremely invasive

and deadliest form of cancer, resulting in 55,500 deaths each year

and accounting for approximately 80% of deaths related to skin

cancer (1, 2). Currently, the most common treatment options for

melanoma include surgery, chemotherapy, radiotherapy, and

immunotherapy (3), but an increased incidences of relapse have

emerged as a poor prognostic factor for melanoma (4). In recent

years, gene expression is emerging as a promising biomarker and

therapeutic target for human cancers. As a result, there is a

pressing need to identify appropriate SKCM biomarkers for

predicting SKCM prognosis and to carry out personalized

therapeutic regimens.

The coagulation system is an innate defense mechanism that is

activated either by an extrinsic (tissue factor pathway) or intrinsic

pathway. It has been found that tumor cells can express

procoagulant factors, such as tissue factor, which trigger the

coagulation cascades leading to thrombin production (5–7).

There are many coagulation abnormalities in cancer patients,

which provide the background for the increased trend of

thrombosis and bleeding in these patients. The activation of

coagulation and fibrinolysis interacts directly with malignancy by

promoting tumor cell invasion, progression, induction of

angiogenesis, and ultimately poor prognosis (8). One study

reported that cancer patients, especially those with a better

prognosis, had significantly a longer survival time with

anticoagulant therapy (9). Many biomarkers related to

coagulation disorders are confirmed to be significantly related to

prognosis in various cancers (10–13). The impact of coagulation on

tumors has become an area of intense research interest. However,

the role of coagulation in SKCM is still not clearly understood.

The goal of this research was to reveal the potential

characteristics of CRGs in SKCM patients, investigate its

association with SKCM patients’ prognosis, and then provide an

alternative candidate tool to detect SKCM, predict patients’

prognosis, and facilitate clinical management. We identified

differential CRGs significantly associated with SKCM patient

prognosis by differential gene analysis and univariate Cox

regression analysis, and further constructed a 7-gene prognostic

model (ANG, C1QA, CFB, DUSP6, KLKB1, MMP7, RABIF) by

LASSO algorithm and multivariate Cox regression analysis. The
02
link between the genetic features and the tumormicroenvironment,

as well as immunotherapy, was also comprehensively investigated.

The susceptibility of SKCM patients towards immunotherapy

might predictably be assessed using this new signature.
Materials and methods

Data collection

The TCGA (http://gdc.cancer.gov) database was used to

retrieve and evaluate the mRNA expression profiles, clinical

data, and mutation data of SKCM patients. In order to raise the

normal sample size, the Genotype-Tissue Expression (GTEx)

database was utilized to collect expression profiles of 556 normal

skin samples. Patients from the TCGA-SKCM (n=471) served as

the internal training set, while the GSE54467 dataset (n=79)

from the GEO database was utilized for external validation. R

“Limma” package was employed to process and merge data

collected from GTEx and TCGA.
Selection of CRGs in SKCM

TheMolecular Signature Database (MsigDB) was utilized for

selecting 139 CRGs in total (Supplementary Table S1). The

“limma” R package was employed for performing the

differential genes (DEGs) analysis among the normal and

tumor samples, applying |log2FC|≥ 1 and FDR<0.05 as criteria

(14). For selecting the genes related to prognosis in SKCM

patients, the correlation among all the CRGs and OS, with a

threshold defined as p<0.05 was analyzed employing the

univariate Cox analysis. Overlapping genes between DEGs and

prognosis-associated CRGs were considered as candidate CRGs,

which were visualized by Venn diagram package.
Prognostic model construction based
on CRGs

We selected hub genes from candidate CRGs and

constructed a novel prognostic model for SKCM via LASSO
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and multivariate Cox regression analysis. Each SKCM patient’s

risk score was computed as Risk score = sum (each gene’s

expression × corresponding coefficient). The “survival” and

“survminer” R packages were used to generate Kaplan-Meier

survival curves for the two groups. The prognostic performance

of the signatures was evaluated using the independent external

validation set, GSE54467 and the concordance index (C-index)

and time-dependent ROC curve. Moreover, multivariate and

univariate Cox regression analyses were employed to confirm

whether risk score and clinicopathological features (including

age, stage, and gender) might be independent predictors of

SKCM prognosis. Based on the analysis of independent

prognostic factors and through the use of R package “rms”,

age, stage, and risk scores were utilized for constructing a

nomogram to anticipate the prognosis of SKCM patients, and

calibration curves were applied for assessing the nomogram’s

prognostic accuracy.
Functional enrichment analysis

Using the R “clusterProfiler” and “circlize” packages, we

performed a differential analysis of gene expression profiles

between high- and low-risk groups, and a Gene Ontology (GO)

functional enrichment analysis for differential genes (|log2FC|≥ 1

and FDR< 0.05) between the two risk subgroups. GO analysis

included cellular component (CC), molecular function (MF),

biological process (BP), and pathway analysis. Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis on high-

or low-risk groups was conducted by Gene Set Variation Analysis

(GSVA) by employing the R “GSVA” package, pathways with p-

adj < 0.05 were regarded as considerably enriched.
Correlation analysis among risk
score and TME

By utilizing seven algorithms that included TIMER (15),

CIBERSORT, CIBERSORT-ABS (16, 17), EPIC (18),

QUANTISEQ (19), XCELL (20), and MPC-COUNTER (21),

the ssGSEA algorithm was used to determine the differences in

immune cell infiltration and immune function between the high-

risk and low-risk groups, and the results were shown graphically

as a heatmap. To predict the percentage of immune-stromal

components in TME. The three scores, which included the

stromal, ESTIMATE, and immune scores, were calculated using

the “ESTIMATE” R package. The immune cell infiltration and the

presence of stroma in the TME were assessed via immune

and stromal scores. ESTIMATE score was employed for

assessing the sum of the stromal and immune scores. We also

calculated the link between the risk score and the

immunological checkpoints.
Frontiers in Oncology 03
Predicting immunotherapy response

An immunophenoscore (IPS) was generated in each sample

from the Cancer Immunome Atlas (TCIA) database, a

distinguished predictor of anti-PD-1 and anti-CTLA-4

response, and then compared IPS across risk groups in

TCGA-SKCM for exploring the relationship between the risk

score and IPS. The tumor immune dysfunction and exclusion

(TIDE) algorithm was applied for predicting the patients’

response to immunotherapy by calculating the TIDE score as a

surrogate biomarker. The SubMap module of GenePattern was

applied to validate the reliability of TIDE prediction and for

predicting the response of SKCM samples to immune

checkpoint blockade.
Interpreting mutational landscape
in the genome

The TCGA was mined for information on mutations in

patients with SKCM. R “maftools” package was used to evaluate

the top 20 mutated genes and generate oncoplots, providing a

visual representation of the mutational landscape in high- and

low-risk cohorts.
Genome-wide analysis of gene

GSCALite provides an online genomic cancer analysis

platform by integrating 33 forms of cancer from TCGA and

normal tissue genomics data from GTEx (22). In this study, we

analyzed the genomic level, copy number level, methylation

level, and other different histological levels of CRGs in SKCM by

GSCALite and analyzed the pathway activity.
CRG risk model comparison to other
four models

Four models that were constructed according to the gene

expression data were chosen to compare the CRGs prognostic

model’s performance to that of other existing SKCM prognostic

models. These four models include the nine m1A-, m5C- and

m6A-related gene signatures developed by Wu et al. (23), the

nine ferroptosis-related gene signatures developed by Chen et al.

(24), the two ferroptosis-related gene signature developed by

Zeng et al. (25), and eight pyroptosis-related gene signature

developed by Ju et al. (26). To ensure comparability of the

models, we used the same method for computing the risk scores

of every SKCM sample in the TCGA dataset. In addition, the

samples were categorized into two groups, i.e., high and low

based on the median risk values. The overall survival (OS)
frontiersin.org
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difference between the two was then evaluated using the log-rank

test, and the ROC of each model was calculated. Furthermore,

we compared the five models by concordance index (C-index).
HPA database validation and genetic
prognostic value

The HPA database was employed to validate the CRGs

expression in SKCM and normal tissues (27), and the R

packages “survminer” and “survival” were utilized for showing

the CRGs expression at both high and low levels. The prognostic

accuracy of CRGs was demonstrated by drawing KM survival

curves between two groups.
Tumor Immune Single Cell Hub database

The Tumor Immune Single-Cell Hub (TISCH; http://tisch.

comp-genomics.org) is a 156 large-scale online database of

single-cell RNA-seq focused on the TME. In this study, the

TISCH database was used to investigate the expression of seven

CRGs in cutaneous melanoma TME.
Results

Prognostic coagulation-related
DEGs identification

This study’s workflow is depicted in Figure 1.

77 genes that were considerably different between the tumor

and normal tissues were obtained by comparing the expression

profiles of 139 CRGs among TCGA-SKCM and GTEx normal

tissues. By analyzing 44 CRGs associated with OS by univariate

Cox regression, Venn diagrams revealed 30 differential genes

with prognostic values (Figure 2A), and outcomes of prognostic

analysis of above genes were shown by forest plots (Figure 2B).
Constructing a prognostic model based
on the CRGs in SKCM

We have confirmed a total of 30 differential genes of

prognostic values, utilized the TCGA cohort as the training

set, extracted 9 genes by further narrowing the scope of gene

screening through the LASSO Cox regression algorithm, and

chose the penalty parameter according to the minimum criterion

(Figure 2C, D). Multivariate Cox regression analysis was

performed on the 9 genes screened by LASSO, and finally, 7

genes were selected to construct the prognostic model. Figure 2E

shows the corresponding coefficients of these 7 genes. A

univariate Cox regression analysis was done to determine 7
Frontiers in Oncology 04
candidate genes (Figure 2F). GEO cohort was utilized as an

external validation set for verifying the model’s accuracy. Risk

curve, survival state distribution and risk score heatmap of the

TCGA cohort and GEO cohort are presented in Figures 3A, B,

Figures 4A, B. The K-M survival curves showed that low-risk

patients scored higher than high-risk patients in terms of OS

(Figure 3C, Figure 4C). The specificity and sensitivity of the

prognostic model, which had AUCs of 0.739, 0.744, 0.679, 0.708,

and 0.717 at years 1, 2, 3, 4, and 5, respectively, in the TCGA

cohort, were assessed using time-dependent ROC analysis

(Figure 3D). The AUCs for the validation dataset were 0.596,

0.685, 0.689, 0.743, and 0.776 at year 1, 2, 3, 4, and 5, respectively

(Figure 4D). Multiple ROC curves and C-index analysis based

on risk score and clinicopathologic characteristics for both

cohorts also showed that the AUC and C-index of the risk

score were higher than other clinical indicators, suggesting that

the risk score may serve as a candidate predictor of prognosis for

SKCM patients (Figures 3E, F, Figures 4E, F). The above results

suggest that our model has good prognostic predictive efficacy. It

was found that high-age patients and high-stage patients had

higher risk scores (Figures 5A, B), and to validate the prognostic

model’s predictive capabilities for patients with different clinical

characteristics in the subgroup analysis, the survival analysis was

executed for both high- and low-risk groups with different

clinical characteristics, different age groups (≤60 and >60)

(Figures 5C, D), different gender groups (male and

female) (Figures 5E, F), and different stage groups (I + II and

III + IV) (Figures 5G, H) had significantly different prognosis,

and the high-risk group patients had a shorter survival time than

the low-risk group.
Construction of the predictive
nomogram in SKCM

To investigate the prognostic model’s independent

predictive power, univariate and multivariate Cox regression

analysis of clinical characteristics and risk score was performed.

The results showed that the risk score, age, and stage had

independent prognostic value (Figure 6A). Nomogram for

predicting 1, 3, and 5-year OS probability in SKCM patients

was established, with age, stage, and risk score included as

predictors (Figure 6B), and the calibration curve showed that

the nomogram performs admirably in predicting the probability

of survival in SKCM patients (Figures 6C, D, E).
Functional enrichment analysis

To further define the physiological functions and pathways

associated with risk scores, a GO enrichment analysis of DEGs

between the high- and low-risk groups was conducted, and the

findings showed that DEGs between the two groups were largely
frontiersin.org
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enriched in immune-related pathways, which include B cell-

mediated immunity, immune response-activating signal

transduction and immune response-activating cell surface

receptor signaling pathway (Figures 7A, B). After we further

performed GSVA analysis of potential biological roles in both
Frontiers in Oncology 05
high- and low-risk groups, the outcomes reveal that 75 pathways

were considerably different between subgroups (adj p-value <

0.05; Supplementary Table S1). The high-risk group was mainly

enriched in pathways such as Alzheimers disease, Parkinsons

disease, citrate cycle tca cycle, RNA polymerase, and some
FIGURE 1

The study workflow.
B C D

E F

A

FIGURE 2

Development and validation of coagulation-related genes predictive signature. (A) Intersection of DEGs and Prognostic genes depicted via Venn
diagram. (B) Univariate Cox regression analysis of predictive DEGs related to SKCM survival presented as a forest map. (C) LASSO regression of 9
coagulation-related genes. (D) Cross-validation for tweaking the parameter in the LASSO regression. (E) The corresponding coefficients for 7
candidate genes. (F) Univariate Cox regression analysis of 7 candidate genes related to SKCM survival presented as a forest map.
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metabolism pathways. The low-risk group was considerably

enhanced in the T cell receptor signaling pathway, natural

killer cell-mediated cytotoxicity, B cell receptor signaling

pathway, antigen processing, and presentation, and other
Frontiers in Oncology 06
immune-related pathways (Figure 7C). We were surprised to

find that both GO terms and KEGG pathways were associated

with immunity. Therefore, the link between immune response

and risk score was further studied.
B C

D E F

A

FIGURE 3

The 7-gene model in the TCGA cohort prognostic analysis. (A, B) Risk score distribution and the relevant survival data and the TCGA cohort’s
heat map of prognostic genes expression. (C) The Kaplan–Meier curve analysis of the TCGA cohort’s high and low-risk groups. (D) The AUCs
under ROC curves for 1-, 3-, and 5-year OS predictions based on the risk model. (E) ROC relating risk scores with clinical indicators of
pathology. (F) C-index comparison between risk score and clinical features (age, gender, and stage).
B C

D E F

A

FIGURE 4

GEO cohort validate prognostic model. (A, B) GEO cohort risk score distribution, survival data, and gene expression heat map. (C) The GEO
cohort’s high-risk and low-risk Kaplan–Meier curves. (D)The risk model’s 1-, 3-, and 5-year OS AUCs under ROC curves. (E) ROC linking risk
scores to pathological markers. (F) C-index comparison between risk score and clinical feature (age and gender).
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B

C D

E F

G H

A

FIGURE 5

Relationship between both the risk model and clinical features. (A)The heatmap presents the distribution of clinicopathological features in two
risk subgroups. (B) Risk score distribution stratified by age and stage. (C) The K-M curve of age ≤ 60 between high- and low-risk groups. (D)The
K-M curve of age>60 between high- and low-risk groups. (E) The K-M curve of male between high- and low-risk groups. (F) The K-M curve of
female between high- and low-risk groups. (G)The K-M curve of stages I&II between high- and low-risk groups. (H) The K-M curve of stages
III&IV between high- and low-risk groups. *P < 0.05 and ***P < 0.001.
B

C D E

A

FIGURE 6

Nomogram construction. (A) Univariate and multivariate cox regression prognostic markers. (B) Nomogram predicting SKCM patients’ 1-, 3-,
and 5-year OS. (C-E). Calibration curves for 1-, 3-, and 5-year patient survival.
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Immune cell infiltration and tumor
microenvironment analysis in risk
subgroups based on CRGs

The immune infiltration heatmap as per the TIMER,

MCPCOUNTER, CIBERSORT-ABS, QUANTISEQ, XCELL,

CIBERSORT, and EPIC tools was demonstrated in

Figure 8A. Utilizing the ssGSEA algorithm, infiltration of

immune cells and function were investigated in the

TCGA cohort, finding that practically all immune cell types

and functions, along with pathways, were considerably

increased in low- as to that of high-risk group (p < 0.05;

Figures 8B, C), and using the ESTIMATE technique, we

discovered that low-risk individuals had higher immune,

stromal, and estimate scores than high-risk individuals (p <

0.001; Figure 8D). Studies have revealed that the advent of

immune checkpoint inhibitor (ICIs) therapy offers great

promise in clinically treating human cancers (28, 29).

Therefore, the correlation between the immune checkpoint

molecule (ICM) expression and risk score must be analyzed. It

was found that ICM and risk score showed a negative

correlation, except for VTCN1, TNFRSF14, and CD276

(Supplementary Figure S1). Therefore, it is suggested that

patients in low-risk groups could be better candidates

for immunotherapy.
Frontiers in Oncology 08
Analysis of immunotherapy between
risk subgroups

In recent years, anti-CTLA4 and anti-PD1 have significantly

improved the prognosis of late melanoma and increased the OS of

patients in tumor immunotherapy (PMID: 34509219). We used

the TCIA database to generate IPS for each SKCM sample, and

low-risk patients had greater IPS for anti-CTLA-4, anti-PD-1, and

anti-(CTLA-4 plus PD-1) than high-risk patients, suggesting better

immunotherapy outcomes in patients with lower risk score

(Figures 8E, F, H). By applying the TIDE algorithm, the TIDE

score in the high-risk group was discovered to be substantially

greater, implying that low-risk patients responded to

immunotherapy in a much more effective manner than the ones

in the high-risk group (p < 0.001; Figure 8I). Additionally, SubMap

analysis demonstrated that the low-risk group would probably

respond better to anti-PD-1 therapy (p < 0.05; Figure 8G). These

findings imply that low-risk individuals may benefit more from

immunotherapy, particularly anti-PD-1 treatment.

Analysis of cancer-related gene
mutations in CRG signature

Moreover, the oncoplots summarized high- and low-risk

mutations (Figures 9A, B). Among them, TTN (76% vs 67%),
B

C

A

FIGURE 7

The results of functional analyses. (A, B) Gene ontology (GO) enrichment analysis. (C) KEGG pathway enrichment by GSVA between two risk
subgroups.
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MUC16 (71% vs 62%), and BRAF (56% vs 45%) were the most

common, exerting a greater somatic mutation frequency in low-

risk groups than in the high-risk group. To further investigate

the biological mechanisms underlying the aberrant expression of

these seven target genes in our model, these CRGs were analyzed

at different histological levels, including genomic level, copy

number level, and methylation level. The results showed that

CFB was the gene with an extremely high rate of mutation, while

DUSP6 had the lowest mutation rate (Figure 9C). Subsequently,

we analyzed CNV data in TCGA and found that CNVs in SKCM

patients included heterozygous amplification and deletion

(Figure 9D). Analysis of CNV percentages for Hete Amp and

Hete Del revealed that the Hete Amp levels of RABIF and CFB in

SKCM were greater than 60%. Meanwhile, MMP7 exhibits more

than 60% Hete Del (P < 0.05) (Figure 9E). Additional analysis

into the relationship between these genes’ expression levels and

CNV showed that DUSP6, KLKB1, ANG, and RABIF were

positively correlated with CNV, with RABIF being the most

significantly correlated with CNV (Figure 9F). In addition,

Spearman correlation coefficient analysis among the

methylation and gene expression was carried out in the

methylation difference bubble plots, and it was found that the

methylation of ANG, CFB, MMP7, and RABIF was down-

regulated in SKCM, while KLKB1 was up-regulated

(Figure 9G), and the abnormal gene expression might be the

result of the combined effect of copy number variation and

methylation variation. These seven genes mostly control
Frontiers in Oncology 09
apoptosis, cell cycle, EMT, DNA damage response, and other

tumor-related processes, as demonstrated by pathway analysis

(Figure 9H). The activated and inhibited pathways were labeled

as A and I, as illustrated in Figure 9I, to further evaluate if each

pathway is activated or repressed. It can be seen that under the

regulation of seven genes, RAS/MAPK and Hormone ER

pathways were activated, cell cycle and DNA damage response

were inhibited, while apoptosis, EMT, Hormine AR and PI3K/

AKT pathways were activated or inhibited in SKCM patients.
Comparison of the CRG prognostic risk
model with other existing models

In order to assess whether our seven-gene signature has

significant predictive power, it was compared with the four

published prognostic signatures of SKCM, which are: the eight

pyroptosis-associated gene signature (Ju et al.), the nine

ferroptosis-related gene signature (Chen et al.), the nine m1A-,

m5C- and m6A-related gene signature (Wu et al.), and the two

ferroptosis-related gene signature (Zeng et al.). The same

approach was used to calculate SKCM patients’ risk score

according to their modelled genes to compare signatures, the

KM curves and ROC curves of the respective models. Survival

analyses were considerably varied for the high- and low-risk

subgroups of all four signatures (Figures 10A-C, G). However,

ROC curve analysis showed higher AUC values in our CRGs
B C D

E F G

H I

A

FIGURE 8

Analysis of TME and immunotherapy among the high- and low-risk groups with SKCM patients. (A) Heatmap for immune infiltration based on
QUANTISEQ, TIMER, CIBERSORT-ABS, CIBERSORT, XCELL, MCP-counter, and EPIC algorithms among high- and low-risk groups. (B, C) Based
on the ssGSEA algorithm, the box plots illustrated the variation in immune cell infiltration and immune function among the low- and high-risk
groups of SKCM patients. (D) Comparison of the immune, stromal and ESTIMATE scores between the low- and high-risk groups, respectively.
(E, F, H) The distribution of IPS in the high-risk and low-risk groups in TCGA dataset. (I) The TIDE score between two risk subgroups. (G)
SubMap analysis manifested that the low-risk group was more sensitive to the anti-PD-1 therapy. (*P < 0.05, **P < 0.01, ***P < 0.001 and
ns = not significant).
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model than other prognostic models in 1, 2, and 3-year survival

(Figures 10D-6F, 10H). By computing this model’s and four

others’ C-indices, the results showed that the C-index of 0.686 of

our model was the greatest (Figure 10I). Our gene signature’s

remarkable predictive capabilities were emphasized by

such outcomes.
Protein expression level validation of the
screened genes by HPA database

To boost the database’s credibility, 7 CRGs’ protein

expression was analyzed using the HPA database. Among

them, ANG and KLKB1 were not collected in the HPA

database (Figure 11C). These results are consistent with our
Frontiers in Oncology 10
analysis of differential gene expression (Figure 11A). Kaplan-

Meier curves offive genes (C1QA, DUSP6, RABIF, MMP7, CFB)

in HPA database were shown in Supplementary Figure S3.

Kaplan-Meier curves in TCGA database showed that increased

RABIF expression was considerably related to low OS in SKCM

patients, and increased MMP7 expression may indicate a poorer

prognosis in SKCM patients, but lacked statistical

significance (Figure 11B).
Correlation analysis of CRGs and TME

The tumor microenvironment, including malignant cells,

stromal cells, and immune cells, plays an important role in

tumorigenesis, progression, and recurrence. Therefore, we used
B C

D E F

G H I

A

FIGURE 9

Analysis of ANG, CIQA, CB, DUSP6, KLKB1, MMP7, and RABIF using GSCAlite. (A) The oncoplot, commonly called the waterfall plot, depicts the
distribution of mutations and SNV types’ classification (which includes missense mutations, frameshift deletions, nonsense mutations, and so on)
for the seven genes in the patient samples of SKCM. The side bar graph and top bar graph present the number of mutations in each sample or
gene. (B, C) Oncoplots display the somatic landscape of SKCM with high- and low-risk group. (D) Heterozygous CNV profile presents the
percentage of heterozygous CNVs, including the percentage of heterozygous amplification and deletion of these genes in SKCM. (E) CNV pie
distribution. (F) Relationship between CNV and gene expression. Red bubbles demonstrate positive correlation, meaning that the gene
expression will become upregulated when genes have high frequency of CNV. The darker the color, the higher the correlation. The size of the
dots demonstrates statistical significance: the statistical significance increases as the sample size grows. (G) Correlation analysis among the gene
expression levels and methylation. Down-regulated methylation in tumors is represented by blue dots, while up-regulated methylation in
tumors is represented by red dots. (H) Pie-shaped distribution of the above 7 genes in cancer pathway, red depicts activation, green represents
suppression; (I) Percentages of these genes in cancer pathway (I depicts suppression; A depicts activation), darker color depicts higher
percentage. SNV, single nucleotide variation. CNV, copy number variation.
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six single-cell datasets (SKCM_GSE115978_aPD1, 281

SKCM_GSE120575_aPD1aCTLA4, SKCM_GSE123139,SK

CM_G S E 1 3 9 2 4 9 , 2 8 2 S KCM_G S E 1 4 8 1 9 0 , a n d

SKCM_GSE72056) to analyze the distribution of the seven

model genes in TME-related cells. Among them, ANG and CFB

were highly expressed in fibroblasts, C1QA and MMP7 were

mainly expressed in macrophages, and KLKB1, DUSP6, and

RABIF were mainly expressed in malignant cells, while RABIF

was also highly expressed in immune cells, such as proliferating T

cells and macrophages, etc(Figures 12B, C, Supplementary Figure

S2). Figure 12A visualizes the distributions and numbers of the
Frontiers in Oncology 11
different cell types in GSE72056, which contains 14 clusters and

8 types.
Discussion

SKCM is potentially amongst the most lethal skin cancers

with a rapidly increasing incidence all over the world and still

controversial in pathogenesis (30). Previous study found

interactions and effects between malignant tumor progression

and coagulation (31). Tumor can be affected by the production
B C

D E F

G

H

I

A

FIGURE 10

Comparison of CRG risk model with others. (A, D) The KM curves and ROC of an eight-gene (Ju) risk model. (B, E) The KM curves and ROC of a
nine-gene (Wu) risk model. (C, F) The KM curves and ROC of a ten-gene (Zeng) risk model. (G, H) The KM curves and ROC of a nine-gene
(Chen) risk model. (I) C-indexes of the five risk models.
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of procoagulant factors, including tissue factor (TF), cancer

procoagulant proteins, microparticles (MPs), proangiogenic

factors, and cytokines, etc. The production and activation of

these procoagulant factors further promote tumorigenesis and

development, resulting in a chronic hypercoagulable state and an

increased incidence of thrombotic events (32). It has been found

that elevated plasma fibrinogen in SKCM patients is often

associated with decreased survival (33). In addition, high D-

dimer levels (the end product of coagulation cascade activation)

suggest fibrin lysis and activated coagulation and are related with

advanced cancer staging and poor prognosis in SKCM patients

(34, 35). Since single prognostic molecular indicators and

traditional clinical factors are difficult to assess the clinical

outcome of SKCM, an urgent requirement exists to develop an

accurate model to predict survival of the patients for facilitating

the management of clinical treatment.

In the current research, differential analysis of the expression

matrix of coagulation-related mRNAs of SKCM was performed

in the TCGA database, and using univariate, LASSO, and

multivariate Cox regression analysis, we developed a new

prognostic model based on 7 CRGs (ANG, C1QA, CFB,

DUSP6, KLKB1, MMP7, and RABIF) and confirmed its

exceptional performance in an external population. As per an

increasing body of evidence, the CRGs are linked to the

prognosis of numerous malignancies. For example, the

biological function of KLKB1 is usually associated with

coagulation surface-dependent activation, fibrinolysis, and

inflammation, and high KLKB1 expression in patients with

hepatocellular carcinoma predicts a good prognosis (36).
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DUSP6 is an oncogenic factor in melanoma, and DUSP4 can

play its part in the survival and growth of melanoma cells by

inhibiting the DUSP6 expression. Increased RABIF expression

in breast and triple negative breast cancer patients is related to

poorer outcome and considered a potential bioprognostic

marker (37). MMP7 is a stromal lysin protein playing

important roles in immunity, apoptosis, angiogenesis, and

coagulation and is highly expressed in cancers of various

types, including gastric cancer, uveal melanoma, and colon

cancer, resulting in infiltration and metastasis of tumor cells

(38–40). One study revealed that increased C1QA expression

was significantly related to a better prognosis in breast cancer

(41). MiR-491-5p was reported to directly targeting RABIF to

downregulate cell invasion, metastasis, and drug resistance in

triple negative breast cancer (37).

The outcomes of GO analysis demonstrated that cell

coagulation genes were shown to be highly linked to

functional pathways including B cell-mediated immunity,

immune response-activating signal transduction, and immune

response-activating cell receptor surface signaling pathway, etc.

The B cell, T cell receptor signaling pathwayand natural killer

cell-mediated cytotoxicity were all significantly enhanced in the

low-risk group, according to GSVA analysis. Therefore, we

hypothesized that cellular coagulation genes and risk signature

are related to immunity.

Earlier studies revealed that the TME has played a crucial

part in SKCM occurrence, progression, and treatment

resistance (42). As expected, CRG-based risk signature was

found to be considerably associated with the TME of SKCM.
B

C

A

FIGURE 11

(A) 7 Hub genes in normal GTEx, TCGA, and TCGA cancer tissues. (B) KM curves for 7 high- and low-expression hub genes, ordinal (y-axis)
indicates percentage of survival, abscissa (x-axis) represents survival years (C) HPA database hub gene validation.
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To investigate the relation between the risk subgroups and

immune cell infiltration levels, eight algorithms were utilized,

and it was found that immune cell infiltration levels were

elevated in the low-risk group and immune function was

adequately performed. The Estimate algorithm’s outcomes

also suggested that tumor cells in the low-risk group had a

higher immune cell and stromal cell infiltration as compared to

the high-risk group, implying that the low-risk group of SKCM

had higher immunogenicity and immune response, and the

high-risk patients may have significantly reduced anti-tumor

immunity. Immune checkpoint inhibitors can kill cancer cells

by inducing CD8-positive T cells, especially anti-CTLA4 and

anti-PD-1 antibodies that have been widely used in SKCM and

revolutionized its treatment (43), and it can be concluded from

the previous analysis that the inflammatory features of TME are

stronger in the low-risk group. A characteristic of the

inflammatory TME is the increased expression of immune

checkpoints, and the expression of almost all immunological
Frontiers in Oncology 13
checkpoints was found to be negatively correlated with risk

scores, in this investigation.

According to IPS analysis, low-risk patients had significantly

better IPS outcomes than high-risk patients, suggesting that low-

risk patients are a better candidate for immune checkpoint

inhibitor treatment, and based on machine learning algorithms

such as TIDE and Submap, it was surprising to find that the low-

risk group was susceptible towards anti-PD-1 but not towards

anti-CTLA-4 immunotherapy.

Genome-wide analysis of candidate CRGs showed that these

high frequencies of copy number variants and methylation were

closely associated with gene expression. Furthermore, these

seven genes regulate various tumor-associated pathways, which

activate the RAS/MAPK pathway, and the aberrant activation of

the RAS/MAPK signaling pathway leads to SKCM cell cycle

dysregulation and apoptosis inhibition, which is a central step in

SKCM progression. Both the specific regulatory mechanisms of

these genes on tumor-associated pathways, and the activation or
B

C

A

FIGURE 12

CRGs expression in SKCM TME-associated cells. (A) Annotation of diverse cell types and percentages in GSE72056. (B, C) Expressions of ANG,
C1QA, CFB, DUSP6, KLKB1, MMP7, and RABIF in different cell types in GSE72056.
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inhibition of these tumor-associated pathways on SKCM

development and tumor cell behavior require more research

to explore.

Before us, Wu (23), Ju (26) and Chen (24) constructed risk

prognostic signatures for survival prediction in SKCM patients

based on m1A-, m5C- and m6A-related genes (MBD4,

RBM15B, MBD2, UHRF2, WTAP, YTHDF1, UNG, FMR1,

NEIL1), pyroptosis-related genes (GSDMD, GSDME, CASP4,

NLRC4, APIP, AIM2, CASP3, IL18), and ferroptosis-related

genes (ACSL4, CS, ATP5MC3, ACACA, CHAC1, ALOX5,

MT1G, ABCC1, ZEB1), respectively. And Zeng (25) have also

built a prognostic model for SKCM based on ferroptosis-related

genes (ALOX5, CHAC1). Ju et al. observed that risk score was

mainly associated with immunity by functional enrichment

analysis of the two risk groups, and other researchers further

performed a more comprehensive analysis of tumor immune

infiltration and tumor microenvironment of SKCM. The models

they constructed demonstrated the importance of ferroptosis,

RNA methylation, and pyroptosis-associated genes in predicting

the prognosis and TME of SKCM. A prognostic risk model was

designed by utilizing coagulation-related genes (ANG, C1QA,

CFB, DUSP6, KLKB1, MMP7), the ROC values of model we

established indicated that CRG risk model outperformed the

four published models above in terms of predictive efficacy. We

not only performed immune infiltration and TME analysis, but

we also predicted immunotherapy by IPS and TIDE score in

high- and low-risk patients. Seven CRGs at different histological

levels were explored by using GSCALite, including genomic

level, copy number level, and methylation level, and explored

their biological mechanisms. Furthermore, the corresponding

proteins’ expression levels were investigated through the HPA

database to corroborate our analysis. To our knowledge, our

work presents a novel coagulation-related gene predictive model

for SKCM.

TME consists of malignant cells, stromal cells, and immune

cells and plays an important role in tumorigenesis and

metastasis (44). We explored the distributions of seven genes

through single-cell datasets, and we speculate that ANG,

DUSP, and CFB may affect prognosis mainly by regulating

stromal cells, such as fibroblasts and malignant cells. C1QA

may affect melanoma progression and prognosis by regulating

macrophages. KLKB1 may influence prognosis of melanoma

patients by regulating malignant cells. RABIF is highly

expressed in a range of immune cells and malignant cells,

and we speculate that it may affect tumor progression and

prognosis by regulating malignant cells and proliferating T

cells. However, detailed and precise mechanisms need to be

further explored in the future.

Even so, there are certain limitations in our research.

Firstly, our observations are needed to be corroborated by

multicenter and prospective clinical studies. Second, we
Frontiers in Oncology 14
demonstrated that seven coagulation-related genes are

associated with prognosis in SKCM, but this was evaluated

solely by data mining. More investigations are needed to reveal

these seven genes’ functions, and the association between

coagulation-related genes and the development of SKCM

needs to be further explored.
Conclusion

Lastly, the expression of CRGs is linked to the progression of

SKCM patients, according to our findings. A novel coagulation-

related prognostic gene signature, which was found to be an

independent predictor in SKCM prognosis, was identified

including 7 central CRGs. It also reflects the different statuses of

the tumor microenvironment between the high and low risk

groups and anticipates the potential response to immunotherapy.

To our knowledge, this is the first coagulation-related signature to

predict prognosis in SKCM patients, providing a new perspective

for individualized treatment.
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