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Abstract
Discovering local adaptation, its genetic underpinnings, and environmental drivers is 
important for conserving forest species. Ecological genomic approaches coupled with 
next-generation sequencing are useful means to detect local adaptation and uncover its 
underlying genetic basis in nonmodel species. We report results from a study on flower-
ing dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species 
is ecologically important to eastern US forests but is severely threatened by fungal dis-
eases. We analyzed subpopulations in divergent ecological habitats within North 
Carolina to uncover loci under local selection and associated with environmental–func-
tional traits or disease infection. At this scale, we tested the effect of incorporating ad-
ditional sequencing before scaling for a broader examination of the entire range. To test 
for biases of GBS, we sequenced two similarly sampled libraries independently from six 
populations of three ecological habitats. We obtained environmental–functional traits 
for each subpopulation to identify associations with genotypes via latent factor mixed 
modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abi-
otic pressures resulted in genetic differentiation indicative of local adaptation, we eval-
uated Fst per locus while accounting for genetic differentiation between coastal 
subpopulations and Piedmont-Mountain subpopulations. Of the 54 candidate loci with 
sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–
BayeScan Fst outliers. For LFMM, 45 candidates were associated with climate (of 54), 30 
were associated with soil properties, and four were associated with plant health. 
Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of 
being under selection. We conclude environment-driven selection on specific loci has 
resulted in local adaptation in response to potassium deficiencies, temperature, precipi-
tation, and (to a marginal extent) disease. High allele turnover along ecological gradients 
further supports the adaptive significance of loci speculated to be under selection.
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1  | INTRODUCTION

Understanding ecological pressures and their evolutionary impacts 
on natural tree populations represents an active research field in 

evolutionary ecology and is important to conservation of forests. 
There is little debate abiotic and biotic stressors can result in local ad-
aptation and lead to evolutionary divergence of populations via isola-
tion by adaptation (IBA) (Nosil, Funk, & Ortiz-Barrientos, 2009). Local 
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adaptation occurs widely in plants and animals, but the genetic basis 
is generally poorly understood (Fraser, Weir, Bernatchez, Hansen, & 
Taylor, 2011; Hereford, 2009; Leimu & Fischer, 2008). Studying the 
genetic basis of local adaptation, ecological factors driving divergent 
selection, and genetic differentiation of natural populations pro-
vides insights into how species may respond to future environmental 
changes, such as exotic pathogens, increasing deforestation, and fu-
ture climate change (Fisichelli, Abella, Peters, & Krist, 2014). Answers 
to these questions are clearly relevant to conservation management 
of forest tree species.

We explore how environmental differences have influenced and 
will continue to drive evolution of natural populations of flowering 
dogwood trees (Cornus florida L.) using a population landscape ge-
nomic approach with genotyping-by-sequencing (GBS) data. Cornus 
florida is threatened by fungal pathogens, especially by powdery mil-
dew (Li, Mmbaga, Windham, Windham, & Trigiano, 2009; Mmbaga, 
Klopfenstein, Kim, & Mmbaga, 2004; Windham, Trigiano, & Windham, 
2005) and dogwood anthracnose (Redlin, 1991; Trigiano, Caetano-
Anollés, Bassam, & Windham, 1995; Daughtrey, Hibben, Britton, 
Windham, & Redlin, 1996; Zhang and Blackwell (2002); Holzmueller, 
Jose, Jenkins, Camp, & Long, 2006). The species is also subjected to 
abiotic environmental heterogeneities, such as variation in soil–nutri-
ent composition and moisture, precipitation, temperature, different 
length of growing season, and exposure to sunlight, across its natu-
ral distributional range in eastern North America (Chellemi, Britton, 
& Swank, 1992; Holzmueller, Jose, & Jenkins, 2007; Kost & Boerner, 
1985; Townsend, 1984). These variables may have resulted in local 
adaptation, for example, varying in flowering time from the coast 
to mountain regions (USA National Phenology Network). Additional 
background on the species is described in Supporting Information 
(Flowering Dogwood Background).

Population genomic and landscape ecology approaches (Anderson, 
Willis, & Mitchell-Olds, 2011; Sork et al., 2013) provide means to de-
tect local adaptation and loci responding to ecological forces of se-
lection. Local adaptation can be revealed by genetic differentiation 
among populations at Fst outlier loci from contrasting environments as 
well as genetic correlation with environmental variables (Savolainen, 
Lascoux, & Merilä, 2013). The application of genomewide genetic 
markers (produced from next-generation sequencing) to identifica-
tion of truly adaptive loci still poses many challenges as a result of 
missing data from sequencing bias or sampling error. While limitations 
of analytical frameworks have been addressed using simulated data 
and through comparisons of methods (Lotterhos & Whitlock, 2014, 
2015; Mita et al., 2013; Narum & Hess, 2011), bias of data resulting 
from next-generation sequencing has remained a serious concern for 
marker-based genomic approaches such as the recent but widely ad-
opted RAD-seq and genotype-by-sequencing (GBS) methods. Biases 
from such methods can contribute to frequent misidentification of 
false-positive loci.

GBS and RAD-seq methods are cost-effective for sequencing a 
reduced genome sample from a large number of individuals, and they 
are noted for employing restriction enzyme digested libraries (RRL) 
that contain DNA fragments of specific target sizes to uncover loci 

with single nucleotide polymorphisms (SNPs) (Davey et al., 2011; 
Narum, Buerkle, Davey, Miller, & Hohenlohe, 2013). Both have 
been increasingly used for genetic mapping, population genom-
ics, phylogeography, and phylogenetics (Baird et al., 2008; Davey 
& Blaxter, 2010; Eaton, 2014; Eaton & Ree, 2013; Gagnaire, Pavey, 
Normandeau, & Bernatchez, 2013; Hohenlohe et al., 2010; Lu et al., 
2013; Qi et al., 2015; Recknagel, Elmer, & Meyer, 2013; Rubin, Ree, & 
Moreau, 2012). Application of GBS has demonstrated more powerful 
discernment of population genetic structure compared to microsat-
ellite data and identification of more loci possibly responding to se-
lective forces (Allendorf, Hohenlohe, & Luikart, 2010; Chu, Kaluziak, 
Trussell, & Vollmer, 2014; Gompert et al., 2014). While analysis of 
reduced genomes using this method is promising for identifying loci 
under selection, biases introduced by sequencing require cautious 
treatment of data in order to minimize false positives. Prior simulated 
studies have demonstrated failure to account for biases of reduced 
genome sequencing may result in both type I and II errors for detect-
ing loci under selection (Davey et al., 2013). In particular, missing 
data and low coverage of SNP markers may erroneously characterize 
allelic variants as highly differentiated among populations, and even 
highly differentiated loci (measured by Fst) may not have true adap-
tive value (Savolainen et al., 2013). Therefore, while the capability of 
genotyping large amounts of SNPs under possible selection has ad-
vanced, purging false positives from hundreds or thousands of can-
didate loci remains a bottleneck that hampers efficient exploration of 
true candidate genes. One approach to minimize false positive is to 
compare results from repeated and independent GBS experiments, 
but this approach has not been widely adopted due to added cost 
and labor involved.

In this study, we addressed the major concerns of the GBS method 
(specifically, repeatability and false positives due to missing data) using 
a combination of methods to more reliably identify loci under selection. 
First, we incorporated replication of sampling design into our sequenc-
ing strategy. Second, we isolated candidate loci that were detected 
by two Fst outlier-based methods (Excoffier, Hofer, & Foll, 2009; Foll 
& Gaggiotti, 2008) and a genotype–environment association method 
(Frichot, Schoville, Bouchard, & François, 2013; Schoville et al., 2012) 
before reanalyzing them in a combined library with putatively neutral 
loci. For our final set of repeatedly genotyped loci showing evidence 
of local adaptation, we compared patterns of allele turnover along eco-
logical gradients to our putatively neutral set of loci using a gradient 
forest (GF) approach recently applied to the field of ecological genom-
ics (Ellis, Smith, & Pitcher, 2012; Fitzpatrick & Keller, 2015). Our main 
questions are as follows: (1) Has the species evolved local adaptation 
as a consequence of environmentally heterogeneous ecological pres-
sures? (2) Which SNPs are likely to be candidates under selection? (3) 
Which environmental gradients are most important to genetic diver-
gence and local adaptation of C. florida populations if any? (4) What 
genetic predisposition does C. florida possess to adapt to ongoing 
climate change in North Carolina? (5) And how does repeated GBS 
experimentation influence final results? The latter question is of ut-
most importance to researchers incrementally expanding sequencing-
based investigations across increasing portions of a taxon’s range, and 
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as such, we primarily report findings within North Carolina as part of a 
broader effort to characterize adaptive variation throughout the flow-
ering dogwood range.

2  | MATERIALS AND METHODS

2.1 | Site selection

The natural range of C. florida comprises distinct and heterogeneous 
environments—spanning as far as north as Maine and occurring as a 
disjunct subspecies along the Sierra Madre Oriental; as such, various 
biotic and abiotic stressors have varied effects on the species in dif-
ferent ecoregions. Although ongoing research is underway to cap-
ture the full range of adaptive variation in C. florida, North Carolina is 
well suited for initial study as it encompasses three ecoregions with 
distinct environments spanning a range of longitudinal–elevational 
gradient similar to conditions of northern and southern portions of 
the species range (Wells, 1932). Therefore, we selected six popula-
tions within North Carolina, USA, representing divergent habitats 
and environments (Figure 1). These sampling areas represented 
mountains from within and around the Great Smoky Mountains 
National Park (GSMNP/SM) and Pisgah National Forest (PI), the 

Piedmont from Duke Forest (DK) and Umstead State Park (UM), and 
the Coastal region from Croatan National Forest (CF) and the Nature 
Conservancy site of Nags Head Woods Preserve (TNC/NW). These 
sites occurred along similar latitudes and represented the three dis-
tinct ecological regions of North Carolina (Figure 1, Table 1, Figure 
S1). Sampling sites were selected with consideration of their remote-
ness from developed areas to minimize the probability of studying 
cultivated trees. Due to high heterogeneity in elevation at small dis-
tances within mountainous regions, two mountain populations were 
each subdivided into two sampling sites. Two mountain locations for 
sampling were within national park and forest boundaries. Two other 
mountain locations were in close proximity to protected areas and 
were previously monitored for dogwood anthracnose disease by the 
NC Forest Service-Forest Health Branch (Table 1; Figure S2). As the 
North Carolina Piedmont has been substantially developed, we chose 
two natural and relatively undeveloped locations (DK and UM). Our 
locations for sampling along North Carolina’s coast were limited to 
upland mesic forests because flowering dogwoods rarely occur in 
the pocosin and other wetland communities of the mainland coast 
and outer banks. Environmental similarities of sites within ecologi-
cal regions and differences of sites between ecological regions were 
confirmed by environmental data.

F IGURE  1 Map of sampling locations across North Carolina coast, Piedmont, and mountain regions—including the Great Smoky Mountains 
(SM), Pisgah Forest (PI), Duke Forest (DK), Umstead State Park (UM), Croatan Forest, and Nags Head Woods Ecological Preserve (NW). Bottom 
right inset represents entire range of Cornus florida subsp. florida sampled for broader range study
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2.2 | Environmental variables

Three ecological regions from which natural populations were sampled 
are known to differ in temperature, rainfall, soil type, and disease inci-
dence. Differences between mountain, Piedmont, and Coastal Plains 
regions of North Carolina were recorded with field-site measure-
ments. Environmental variables from each region were represented 
by data collected from two subpopulations, and each subpopulation 
consisted of one or two sites of 30 or 15 individual trees, respectively. 
Field measurements and soil cores were obtained in close proximity 
to each tree sampled, and the majority of sampled trees were spaced 
at least five meters apart within each subpopulation. With genotype 
evidence later obtained (see Genotyping and Data processing), relat-
edness between individuals was checked using PLINK (Purcell et al., 
2007) to ensure environmental data affiliated with clonal or sibling 
pairs were excluded.

Environmental measurements included elevation, proximity to 
water, canopy coverage, and 15 soil core features (Table S1 Appendix) 
and were recorded at sites during sample collection (described in 
Environmental Variables, Supporting Information). Additional environ-
mental data (soil classification, temperature, precipitation, frost-free 
period, and length of growing season) were obtained via GIS (see GIS 
Resources, Supporting Information). We note further in Supporting 
Information that the size of our environmental dataset was reduced for 
certain analyses, namely GF analysis. As collinearity among variables 
and its effect on the random forest algorithms (that GF is an exten-
sion of) are not fully understood, we safeguarded against any possible 

problems by reducing the number of collinear pairs of environmental 
variables. Prior to reduction of collinearity for GF (Additional Validation 
of Environmental and SNP Data, Supporting Information), our envi-
ronmental dataset consisted of 12 variables (Table S1 Appendix), ex-
cluding 15 soil core measurements and soil types from the USGS soil 
classification scheme.

2.3 | Functional traits

Two functional plant traits, plant health and leaf osmotic poten-
tial, were measured in this study. Plant health was measured dur-
ing plant collection. We measured the health condition of every 
sampled tree using a visual estimation method (Mielke & Langdon, 
1986) employed previously by forest health monitors. Individuals 
were scored for one of five categories based on twenty percentile 
increments of tree canopy displaying symptoms of disease infection 
(e.g., leaf blotting, necrosis, or branch dieback). Individuals rated 
with a score of five exhibited minimal or no stress (0%–20% canopy 
infection), while individuals with scores of one had almost no living 
or disease-free foliage (80%–100% canopy infection). In addition, 
we employed an alternative binary scoring system that recorded 
scores of four and five as one and anything below as a score of zero. 
After assigning each tree a health score, at least four branch cut-
tings were taken from the majority of sampled trees (except some 
mountain trees with substantial branch dieback) and transported 
to the laboratory for leaf osmotic potential measurements using an 
osmometer.

TABLE  1 Location and population summary statistics of sampled subpopulations within each ecological region of North Carolina

Subpopulation Region GPS coordinates Sample Ho He Nucleotide diversity

Library 1 dataset 82,697,746 paired reads 157,087 unfiltered loci 2,983 filtered loci 30.03× coverage

 Great Smoky Mountains Mountains 35.57, −83.34 15 0.2591 0.2795 0.2899

35.56, −83.31

35.51, −83.30

 Pisgah Forest Mountains 35.49, −82.63 16 0.2524 0.2761 0.286

 Umstead State Park Piedmont 35.84, −78.76 16 (−2) 0.2704 0.28 0.2908

35.87, −78.76

 Duke Forest Piedmont 36.00, −78.97 19 0.2399 0.2547 0.262

 Croatan Forest Coastal Plains 35.03, −77.14 15 0.2652 0.2839 0.2944

34.82, −77.15

 Nags Head Woods Coastal Plains 35.99, −75.67 15 0.2838 0.2907 0.3013

Library 2 dataset 99,062,919 paired reads 151,271 unfiltered loci 2,764 filtered loci 34.57× coverage

 Great Smoky Mountains Mountains 35.24, −83.24 15 0.278 0.2872 0.2976

 Pisgah Forest Mountains 35.25, −82.74 15 0.2529 0.2821 0.2926

 Umstead State Park Piedmont 35.84, −78.76 13 0.2745 0.2901 0.3021

35.87, −78.76

 Duke Forest Piedmont 36.00, −78.97 11 0.235 0.2673 0.2814

 Croatan Forest Coastal Plains 35.03, −77.14 15 0.2494 0.2863 0.2971

34.82, −77.15

 Nags Head Woods Coastal Plains 35.99, −75.67 15 0.2859 0.283 0.2932
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We designed osmometer experiments to specifically measure leaf 
osmotic potential (tendency of water to move into and be retained 
in mesophyll cells), which is indicative of plant drought tolerance 
(Bartlett, Scoffoni, & Sack, 2012). Branches were randomly selected 
by cutting from each sampled tree. Cuttings were placed immediately 
in 50-ml vials filled with water and transported promptly to a com-
mon room temperature-controlled setting where measurements were 
taken using an osmometer (described in Functional Traits, Supporting 
Information).

2.4 | Genotyping

Fresh leaf samples were collected from the same plants visually scored 
for health in the field. Samples were stored at −20°C until they were 
used for DNA extraction. A total of 180 trees were sampled from six 
populations, with 30 samples from each (Table 1). These samples were 
divided into two sets, and each set contained approximately half of 
the samples from each subpopulation. A GBS library was prepared 
for each of the two sets (96 and 85 individuals) for sequencing with 
Illumina HiSeq 2000. DNeasy Plant Mini kits (Qiagen, Inc., Valencia, 
CA, USA) were used to extract DNA from frozen fresh leaf tissue. 
Quantity and quality of extracted DNA were checked using fluores-
cent dye-binding (PicoGreen) assays, agarose gels, and UV absorb-
ance (Nanodrop). DNA samples with poor quality were purified with 
Qiagen DNA Purification kits or re-extracted until good-quality DNA 
(A260/A280>1.7) was available. GBS libraries were prepared for two 
DNA libraries of 96 and 85 individuals separately, according to the 
double-digest RAD-seq/GBS method (Peterson, Weber, Kay, Fisher, 
& Hoekstra, 2012; Supporting Information). The two libraries with dif-
ferent pooled individuals were sequenced on two different flow cells 
on an Illumina Hiseq.

2.5 | Data processing

Sequence data from each Illumina library were cleaned by removing 
contaminant and low-quality sequences. High-quality reads from each 
library were independently assembled de novo and filtered again after 
assembly. Paired-end one (PE1) reads were processed separately for 
each of the two libraries (see discussion of PE2 reads, Supporting 
Information). GBS barcode splitter, other custom Perl scripts, and 
FASTX-Toolkit were used to sort samples by barcode, trim PE1 reads 
to 90 bps, and remove sequence reads that had more than 5% of their 
bases with a quality score below 20. Bowtie 2 (Langmead & Salzberg, 
2012) was used to align raw reads to several fungal genomes in order 
to identify and filter out as many contaminant DNA fragments as pos-
sible. Following these steps, we processed sequences into catalogs 
of shared loci using STACKS (Catchen, Amores, Hohenlohe, Cresko, 
& Postlethwait, 2011; Catchen, Hohenlohe, Bassham, Amores, & 
Cresko, 2013).

After removing nontarget sequences, remaining sequences were 
processed through STACKS version 1.19 (Catchen et al., 2011) in 
order to assemble sequences de novo into two libraries of shared 
reads (or 90 bp RAD-tag loci with one to four SNPs per RAD-tag). The 

following parameter options for ustacks, cstacks, and sstacks were 
specified as m 3 [minimum coverage to create stack], M 2 [maximum 
nucleotide distance permitted between initial stacks], N 4 [maximum 
nucleotide distance permitted between secondary stacks], max locus 
stacks 3 [maximum number of stacks to consider an assembled locus], 
and n 2 [mismatches allowed between tags from different samples]. 
In addition to this parameterization (justified in SNP Data processing, 
Supporting Information), we also chose filtering parameters that con-
trolled the amount of missing data tolerated for population genetic 
analyses.

Missing data were also important factors to consider for process-
ing steps. A common practice is to use >20% missing data criterion 
as an arbitrary cutoff to exclude loci in datasets (Narum et al., 2013), 
but some have relaxed the criterion to up to 80% missing data (Crossa 
et al., 2013). Excessive data filtration can have unforeseen conse-
quences (Huang & Knowles, 2014) due to truncation of loci with 
higher mutation rates and reducing statistical power of analyses. We 
relaxed our missing data acceptance threshold slightly by keeping loci 
with a maximum of 25% missing data in each library’s samples. We 
also designated a 5% minor allele frequency cutoff to reduce artifacts 
of sequence and assembly error. After extensive exploratory tests of 
fundamental filtering parameters and inspection of preliminary results 
with PCA (implemented in the R package adegenet, Jombart, 2008), 
we removed two individuals from the first library of 96 samples due 
to suspicions of being clonal pairs of a planted cultivar. One individual 
from the second library of 85 individuals was removed due to con-
siderable amounts of missing data, likely a result of failure to amplify 
sequence fragments during sequencing. Data with these crucial ad-
justments were used for further analyses to infer population genetic 
structure and identify candidate loci under selection, and additional 
adjustments and SNP validation were conducted depending on the 
type of analysis (Additional Validation of Environmental and SNP Data, 
Supporting Information).

2.6 | Identification of candidate loci under selection

To identify loci strongly deviated from the general population genetic 
structure and strongly associated with environmental differences, 
we first characterized individuals’ membership to biological clusters. 
Using a dataset of uncorrelated SNPs not in linkage disequilibrium 
for our two libraries (first occurring SNP per RAD-tag), STRUCTURE 
(Pritchard, Stephens, & Donnelly, 2000) was implemented for the first 
eight cluster models (K = 1–8) using ten replicate analyses each with 
a burn-in of 100,000 and 100,000 subsequent iterations. The same 
procedure was carried out on the combined library of 1,171 putatively 
neutral SNPs in Hardy–Weinberg equilibrium (Additional Validation of 
Environmental and SNP Data, Supporting Information).

We then scanned for outlier loci deviating from the simulated null 
distribution of heterozygosity Fst for hierarchically structured pop-
ulations using the method of Excoffier et al., 2009 (implemented in 
Arlequin; Excoffier & Lischer, 2010) on the highest Fst SNP for each 
RAD-tag. A coastal-mainland hierarchical population structure, iden-
tified as the best grouping from STRUCTURE, AMOVA, and PCA 
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analyses, was designated for Fst outlier loci analysis using Arlequin. 
Using Arlequin, we ran 20,000 simulations with 10 simulated groups 
and 100 demes per group in the analysis to identify candidate loci 
under selection. Using another extension of the Fst outlier approach 
(Beaumont & Nichols, 1996) implemented in BayeScan (Foll & 
Gaggiotti, 2008), we also assessed allele frequencies from the same 
datasets to test whether loci were highly differentiated when pa-
rameterizing a classical island model instead of a hierarchical island 
model. Under certain simulated scenarios where adaptive variation 
conflicted with a defined hierarchical neutral structure, BayeScan has 
been shown to outperform Arlequin (Narum & Hess, 2011), and other 
simulated work suggests comparison of results from different outlier 
methods can reduce error rates (Villemereuil, Frichot, Bazin, François, 
& Gaggiotti, 2014). The analysis was performed with the following pri-
ors: 5,000 sample size; 20 thinning intervals; 20 pilot runs of length 
5,000; 100,000 additional burn-in; uniform distribution between 0 
and 1; and a prior odds for neutrality of 5:1. Prior odds of 1:1 and 10:1 
for the neutral model were also evaluated in BayeScan.

Significant genotype–environment association (GEA) was investi-
gated using latent factor mixed modeling (LFMM; Frichot et al., 2013). 
LFMM accounts for covariation of alleles and environment, and com-
pared to other GEA tests, more flexibly accounts for hidden popula-
tion structure while maintaining a relatively lower false detection rate 
under models of hierarchically structured populations (Villemereuil 
et al., 2014). As we found evidence to support subpopulations being 
hierarchically nested within two larger clusters (coastal-mainland), 
we chose LFMM to identify candidate loci. The optimal latent factor 
number (K = 2), identified with the Evanno method for STRUCTURE 
analysis (Evanno, Regnaut, & Goudet, 2005), was incorporated in 
LFMM. For LFMM, we ran the analysis with 50,000 sweeps for each 
pairwise test with a burn-in of 12,500 sweeps because repeated tests 
of parameters showed a precise consensus in regard to SNPs being 
detected as highly associated with environmental and functional traits.

Fst outliers from Arlequin analysis were filtered for p-values below 
5%, and a q-value for each locus was subsequently calculated by the 
program QVALUE (Benjamini & Hochberg, 1995) to monitor false dis-
covery rates of positive results. Q-values of outlier loci from BayeScan 
were automatically calculated by the program, and those results were 
filtered to retain loci with a q-value below 0.1. Results from LFMM 
genotype–environment associations were filtered to keep significant 
associations with a Z score over 4, following the practice of Frichot 
et al. (2013). The score corresponded to a Bonferroni alpha correction 
of 0.01 for 1,000 SNPs.

2.7 | Detecting allele turnover patterns along 
ecological gradients: gradient forest and mantel tests

A small subset of loci (54 RAD-tags) had compelling evidence for being 
under selection, defined as being detected by multiple methods across 
libraries (three or more overlaps in Figure 6a) and consistently geno-
typed across libraries, were selected for analysis of allele turnover 
along ecological gradients using gradient forests analysis. This analysis 
is a novel application of a community ecology method (Ellis et al., 2012) 

to study ecological genomics of local adaptation. The method was re-
cently demonstrated by Fitzpatrick and Keller (2015) to be useful for 
further evaluating the adaptive and ecological significance of puta-
tive candidate loci under selection and for determining the relative 
importance of various ecological pressures on the adaptive landscape. 
A larger set of presumably neutral loci (1,307 RAD-tags) were con-
structed as the reference group for the analysis. The “reference loci” 
were consistently genotyped across libraries but were not identified 
as candidates under selection in any of the Arlequin, BayeScan, and 
LFMM analyses. To distinguish departures of candidate SNPs from 
the general genomic background, we concurrently analyzed and plot-
ted patterns of allele turnover along ecological gradients for the both 
the candidate and reference subsets of our dataset using GF analy-
ses (Fitzpatrick & Keller, 2015). The 176 individual trees were treated 
as response variables for GF. On the other hand, the subpopulations 
(two mountain populations subdivided) were considered for pairwise 
matrices used in mantel tests. Mantel tests were applied to the same 
datasets to corroborate overall correlations (instead of SNP-specific 
patterns) between environment and candidate-reference loci, after 
controlling for geographic distance (Legendre & Fortin, 1989). Mantel 
tests, specifically partial mantel tests, have been similarly applied in 
recent population-level studies (Zhao et al. 2013). Before implement-
ing GF and mantel procedures, we implemented one further series 
of validation procedures to our environmental data, candidate loci, 
and reference loci as described in Supporting Information (Additional 
Validation of Environmental and SNP Data).

GF analyses were conducted with the gradientForest R package 
(Smith & Ellis, 2013), using only SNPs with a variable correlation 
threshold of 0.5 or greater to generate plots of allele turnover. As a 
precaution, we minimized the nonindependence of SNPs in our ge-
netic dataset prior to GF analysis because (although not demonstrated 
to affect GF specifically) linkage disequilibrium was known to bias 
landscape and population genomic approaches by adding weight of in-
ference to correlated loci pairs. To reduce GF’s susceptibility to linkage 
disequilibrium, only one SNP per RAD-tag was considered while fitting 
the GF model using 2,000 regression trees. A random SNP per RAD-
tag was selected for reference loci, but the SNP with the highest Fst 
per RAD-tag was chosen for candidate loci. SNP data were converted 
to presence–absence of the minor allele for each of 176 individuals 
(two samples duplicated among two libraries) and were analyzed in GF 
using the regression model, which was a standard implementation of 
the gradientForest R package. Remaining parameters to fit GF models 
were selected according to Fitzpatrick and Keller (2015).

Partial mantel tests were performed with R ade4 and ecodist pack-
ages (Chessel, Dufour, & Thioulouse, 2004; Goslee & Urban, 2007) 
using Slatkin’s linearized Fst data to ensure genetic patterns were 
suited for linear regression. Pairwise matrices of linearized Fst values 
were obtained from Arlequin, and for every environmental–functional 
variable, each subpopulation’s mean was calculated. The pairwise 
difference between subpopulations’ means was then determined to 
obtain a dissimilarity matrix for each environmental–functional trait. 
Geographic distances between populations were calculated using 
Euclidean distances derived from a projected coordinate system (in 
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meters) to provide control for isolation by distance while detecting 
the significant correlations between overall genetic and environmen-
tal distances (i.e., partial mantel tests). Full and partial mantel tests 
were carried out independently for each environmental–functional 
trait.

3  | RESULTS

3.1 | Environmental and functional trait differences

Results of one-way ANOVA (or Kruskal–Wallis tests for environmen-
tal data not fitting ANOVA assumptions) indicated the majority of en-
vironmental features were significantly different (p < .05) between at 
least two of six populations compared (Table S1 Appendix). Several 
soil features, however, did not show significant differences among 
sampled locations (e.g., Ca, Mg, Cu, Zn, CEC, exchangeable acidity, 
pH, and base saturation). Tukey–Kramer tests (or Dunnett’s modified 
Tukey–Kramer tests for violations of homoskedasticity) supported 
observations that environmental features vary along the gradient of 
mountain, Piedmont, and coastal regions (Table S1 Appendix). Higher 
elevation populations were wetter per month and shorter in growing 
period compared to those of populations at lower elevations (Table 
S1 Appendix). Humidity in Piedmont locations was slightly lower than 
in coastal locations. Coastal populations were environmentally differ-
entiated from other populations in soil features, especially for density 
(mg/dm3) of sodium, potassium, manganese, and soil weight to vol-
ume ratios (Table S1 Appendix).

Mean values of plant health rating varied significantly among pop-
ulations (Figure S2), but leaf osmotic potential varied to a lesser extent 
(Table S1 Appendix). Results of Tukey–Kramer tests confirmed moun-
tain populations had significantly lower plant health ratings than other 
populations (Mountain: 3.33, 3.03; Piedmont: 4.67, 4.48; Coastal: 
4.77, 4.77; Table S1 Appendix). In contrast, population differences of 
leaf osmotic potential were relatively modest, showing a west–east 
gradient of osmolality (mmol/kg) from lower values in mountain popu-
lations to higher values in coastal populations.

3.2 | Genotyping results

Before removing contaminant reads aligned to fungal genomes and 
low-quality sequences, libraries one and two had a total of 82,697,746 
and 99,062,919 paired sequences, with an average of approximately 
861,435 and 1,179,320 PE1 sequences per individual, respectively 
(Table 1). After filtering sequences with low-quality scores (sequence 
reads with >5% of bases below a quality score of 20) prior to assem-
bly with STACKS, 777,928.2 and 1,005,628 90 bp PE1 sequences 
per individual (on average) remained for library one and two. After de 
novo assembly of sequence reads using STACKS, the average cover-
age of reads per assembled stack for a given individual in the two 
libraries was 30.03× and 34.57×, respectively, and a total of 157,087 
and 151,271 unique SNPS were recovered (Table 1). After removal 
of rare SNPs (minor allele frequencies <5%) and loci missing in >25% 
of individuals per library, the number of unique SNPs was reduced 

to 2,983 and 2,764 for library one and two, respectively. When only 
a single SNP per locus-tag was retained, numbers were further re-
duced to 2,170 and 1,994. When both libraries’ results were examined 
together, a total of 2,533 unique loci were identified (Figure S4). Of 
these unique SNPs, a total of 1,631 loci were repeatedly genotyped in 
both libraries (Figure S4A)—representing approximately 75% and 82% 
of the total of each library.

3.3 | Population genetics

STRUCTURE analyses of both libraries supported an optimal K = 2 
grouping of individuals, a coastal population group and a mainland 
(mountain-Piedmont) group (Figures 2a and S5). UPGMA dendro-
grams of genetic distances (Nei, 1972) generated with the pro-
gram Populations (Langella, 1999) also showed high support for a 
grouping of coastal subpopulations that was distinct from mainland 
populations (Figure S6). PCA of both library one and two data simi-
larly showed two distinct clusters defining a mountain-Piedmont 
group and a coastal group (Figure 2b). One mountain subpopu-
lation (GSMNP) in library two showed additional intrapopula-
tion clustering. Overall, these results clearly indicate at least two 
genetic clusters—distinguishing coastal populations from mainland 
populations.

AMOVA results (Table 2) showed a considerable percentage of 
total genetic variation attributable to differences among individuals 
(library one: 92.72%, library two: 88.27%) and a small but significant 
percentage was attributed to differences among subpopulations within 
a two group hierarchical structure (library one: 1.93%, FSC = 0.01993, 
p < .001; library two: 3.34%, FSC = 0.03448, p < .001). Differences 
between coastal and mountain-Piedmont groups accounted for ap-
proximately 3% of total genetic variation for both library one and two 
results, which is marginally insignificant with a two-tailed statistical 
test (library one: p = .06585; library two: p = .06707). This suggests 
extensive genetic mixture within regions and frequent gene flow 
or weak genetic differentiation between coastal and mainland pop-
ulations. STRUCTURE and AMOVA results from analyses for a less 
probable hierarchical population structure of mountain, Piedmont, 
and coast division are available in Supporting Information (Table S2; 
Figure S8).

3.4 | Identification of candidates under selection

The distribution of SNPs’ Fst values estimated by Arlequin from a 
coastal-mainland hierarchical structure shows a majority of loci have a 
Fst value below 0.25, and a very small portion have a Fst value of 0.25–
0.8 corresponding closely to the ninety-ninth significance percentile 
(Figures 3 and S7). Analysis with Arlequin revealed 151 and 216 out-
lier loci beyond the 5% or 1% p-value level for libraries one and two, 
respectively (Figures 6 and S7, Fst and q-values in Table S1). Among 
these loci, 54 were consistently detected in both libraries. Analyses 
using BayeScan found 43 and 37 outlier loci from library one and two, 
respectively, passing a q-value cutoff of 0.1. Two loci identified as Fst 
outliers in BayeScan results were common to both libraries and also 



448  |     PAIS et al.

matched significant Arlequin results from each library (Figure 6a, 1+1 
in bottom right quadrant).

Results from single locus tests implemented by LFMM indicated 
129 (library one) and 133 (library two) RAD-tags had at least one SNP 
correlated (Z scores > 4) with one or more of the following: 12 environ-
mental variables, 15 soil properties, leaf osmotic potential, two scales 
of plant health, and three reduced principal components of environ-
mental distances. Z scores of 4 correspond to p-values ≤ .01 with a 
Bonferroni correction for 1,000 loci. Q-Q plots from LFMM (Figure 4) 
showed that reduced-dimension environmental components derived 

from features such as soil moisture, pH, nutrients, length of growing 
period, mean annual temperature, and mean monthly rainfall (Figure 
S3) had an excess of significant genotype–environment associations 
when analyzed in a single library alone, but results were much more 
conservative when the combined library of candidate SNPs was re-
analyzed with putatively neutral SNPs. LFMM association tests be-
tween each SNP and each individual environmental or functional 
trait revealed several significant correlations while controlling for 
hidden population genetic structure among individual trees (Table S1; 
Figure 5). Similar to results of GF and partial mantel tests, temperature 

F IGURE  2 Analyses of overall genetic population structure for library one, library two, and combined datasets including (a) STRUCTURE 
results of latent factor K = 2 model and (b) principal component analysis of 94 and 84 individuals from each dataset. Two individuals removed 
because of possible hybridization with planted cultivar tree in library one, and one individual removed in library two because of insufficient 
amplification and sequencing of genotypes. Prior to analysis of each library, only first occurring SNP per RAD-tag was considered in order to 
reduce linkage disequilibrium. Only 1,171 reference SNPs (validated by selection tests to be putatively neutral) in Hardy–Weinberg equilibrium 
for more than four subpopulations were used to analyze population structure of combined library 
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covariates were most often correlated with outlier SNPs. LFMM anal-
yses did not detect significant correlation between genetic data and 
canopy coverage or levels of zinc. Significant correlations of genetic 
data to functional traits detected by LFMM analyses differed between 
the two libraries. When coding plant health as a binary state, more 
significant associations with SNPs were detected in library one than in 
library two. However, when plant health was scored using a 1–5 scale, 
the pattern was reversed. Of loci detected to be putatively under se-
lection according to Arlequin, BayeScan, and LFMM, a subset of 54 
loci were detected in more than one of these methods and genotyped 
in both libraries (Figure 6a).

The rate of consistently genotyping a locus across libraries was 
75%–82%, whereas the rate of consistently identifying SNPs as can-
didates under selection by at least one method ranged between 23%–
32% when considering any genome scan analysis of library one and 
two. See Supporting Information (Defining Consistency) for our defi-
nition of consistency. A smaller subset of candidates under selection 
were identified as highly interesting as they were detected between 
both libraries by multiple Fst outlier and correlation tests, and several 
candidates matched to elements of C. florida’s transcriptome or the 
NCBI nonredundant (nr) sequence repository. The conservative subset 
of 54 SNPs had extensive evidence to support adaptive significance 
and was defined by having three or more overlaps from Figure 6a in 
addition to being present in both filtered datasets of library one and 
two. In other words, any three of the six criteria were met to consider 
the 54 consistently genotyped loci as candidates: (1) Arlequin-library 
one significance; (2) Arlequin-library two significance; (3) BayeScan-
library one significance; (4) BayeScan-library two significance; and any 
significant environmental-SNP associations for LFMM analysis of (5) 
library one and (6) library two.

For the 54 SNPs identified as candidates of selection in at least 
three analyses (those falling in the three overlapping areas boxed 
in Figure 6a) and consistently genotyped across libraries, BLAST 
searches to the NCBI nr repository showed eight loci with hits to pre-
dicted gene products (Table 3), and seven loci had no hits to predicted 
functions but aligned to the transcriptome of C. florida (Zhang et al., 
2013). Evidence in support of these specific candidate SNPs is doc-
umented further in Table 3, and curated annotations with clear adap-
tive significance are examined further in discussion. Notable trends 
observed among the 54 candidate loci summarized on Table 3 are 
reported here. Of the 54 candidate SNPs, Fst estimates were consis-
tently high among Arlequin analyses of both libraries for 39 of our 54 
candidates. BayeScan estimates of Fst were consistently lower, but 28 
of 54 candidate SNPs had been detected as an Fst outlier at least once 
by BayeScan analyses of the two libraries. According to LFMM results 
of the 54 candidate loci, 45 loci had at least one correlation to climatic 
data, 30 were significantly associated with at least one soil property, 
and four were correlated to visual health scores. Given the relatively 
high adaptive significance of these 54 candidates SNPs compared 
to the general pool of reference SNPs, we expected and found clear 
differences in regard to patterns of allele turnover along ecological 
gradients.

TABLE  2 AMOVA results from separate analyses of library one 
and two datasets. Two groups represented are the coastal group and 
the mainland group (mountains and Piedmont). 50,000 permutations 
ran in Arlequin for test of significance

Variation source df
Percentage 
of variation p-Value

Library one 
dataset

Among groups 1 3.04 .06585

Among populations 
within groups

4 1.93 <.001

Among individuals 
within populations

88 2.31 .08434

Within individuals 94 92.72 <.001

Library two 
dataset

Among groups 1 3 .06707

Among populations 
within groups

4 3.34 <.001

Among individuals 
within populations

78 5.38 .00134

Within individuals 84 88.27 <.001

F IGURE  3 Number of SNPs with variable degrees of 
population genetic differentiation. Fst distributions of highest Fst 
SNP per RAD-tag loci passing filtering criteria for library one and 
two. Fst values estimated in Arlequin using a mainland coastal 
hierarchical structure. Range of Fst outlier SNPs in ninety-five 
percentile boxed in blue and Fst outlier SNPs in ninety-ninth 
percentile boxed in red
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3.5 | Detecting allele turnover patterns along 
ecological gradients: candidate vs. reference SNPs

The remaining set of environmental and functional trait variables with 
a VIF score below 10 were used for GF and mantel tests and listed in 
Table S3. After removing possible artifacts of combining libraries one 
and two (rationalized in Additional Validation of Environmental and 
SNP Data, Supporting Information), our chosen subset of 54 candi-
date loci was parsed to 43 in order to conduct GF on the combined 
dataset. The 43 candidate SNPs for GF analyses differed strongly from 
our chosen 1,171 reference SNPs (parsed originally from 1,307) in re-
spect to overall patterns of allele turnover along ecological gradients 
of frost-free period, mean July precipitation, and soil densities of po-
tassium, sodium, manganese, phosphorus, and sulfur (Figure S9). In 
addition, mantel tests of collection sites for both reference and candi-
date SNP datasets supported that frost-free period and levels of po-
tassium were the top two ecological variables for explaining patterns 
of genetic differentiation, albeit isolation by distance was also strongly 
correlated (Table S3). For GF, individual allele functions of candidate 
SNPs were plotted and highlighted in Figure 7 against SNPs behaving 
as the genomic background (black line for background SNPs). The top 
five GF plots in Figure 7 showed the most overall contrast between in-
dividual candidate SNPs and reference SNPs (interpreted from Figure 
S9), but several patterns of allele turnover for less informative ecologi-
cal gradients were of interest and were plotted in Figure S10. Several 
SNPs (e.g., B18_11, B244_51, B332_14, B195_77, B977_86) deviated 
greatly from reference SNPs near the longer portion of the frost-free 

period gradient (highest allele turnover at approximately 220 days). 
SNP B1098_10 exhibited allele turnover patterns greatly contrasted 
from the majority of reference SNPs and other candidate SNPs along 
gradients of soil potassium, sodium, and sulfur. SNP B332_14 ranked 
second for a high amount of turnover along a potassium gradient, and 
SNPs B349_54 and B18_11 were also strong candidates that exhib-
ited contrasting allele turnover patterns along gradients of sodium and 
sulfur. For allele turnover patterns along precipitation gradients, SNPs 
B195_77 and B1219 were highly contrasted against patterns of the 
reference background and other candidate SNPs.

4  | DISCUSSION

This study characterized how C. florida might have evolved local 
adaptation in response to a heterogeneous landscape of ecological 
pressures within mountain, Piedmont, and coastal regions of North 
Carolina. While further study along the entire range of C. florida is on-
going, our conclusions of the adaptive variation in North Carolina may 
be related to findings of the broader species range. North Carolina has 
long been noted to contain a large variety of plant communities (i.e., 
Southern Appalachian forests, savannah, pocosin, and swamps), which 
are similar in species composition to communities at more northern 
and southern latitudes (Wells, 1932). There is still a sizeable portion 
of adaptive variation uncharacterized in this study when compared 
to the adaptive variation present in the broader range (Table S4). 
Nonetheless, our results are highly relevant to conserving the species 

F IGURE  4 Select Q-Q plots from 
LFMM (K = 2) analyses of genotype–
environment associations—including 
visualizations of associations to top two 
principle components of environmental 
distances for samples in (a) library one 
and (b) combined library. Dots in green 
ovals indicate significantly associated SNP 
markers with a Z score >4). Reduction of 
false positives is considerably reduced in 
combined library (part B), which consists 
of 1,171 putatively neutral SNPs and 43 
candidate loci
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in Southern Appalachia, and our assessment of repeatability can aid 
efforts to identify consistent and reliable candidate loci as additional 
sequence libraries are incorporated.

The relationship between plant community composition, spe-
cies occurrence, and ecological gradients have been extensively ex-
amined in the Carolinas (Peet et al., 2012), but the genetic basis for 
intraspecific turnover along ecological gradients has been less un-
derstood. Environmental processes leading to local adaptation have 
also been frequently overlooked in studies pursuing candidate SNPs 
of local adaptation (Meirmans, 2015). Our association study of C. flor-
ida populations from three divergent environments provided such 
insights, in addition to uncovering where population-level vulner-
ability to climate change and exotic disease (Anderson et al., 2004; 
Liebhold, Brockerhoff, Garrett, Parke, & Britton, 2012; Pautasso, 
Döring, Garbelotto, Pellis, & Jeger, 2012; Weed, Ayres, & Hicke, 
2013) might occur. Our results’ specific implications for conservation 

of the flowering dogwood tree are shared in Supporting Information 
(Implications for Conservation), while we focus on particular candidate 
loci and ecological pressures in our discussion. We also report the re-
peatability of our GBS experiments in respect to the small subset of 
candidate SNPs that are consistently associated with local adaptation 
across both libraries and are cross-examined across multiple selection 
models (Villemereuil et al., 2014).

4.1 | Evidence for locally adapted candidate loci

Local adaptation could be inferred from genetic signatures intrinsic to 
sequence datasets or allele frequency changes in relation to functional 
and environmental traits; Schoville et al. (2012) reviewed excellent ex-
amples of both population genetic and GEA approaches to uncover 
local adaption. Using both approaches, we found evident genetic sig-
natures of local adaptation in C. florida (Table 3) and 54 well-supported 

F IGURE  5 Total count of loci (x-
axis) with SNPs passing Z cutoff of 4 
for association to given environmental 
variables (y-axis) using LFMM (K = 2) 
analysis of (a) library one and (b) library two
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candidate loci under selection along divergent environmental gradi-
ents (Figure 7). The majority of the candidate loci (42 of 54; Figure 6b) 
still showed evidence of being under selection when the two sequence 
libraries were combined, validated further (Additional Validation of 
Environmental and SNP Data, Supporting Information), and reana-
lyzed with outlier tests and association models. Support for biological 
significance of several SNPs was clear when various criteria of candi-
date status were examined together. Moreover, select ecological pres-
sures appeared to influence candidate loci. Three candidate loci (B332, 
B1350, B982) were selected for further consideration from a set of 
putative loci under selection (Table 3) based on compelling predicted 

functions. SNPs that did not necessarily have annotated function but 
showed strong splits along ecological gradients where allele turnover 
was high (according to GF analysis) were also noted (Evidence for 
Locally Adapted Candidate Loci, Supporting Information).

Patterns of overall cumulative importance—or how well biological 
variation was explained for a given interval of environmental change 
(Fitzpatrick & Keller, 2015)—from GF analyses (Figure S9) showed can-
didate SNPs were most divergent from reference SNPs for gradients 
of frost-free period, July precipitation, potassium, phosphorous, sulfur, 
and sodium. GEA results from LFMM also supported the importance 
of these variables for explaining local adaptation in specific loci. As 

F IGURE  6 Venn diagrams comparing: 
(a) total candidate loci detected by LFMM, 
Arlequin, and BayeScan in libraries one and 
two and (b) in combined library of 1,171 
putatively neutral SNPs and 43 candidate 
loci. After additional validation of SNPs 
(Additional Validation of Environmental 
and SNP Data, Supporting Information), 
43** of 54 candidate loci consistently 
genotyped across libraries and detected to 
be under selection by at least three tests 
of local adaptation (boxed in Figure 6a) 
were reanalyzed by selection tests with 
1,171 putatively neutral loci (no overlaps 
in part a). One overlap in part A originally 
represented 13 loci detected by all three 
selection tests in library one but was 
reduced to seven results (7*) because six 
loci were not genotyped successfully in 
library two 
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summarized in Figure 5, temperature covariates (tmin1, growth pe-
riod, mean temperature, and frost period) constituted the majority of 
association results to individual SNPs. Soil characteristics with high-
est amounts of significant LFMM associations were potassium levels 
and envPC2, which was a reduced-representation component mainly 
characterizing soil differences from an environmental distance-based 
PCA (Figure S3). Low potassium levels were characteristic of relatively 
acidic soils of the Coastal Plains, which were susceptible to soil leach-
ing and deficiencies in other plant nutrients (USDA soil classification). 
In conjunction with soil nutrient availability, the amount of moisture 
available to soils clearly impacted nutrient use and growth strategies 
in flowering dogwoods (Kost & Boerner, 1985), and temperature and 
moisture regimen were shown to affect disease prevalence in dog-
wood populations (Chellemi et al., 1992). Holzmueller et al. (2007) 
demonstrated deficiency in soil potassium was linked to higher sever-
ity of dogwood anthracnose and quicker infection rates. The findings 
of Holzmueller et al. (2007) were of particular interest as coastal trees 
we sampled grew in relatively potassium poor soils but appeared vi-
sually free of anthracnose disease. This suggested coastal trees might 
have adapted to potassium poor soils, which could have resulted in 
secondary fitness effects such as greater resistance to disease rela-
tive to montane populations. In other words, selective pressures re-
garding levels of soil potassium might play a role in the adaptation to 
osmotic stress in coastal populations, and any such adaptations might 
predispose coastal populations to be less susceptible to oxidative 
stress caused by disease. Dogwood anthracnose was reported in Dare 
County along North Carolina’s coast (Figure S1), but its failure to per-
sist there also suggests the pathogen might not be adapted to thrive in 
North Carolina’s coastal climate. As such, adaptive mechanisms linking 
drought tolerance to disease resistance remain highly speculative— 
requiring us to test such hypotheses in future experiments.

The SNP on locus B332 (B332_14) was one of only nine genomic 
locations (B977, B768, B757, B634, B332, B247, B195, B1240, and 
B1250) to meet five of the six criteria for being considered a candidate 
of selection. It is repeatedly identified as a high Fst outlier by Arlequin 
in both the first, second, and combined libraries and by BayeScan in 
library two and the combined library. LFMM analyses in both librar-
ies and the combined library revealed the SNP was significantly cor-
related to several climate and soil variables, namely potassium and a 
reduced-dimension environmental variable (envPC2) autocorrelated 
with soil measures. We speculated soil leaching pressures and plant 
adaptations for efficient regulation of osmoticum might be critical 
factors to explain the high turnover of alleles for this SNP along a po-
tassium gradient (Figure 7). B332_14 aligned to an exon of C. florida’s 
transcriptome (Table S1), and the transcript was predicted to encode 
a probable glycerol-3-phosphate dehydrogenase (GPD, accession: 
XM_006493426) (Table 3). As demonstrated by Albertyn, Hohmann, 
Thevelein, and Prior (1994) and later by Shen, Hohmann, Jensen, 
and Bohnert (1999), the efficiency of proteins to regulate levels of 
glycerol influenced the ability of plants to osmotically adjust to salt 
stress and other osmotic stresses tied to water flux. Coastal trees we 
sampled grew in soils that had significantly lower levels of potassium 
(Table S1 Appendix), and they most likely had acquired locally adapted 

mechanisms to compensate for lower potassium uptake and resulting 
toxicities of high proportions of sodium to potassium (Niu, Bressan, 
Hasegawa, & Pardo, 1995). The GF plot of potassium (Figure 7) sup-
ported strong turnover of alleles for B332_14 along lower levels of 
potassium. Supplementary GF analyses (Figure S10) supported grad-
ual turnover of the biallelic locus as plant osmoticum (measured in 
osmometer experiments) increased (Functional Traits, Supporting 
Information). While one allele was more predominant in populations of 
the Piedmont and Coastal Plains of North Carolina, the alternate ver-
sion was only the major allele in two of the four mountain sites where 
soils were relatively potassium rich (Table S1). Of the 1,171 reference 
and 43 candidate SNPs analyzed by GF, only 24 SNPs had a correlation 
threshold above 0.5 in comparison with osmometer readings, but SNP 
B332_14 had the second highest cumulative importance of those 24 
SNPs. SNP B332_14 also had the second highest cumulative impor-
tance along a gradient of overhead canopy cover, further suggesting 
it might be involved in managing other sources of osmotic stress such 
as high light intensity. Thus, this is a strong candidate associated with 
local adaptation of the species.

Locus B1350 is predicted to be a leucine-rich repeat (lrr) receptor-
like serine threonine–protein kinase (accession: XM_00648094). While 
the function of this particular locus is speculative, leucine-rich repeat 
receptor-like kinases have previously been implicated in pathogen 
recognition (Afzal, Wood, & Lightfoot, 2008). A variety of resistance 
(R) genes encoding for lrrs have been identified, as the domain nor-
mally interacts with pathogen effectors or intermediate host molecules 
to trigger plant responses (Caplan, Padmanabhan, & Dinesh-Kumar, 
2008). One allele of B1350 was highly abundant in two of the four 
mountain subpopulations where dogwood disease was greatest (Table 
S1). Within analyses of library one, this locus was detected as a candi-
date of selection by both Arlequin, BayeScan, and LFMM. Greater het-
erogeneities of elevation, slope, and temperature within the mountains 
might result in more independent and isolated cases of local adapta-
tion than would be expected within the same spatial scale for non-
mountainous regions. Moreover, as implied by Hadziabdic et al. (2012), 
some mountain populations of C. florida might escape the suitable hab-
itat range of dogwood anthracnose and maintain high genetic diversity 
instead of having advantageous alleles become fixed. Our identifica-
tion of a lrr repeat receptor kinase constituted one hypothesis of local 
adaptation to disease for two of our sampled subpopulations, but we 
also found another putative R gene in our candidate dataset that might 
represent a different mechanism of plant resistance (discussed below).

Locus B982 was designated a candidate locus in analyses of both 
sequence libraries as well as the combined library. While the locus’ 
change in alleles was not associated with any ecological gradients, it 
was highly differentiated in both libraries and had been detected as 
an outlier by both Arlequin and BayeScan analyses in the combined 
library. Moreover, locus B982 aligned to a sequence scaffold of a 
coding region within the transcriptome of C. florida (scaffold 19651, 
Zhang et al., 2013). The scaffold itself aligned to a gene predicted to 
encode a lectin protein kinase. While extracellular signaling of lectin 
protein kinases might be specialized for various extracellular signals, 
an emerging role of such proteins might involve innate immunity 

info:ddbj-embl-genbank/XM_006493426
info:ddbj-embl-genbank/XM_00648094


454  |     PAIS et al.

Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B332 2117 60071 XM_006493426 1.00E-07, 0, 
0.478658

0.0013301, 0.07104953, 
0.313298

1.3431, 0.9898, 
0.15911

Not significant GROWING PERIOD, 
TMIN1, PREC6, PREC7, 
ENVPC2

Potassium, frost period, mean 
temp, growing period, tmin1

Probable glycerol-3-
phosphate 
dehydrogenase

C:glycerol-3-phosphate dehydroge-
nase complex; F:glycerol-3-
phosphate dehydrogenase [NAD+] 
activity; F:NAD binding; 
P:carbohydrate metabolic process; 
P:glycerol-3-phosphate catabolic 
process; P:oxidation–reduction 
process; P:glycerolipid metabolic 
process

Yes

B1350 9249 43811 XM_00648094 0.0086562, 
0.1129688, 
0.252691

Not significant 1.3013, 0.95839, 
0.15552

Not significant Elevation, copper, frost 
period, mean temp, 
growing period, tmin1, 
tmax7

No significant associations Probable lrr receptor-
like serine threonine–
protein kinase 
at3 g47570 isoform x1

C:integral component of membrane; 
F:protein serine/threonine kinase 
activity; F:ATP binding; P:protein 
phosphorylation; P:serine family 
amino acid metabolic process

Yes

B982 6702 8476 CP002687 0.0297114, 
0.1843343, 
0.201058

0.0240841, 0.1371417, 
0.206488

1.0959, 0.79996, 
0.14063

Not significant No significant associations No significant associations L-type lectin-domain 
containing receptor 
kinase-like (transcrip-
tome contig: scaffold 
19651)

F:carbohydrate binding Yes

B1092 7448 59746 ACUP02003346 Not significant 0.00796913, 
0.09401618, 0.258492

Not significant 1.5006, 0.9916,  
0.20093

No significant associations Weight/volume (soil), 
potassium, frost period, mean 
temp, growing period, tmin1

Serine threonine–pro-
tein phosphatase 
pp1-like

F:phosphoprotein phosphatase 
activity; P:protein 
dephosphorylation

Yes

B1219 8439 64761 XM_010110700 1.00E-07, 0, 
0.52692

0.00772755, 
0.09401618, 0.279965

1.6494, 0.9996, 
0.19998

Not significant Frost period, mean temp, 
growing period, tmin1, 
prec7, envPC2

No significant associations Valine–tRNA ligase 
partial mRNA

F:nucleotide binding Yes

B768 5106 39512 XM_002520327 0.0180767, 
0.1527465, 
0.243998

0.00238949, 
0.07107841, 0.302617

1.1064, 0.86697, 
0.1361

Not significant Sodium, frost period Potassium, growing period ATP-dependent zinc 
metalloprotease FTSH 
protein

C:integral component of membrane; 
F:metalloendopeptidase activity; 
F:ATP binding; F:zinc ion binding; 
P:proteolysis

Yes

B757 5042 78313 XM_011086966 1.00E-07, 0, 
0.752807

1.00E-07, 3.32E-05, 
0.773273

2.0433, 1, 0.26411 Not significant prec7, envPC2 Humic matter (soil), weight/
volume (soil), potassium, 
sulfur, sodium, frost period, 
mean temp, growing period, 
tmin1

Chlorophyll a b binding 
protein

C:membrane; P:photosynthesis, light 
harvesting

Yes

B124 639 64462 ABC59094 0.014921, 
0.1129688, 
0.228029

0.0146964, 0.1200407, 
0.225507

Not significant Not significant prec7 No significant associations Cytochrome p450 
704c1-like (transcrip-
tome contig: 
C350477)

F:monooxygenase activity; F:iron ion 
binding; F:oxidoreductase activity, 
acting on paired donors, with 
incorporation or reduction of 
molecular oxygen; F:heme binding; 
P:oxidation–reduction process

Yes

B1337 9193 59829 N/A 0.00296975, 0, 
0.345834

0.000302531, 
0.03510016, 0.479563

Not significant Not significant Growing period, tmin1, 
envpc2

Weight/volume (soil), growing 
period, tmin1

N/A N/A Yes

B634 4368 7819 N/A 0.00104285, 0, 
0.422817

0.0142438, 0.1177921, 
0.255863

0.9668, 0.85937, 
0.11872

Not significant Growing period, tmin1, 
prec7, envPC2

Growing period, tmin1 N/A N/A Yes

B705 4744 64731 N/A 0.0212011, 
0.1527465, 
0.230035

0.00502886, 
0.08608937, 0.332181

Not significant Not significant tmin1 Humic matter (soil), weight/
volume (soil), potassium, 
sulfur, mean temp, growing 
period, tmin1

N/A N/A Yes

B1217 8430 55186 N/A 0.0232869, 
0.1527465, 
0.210864

0.0281231, 0.1458679, 
0.193064

0.92198, 0.78336, 
0.11718

Not significant No significant associations Potassium, mean temp, 
growing period, tmin1

N/A N/A Yes

TABLE  3 List of 54 candidate loci under selection that meet the following criteria: consistently genotyped across libraries and repeatedly 
called as a candidate under selection in Arlequin, BayeScan, or LFMM (visualized by at least three overlaps in Figure 6a). Evidence in support of 
each accession includes positive results of Fst outlier and LFMM association tests as well as predictions of gene function and alignment to 
Cornus florida transcriptome contigs

info:ddbj-embl-genbank/XM_006493426
info:ddbj-embl-genbank/XM_00648094
info:ddbj-embl-genbank/CP002687
info:ddbj-embl-genbank/XM_010110700
info:ddbj-embl-genbank/XM_002520327
info:ddbj-embl-genbank/XM_011086966
info:ddbj-embl-genbank/ABC59094
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Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B332 2117 60071 XM_006493426 1.00E-07, 0, 
0.478658

0.0013301, 0.07104953, 
0.313298

1.3431, 0.9898, 
0.15911

Not significant GROWING PERIOD, 
TMIN1, PREC6, PREC7, 
ENVPC2

Potassium, frost period, mean 
temp, growing period, tmin1

Probable glycerol-3-
phosphate 
dehydrogenase

C:glycerol-3-phosphate dehydroge-
nase complex; F:glycerol-3-
phosphate dehydrogenase [NAD+] 
activity; F:NAD binding; 
P:carbohydrate metabolic process; 
P:glycerol-3-phosphate catabolic 
process; P:oxidation–reduction 
process; P:glycerolipid metabolic 
process

Yes

B1350 9249 43811 XM_00648094 0.0086562, 
0.1129688, 
0.252691

Not significant 1.3013, 0.95839, 
0.15552

Not significant Elevation, copper, frost 
period, mean temp, 
growing period, tmin1, 
tmax7

No significant associations Probable lrr receptor-
like serine threonine–
protein kinase 
at3 g47570 isoform x1

C:integral component of membrane; 
F:protein serine/threonine kinase 
activity; F:ATP binding; P:protein 
phosphorylation; P:serine family 
amino acid metabolic process

Yes

B982 6702 8476 CP002687 0.0297114, 
0.1843343, 
0.201058

0.0240841, 0.1371417, 
0.206488

1.0959, 0.79996, 
0.14063

Not significant No significant associations No significant associations L-type lectin-domain 
containing receptor 
kinase-like (transcrip-
tome contig: scaffold 
19651)

F:carbohydrate binding Yes

B1092 7448 59746 ACUP02003346 Not significant 0.00796913, 
0.09401618, 0.258492

Not significant 1.5006, 0.9916,  
0.20093

No significant associations Weight/volume (soil), 
potassium, frost period, mean 
temp, growing period, tmin1

Serine threonine–pro-
tein phosphatase 
pp1-like

F:phosphoprotein phosphatase 
activity; P:protein 
dephosphorylation

Yes

B1219 8439 64761 XM_010110700 1.00E-07, 0, 
0.52692

0.00772755, 
0.09401618, 0.279965

1.6494, 0.9996, 
0.19998

Not significant Frost period, mean temp, 
growing period, tmin1, 
prec7, envPC2

No significant associations Valine–tRNA ligase 
partial mRNA

F:nucleotide binding Yes

B768 5106 39512 XM_002520327 0.0180767, 
0.1527465, 
0.243998

0.00238949, 
0.07107841, 0.302617

1.1064, 0.86697, 
0.1361

Not significant Sodium, frost period Potassium, growing period ATP-dependent zinc 
metalloprotease FTSH 
protein

C:integral component of membrane; 
F:metalloendopeptidase activity; 
F:ATP binding; F:zinc ion binding; 
P:proteolysis

Yes

B757 5042 78313 XM_011086966 1.00E-07, 0, 
0.752807

1.00E-07, 3.32E-05, 
0.773273

2.0433, 1, 0.26411 Not significant prec7, envPC2 Humic matter (soil), weight/
volume (soil), potassium, 
sulfur, sodium, frost period, 
mean temp, growing period, 
tmin1

Chlorophyll a b binding 
protein

C:membrane; P:photosynthesis, light 
harvesting

Yes

B124 639 64462 ABC59094 0.014921, 
0.1129688, 
0.228029

0.0146964, 0.1200407, 
0.225507

Not significant Not significant prec7 No significant associations Cytochrome p450 
704c1-like (transcrip-
tome contig: 
C350477)

F:monooxygenase activity; F:iron ion 
binding; F:oxidoreductase activity, 
acting on paired donors, with 
incorporation or reduction of 
molecular oxygen; F:heme binding; 
P:oxidation–reduction process

Yes

B1337 9193 59829 N/A 0.00296975, 0, 
0.345834

0.000302531, 
0.03510016, 0.479563

Not significant Not significant Growing period, tmin1, 
envpc2

Weight/volume (soil), growing 
period, tmin1

N/A N/A Yes

B634 4368 7819 N/A 0.00104285, 0, 
0.422817

0.0142438, 0.1177921, 
0.255863

0.9668, 0.85937, 
0.11872

Not significant Growing period, tmin1, 
prec7, envPC2

Growing period, tmin1 N/A N/A Yes

B705 4744 64731 N/A 0.0212011, 
0.1527465, 
0.230035

0.00502886, 
0.08608937, 0.332181

Not significant Not significant tmin1 Humic matter (soil), weight/
volume (soil), potassium, 
sulfur, mean temp, growing 
period, tmin1

N/A N/A Yes

B1217 8430 55186 N/A 0.0232869, 
0.1527465, 
0.210864

0.0281231, 0.1458679, 
0.193064

0.92198, 0.78336, 
0.11718

Not significant No significant associations Potassium, mean temp, 
growing period, tmin1

N/A N/A Yes

(Continues)
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Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B947 6502 10273 N/A 0.0220645, 
0.1527465, 
0.236571

0.0133702, 0.1140064, 
0.241524

Not significant Not significant Growing period, tmin1, 
envPC2

No significant associations N/A N/A Yes

B1408 9769 81606 N/A 0.0234086, 
0.1527465, 
0.217577

0.000805608, 
0.06026913, 0.436111

Not significant Not significant No significant associations Elevation, health score (1–5), 
weight/volume (soil), 
potassium, frost period, mean 
temp, growing period, tmin1, 
bio14

N/A N/A Yes

B5 36 6203 N/A Not significant 0.0297637, 0.1494183, 
0.211722

Not significant 1.2511, 0.92318,  
0.16907

No significant associations Manganese N/A N/A Yes

B1042 7171 3392 N/A 0.0127384, 
0.1129688, 
0.265077

0.0435917, 0.162696, 
0.164033

Not significant Not significant Mean temp, growing 
period, tmin1

No significant associations N/A N/A No

B1098 7510 63181 N/A 1.00E-07, 0, 
0.424367

1.00E-07, 3.32E-05, 
0.521851

Not significant Not significant prec7 Sodium, tmin1 N/A N/A No

B1111 7644 45882 N/A 0.0224023, 
0.1527465, 
0.234922

0.0338638, 0.1532725, 
0.184122

Not significant Not significant No significant associations Health score (1–5), humic 
matter (soil), weight/volume 
(soil), exchangeable acidity 
(soil), sulfur, mean prec, 
health score (0–1)

N/A N/A No

B114 577 69202 N/A 0.0223518, 
0.1527465, 
0.21234

0.0338675, 0.1532725, 
0.19121

Not significant Not significant prec7, envPC2 Potassium N/A N/A No

B115 581 37454 N/A 0.0107988, 
0.1129688, 
0.284727

0.00939402, 0.096248, 
0.296292

Not significant Not significant envPC2 Elevation, weight/volume 
(soil), potassium, sulfur, frost 
period, mean temp, growing 
period, tmin1, bio14

N/A N/A No

B1160 7998 85678 N/A 0.000390918, 
0, 0.331331

Not significant Not significant Not significant Growing period, tmin1, 
prec7

prec7, envPC2 N/A N/A No

B1189 8230 63202 N/A 0.010991, 
0.1129688, 
0.262808

0.0179029, 0.1252447, 
0.21726

Not significant Not significant Growing period, tmin1 No significant associations N/A N/A No

B1240 8551 10783 N/A 0.00237245, 0, 
0.300842

0.00366619, 
0.07977169, 0.290213

1.2543, 0.96119, 
0.1486

Not significant Elevation, potassium, frost 
period, mean temp, 
growing period, tmin1, 
tmax7

Sulfur, frost period, mean 
temp, growing period, tmin1

N/A N/A No

B1250 8600 59013 N/A 0.0104488, 
0.1129688, 
0.248594

0.00912798, 0.096248, 
0.289

1.0664, 0.83597, 
0.13265

1.2826, 0.84937,  
0.18261

tmin1, prec6, prec7 Elevation, sulfur, frost period, 
mean temp, growing period, 
tmin1

N/A N/A No

B1415 9858 23064 N/A 0.00310502, 0, 
0.331819

0.00531964, 
0.08608937 ,0.315666

1.1673, 0.86677, 
0.14448

Not significant No significant associations No significant associations N/A N/A No

B1417 9880 25551 N/A 0.00397695, 0, 
0.366737

0.00774632, 
0.09401618, 0.26108

Not significant Not significant Weight/volume (soil), 
manganese, prec6, prec7, 
envPC1

No significant associations N/A N/A No

B1423 9915 18176 N/A 0.00900549, 
0.1129688, 
0.271497

0.0133878, 0.1140064, 
0.230989

Not significant Not significant No significant associations Growing period, tmin1 N/A N/A No

B1450 10164 12478 N/A 0.0272767, 
0.1843343, 
0.203457

0.00641954, 0.0907386, 
0.265038

Not significant Not significant No significant associations Weight/volume (soil), pH (soil), 
exchangeable acidity (soil), 
potassium, sulfur, growing 
period, envPC3

N/A N/A No

B1568 11817 27587 N/A Not significant 0.0406342, 0.1597317, 
0.197582

Not significant Not significant envPC2 Weight/volume (soil), 
potassium, growing period, 
tmin1

N/A N/A No

TABLE  3  (Continued)
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Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B947 6502 10273 N/A 0.0220645, 
0.1527465, 
0.236571

0.0133702, 0.1140064, 
0.241524

Not significant Not significant Growing period, tmin1, 
envPC2

No significant associations N/A N/A Yes

B1408 9769 81606 N/A 0.0234086, 
0.1527465, 
0.217577

0.000805608, 
0.06026913, 0.436111

Not significant Not significant No significant associations Elevation, health score (1–5), 
weight/volume (soil), 
potassium, frost period, mean 
temp, growing period, tmin1, 
bio14

N/A N/A Yes

B5 36 6203 N/A Not significant 0.0297637, 0.1494183, 
0.211722

Not significant 1.2511, 0.92318,  
0.16907

No significant associations Manganese N/A N/A Yes

B1042 7171 3392 N/A 0.0127384, 
0.1129688, 
0.265077

0.0435917, 0.162696, 
0.164033

Not significant Not significant Mean temp, growing 
period, tmin1

No significant associations N/A N/A No

B1098 7510 63181 N/A 1.00E-07, 0, 
0.424367

1.00E-07, 3.32E-05, 
0.521851

Not significant Not significant prec7 Sodium, tmin1 N/A N/A No

B1111 7644 45882 N/A 0.0224023, 
0.1527465, 
0.234922

0.0338638, 0.1532725, 
0.184122

Not significant Not significant No significant associations Health score (1–5), humic 
matter (soil), weight/volume 
(soil), exchangeable acidity 
(soil), sulfur, mean prec, 
health score (0–1)

N/A N/A No

B114 577 69202 N/A 0.0223518, 
0.1527465, 
0.21234

0.0338675, 0.1532725, 
0.19121

Not significant Not significant prec7, envPC2 Potassium N/A N/A No

B115 581 37454 N/A 0.0107988, 
0.1129688, 
0.284727

0.00939402, 0.096248, 
0.296292

Not significant Not significant envPC2 Elevation, weight/volume 
(soil), potassium, sulfur, frost 
period, mean temp, growing 
period, tmin1, bio14

N/A N/A No

B1160 7998 85678 N/A 0.000390918, 
0, 0.331331

Not significant Not significant Not significant Growing period, tmin1, 
prec7

prec7, envPC2 N/A N/A No

B1189 8230 63202 N/A 0.010991, 
0.1129688, 
0.262808

0.0179029, 0.1252447, 
0.21726

Not significant Not significant Growing period, tmin1 No significant associations N/A N/A No

B1240 8551 10783 N/A 0.00237245, 0, 
0.300842

0.00366619, 
0.07977169, 0.290213

1.2543, 0.96119, 
0.1486

Not significant Elevation, potassium, frost 
period, mean temp, 
growing period, tmin1, 
tmax7

Sulfur, frost period, mean 
temp, growing period, tmin1

N/A N/A No

B1250 8600 59013 N/A 0.0104488, 
0.1129688, 
0.248594

0.00912798, 0.096248, 
0.289

1.0664, 0.83597, 
0.13265

1.2826, 0.84937,  
0.18261

tmin1, prec6, prec7 Elevation, sulfur, frost period, 
mean temp, growing period, 
tmin1

N/A N/A No

B1415 9858 23064 N/A 0.00310502, 0, 
0.331819

0.00531964, 
0.08608937 ,0.315666

1.1673, 0.86677, 
0.14448

Not significant No significant associations No significant associations N/A N/A No

B1417 9880 25551 N/A 0.00397695, 0, 
0.366737

0.00774632, 
0.09401618, 0.26108

Not significant Not significant Weight/volume (soil), 
manganese, prec6, prec7, 
envPC1

No significant associations N/A N/A No

B1423 9915 18176 N/A 0.00900549, 
0.1129688, 
0.271497

0.0133878, 0.1140064, 
0.230989

Not significant Not significant No significant associations Growing period, tmin1 N/A N/A No

B1450 10164 12478 N/A 0.0272767, 
0.1843343, 
0.203457

0.00641954, 0.0907386, 
0.265038

Not significant Not significant No significant associations Weight/volume (soil), pH (soil), 
exchangeable acidity (soil), 
potassium, sulfur, growing 
period, envPC3

N/A N/A No

B1568 11817 27587 N/A Not significant 0.0406342, 0.1597317, 
0.197582

Not significant Not significant envPC2 Weight/volume (soil), 
potassium, growing period, 
tmin1

N/A N/A No

(Continues)
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Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B157 826 47908 N/A 0.0372081, 
0.194094, 
0.213639

Not significant 1.0967, 0.84797, 
0.13601

Not significant Elevation, potassium, 
mean temp, growing 
period, tmin1

Humic matter (soil), weight/
volume (soil), potassium, 
sulfur, frost period, growing 
period, tmin1

N/A N/A No

B1574 11990 29209 N/A 0.00320761, 0, 
0.313736

0.00119875, 
0.07009153, 0.394852

Not significant Not significant No significant associations Mean temp, growing period, 
tmin1

N/A N/A No

B1586 12502 72008 N/A 0.0101566, 
0.1129688, 
0.249305

0.0467566, 0.1644492, 
0.182642

1.1517, 0.88478, 
0.14046

Not significant No significant associations No significant associations N/A N/A No

B1623 42670 76536 N/A 0.00117975, 0, 
0.361835

Not significant 1.763, 0.9984, 
0.22028

Not significant Elevation, frost period, 
mean temp, growing 
period, tmin1, tmax7

No significant associations N/A N/A No

B18 108 80060 N/A 0.000965384, 
0, 0.376461

1.00E-07, 3.32E-05, 
0.434547

Not significant Not significant No significant associations Growing period, tmin1 N/A N/A No

B195 1034 7198 N/A 0.00114071, 0, 
0.440777

0.0023812, 0.07107841, 
0.289327

1.436, 0.9916, 
0.17234

1.0625, 0.84957,  
0.14688

Growing period, tmin1, 
prec7, envPC2

No significant associations N/A N/A No

B233 1300 15568 N/A 0.00928923, 
0.1129688, 
0.252115

Not significant 1.2579, 0.96999, 
0.14891

Not significant Elevation, frost period, 
mean temp, growing 
period, tmin1, bio14, 
tmax7

No significant associations N/A N/A No

B242 1392 7197 N/A 0.021182, 
0.1527465, 
0.220523

0.0459453, 0.1638531, 
0.161433

Not significant Not significant Growing period, tmin1 envPC1 N/A N/A No

B244 1397 22957 N/A 0.000490435, 
0, 0.402409

Not significant 1.1678, 0.89218, 
0.14306

Not significant Growing period, tmin1 No significant associations N/A N/A No

B247 1439 41542 N/A 1.00E-07, 0, 
0.420581

0.00613931, 
0.08849689, 0.333718

1.3083, 0.97399, 
0.15595

Not significant Frost period, growing 
period, tmin1, prec7, 
envPC2

Growing period, tmin1 N/A N/A No

B284 1697 40278 N/A 1.00E-07, 0, 
0.38978

0.00620887, 
0.08849689, 0.288674

Not significant Not significant Weight/volume (soil) No significant associations N/A N/A No

B299 1824 75230 N/A 0.0424968, 
0.194094, 
0.185801

0.0388043, 0.1558586, 
0.194044

Not significant Not significant Elevation, frost period, 
mean temp, growing 
period, tmin1, bio14, 
tmax7

Exchangeable acidity (soil), 
sulfur

N/A N/A No

B349 2240 78738 N/A 0.00720478, 
0.1129688, 
0.258533

Not significant Not significant 1.2797, 0.92819,  
0.17238

No significant associations Manganese N/A N/A No

B37 185 80930 N/A Not significant 0.0357117, 0.1545958, 
0.182394

Not significant Not significant Elevation, frost period Elevation, tmax7 N/A N/A No

B372 2421 91530 N/A Not significant Not significant 1.2823, 0.95359, 
0.15369

Not significant envPC1 prec6, prec7 N/A N/A No

B447 3171 9594 N/A 0.0409416, 
0.194094, 
0.208842

0.0087962, 0.096248, 
0.29196

Not significant Not significant Frost period, tmin1 Elevation, health score (1–5), 
weight/volume (soil), 
potassium, frost period, mean 
temp, growing period, tmin1, 
bio14

N/A N/A No

B573 3975 13709 N/A 1.00E-07, 0, 
0.431822

0.0127152, 0.1123806, 
0.242335

1.2682, 0.9804, 
0.14994

Not significant Mean temp, growing 
period, tmin1

No significant associations N/A N/A No

B594 4094 55798 N/A 0.0387994, 
0.194094, 
0.189429

0.00936509, 0.096248, 
0.263922

Not significant Not significant No significant associations Elevation, potassium, frost 
period, mean temp, growing 
period, tmin1, tmax7

N/A N/A No

B734 4908 40693 N/A 0.0237442, 
0.1527465, 
0.203394

Not significant 1.0929, 0.81996, 
0.13773

Not significant Elevation, frost period, 
growing period

No significant associations N/A N/A No

TABLE  3  (Continued)
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Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B157 826 47908 N/A 0.0372081, 
0.194094, 
0.213639

Not significant 1.0967, 0.84797, 
0.13601

Not significant Elevation, potassium, 
mean temp, growing 
period, tmin1

Humic matter (soil), weight/
volume (soil), potassium, 
sulfur, frost period, growing 
period, tmin1

N/A N/A No

B1574 11990 29209 N/A 0.00320761, 0, 
0.313736

0.00119875, 
0.07009153, 0.394852

Not significant Not significant No significant associations Mean temp, growing period, 
tmin1

N/A N/A No

B1586 12502 72008 N/A 0.0101566, 
0.1129688, 
0.249305

0.0467566, 0.1644492, 
0.182642

1.1517, 0.88478, 
0.14046

Not significant No significant associations No significant associations N/A N/A No

B1623 42670 76536 N/A 0.00117975, 0, 
0.361835

Not significant 1.763, 0.9984, 
0.22028

Not significant Elevation, frost period, 
mean temp, growing 
period, tmin1, tmax7

No significant associations N/A N/A No

B18 108 80060 N/A 0.000965384, 
0, 0.376461

1.00E-07, 3.32E-05, 
0.434547

Not significant Not significant No significant associations Growing period, tmin1 N/A N/A No

B195 1034 7198 N/A 0.00114071, 0, 
0.440777

0.0023812, 0.07107841, 
0.289327

1.436, 0.9916, 
0.17234

1.0625, 0.84957,  
0.14688

Growing period, tmin1, 
prec7, envPC2

No significant associations N/A N/A No

B233 1300 15568 N/A 0.00928923, 
0.1129688, 
0.252115

Not significant 1.2579, 0.96999, 
0.14891

Not significant Elevation, frost period, 
mean temp, growing 
period, tmin1, bio14, 
tmax7

No significant associations N/A N/A No

B242 1392 7197 N/A 0.021182, 
0.1527465, 
0.220523

0.0459453, 0.1638531, 
0.161433

Not significant Not significant Growing period, tmin1 envPC1 N/A N/A No

B244 1397 22957 N/A 0.000490435, 
0, 0.402409

Not significant 1.1678, 0.89218, 
0.14306

Not significant Growing period, tmin1 No significant associations N/A N/A No

B247 1439 41542 N/A 1.00E-07, 0, 
0.420581

0.00613931, 
0.08849689, 0.333718

1.3083, 0.97399, 
0.15595

Not significant Frost period, growing 
period, tmin1, prec7, 
envPC2

Growing period, tmin1 N/A N/A No

B284 1697 40278 N/A 1.00E-07, 0, 
0.38978

0.00620887, 
0.08849689, 0.288674

Not significant Not significant Weight/volume (soil) No significant associations N/A N/A No

B299 1824 75230 N/A 0.0424968, 
0.194094, 
0.185801

0.0388043, 0.1558586, 
0.194044

Not significant Not significant Elevation, frost period, 
mean temp, growing 
period, tmin1, bio14, 
tmax7

Exchangeable acidity (soil), 
sulfur

N/A N/A No

B349 2240 78738 N/A 0.00720478, 
0.1129688, 
0.258533

Not significant Not significant 1.2797, 0.92819,  
0.17238

No significant associations Manganese N/A N/A No

B37 185 80930 N/A Not significant 0.0357117, 0.1545958, 
0.182394

Not significant Not significant Elevation, frost period Elevation, tmax7 N/A N/A No

B372 2421 91530 N/A Not significant Not significant 1.2823, 0.95359, 
0.15369

Not significant envPC1 prec6, prec7 N/A N/A No

B447 3171 9594 N/A 0.0409416, 
0.194094, 
0.208842

0.0087962, 0.096248, 
0.29196

Not significant Not significant Frost period, tmin1 Elevation, health score (1–5), 
weight/volume (soil), 
potassium, frost period, mean 
temp, growing period, tmin1, 
bio14

N/A N/A No

B573 3975 13709 N/A 1.00E-07, 0, 
0.431822

0.0127152, 0.1123806, 
0.242335

1.2682, 0.9804, 
0.14994

Not significant Mean temp, growing 
period, tmin1

No significant associations N/A N/A No

B594 4094 55798 N/A 0.0387994, 
0.194094, 
0.189429

0.00936509, 0.096248, 
0.263922

Not significant Not significant No significant associations Elevation, potassium, frost 
period, mean temp, growing 
period, tmin1, tmax7

N/A N/A No

B734 4908 40693 N/A 0.0237442, 
0.1527465, 
0.203394

Not significant 1.0929, 0.81996, 
0.13773

Not significant Elevation, frost period, 
growing period

No significant associations N/A N/A No
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responses in plants (Singh & Zimmerli, 2013). One allelic version of 
this biallelic locus was fixed or nearly fixed in most of the populations 
sampled. However, consistent estimation of allele frequency in both 
libraries suggests the minor allele existed in the Umstead population 
(Piedmont) at an approximate ratio of one to ten and in the Croatan 
(a coastal population) at a one to three ratio. We suggested that any 
local adaptation associated with the minor allele of B982 might be 
the result of a relatively recent mutation originating in a small area 
of transition from Piedmont to Coast. Future examination would be 
necessary to determine whether locus B982 was responsible for local 
adaptation, a deleterious susceptibility phenotype, or was related 
to demographic histories of more southern populations along the 
Atlantic Coastal Plains. Moreover, as our disease incidence scores are 
confounded with the adaptive landscape of other abiotic pressures 
and predictions of our annotated R genes have not been confirmed by 
functional experiments, we reiterate that the few loci associated with 
plant health must be interpreted with caution.

4.2 | Repeatability of detecting putative loci 
under selection

Repeatability has long been a concern for all genotyping methods, in-
cluding next-generation sequencing methods (Crawford, Koscinski, & 
Keyghobadi, 2012). We focused specifically on detection of candidates 
under selection using double-digest GBS. The sequencing method has 
remained valuable for detecting genetic signatures of selection on in-
dividual genotypes because of its low cost and high yield of genetic 
markers. However, researchers were recently recommended to incor-
porate sequencing replication in their experimental design for initial 

pilot experiments of GBS (Mastretta-Yanes et al., 2015). Restriction 
site polymorphism and stochastic sequencing processes related to 
fragment length might lead to preferential genotyping in certain loci or 
individuals and result in missing data that biases downstream analyses 
of GBS libraries (Gautier et al., 2013). Without proper filtering of loci 
and minor alleles along with additional validation of SNPs, missing data 
might increase false-positive rates for identifying highly differentiated 
outlier loci. Even with filtering, concern remains that if populations 
were sequenced and analyzed again, many previously identified can-
didate loci would not be detected in subsequent analysis due to sto-
chastic variation in sequencing, stringent filtering criteria that removes 
loci in libraries with lower average sequencing depth (Mastretta-Yanes 
et al., 2015), and the possibility that newly sequenced samples lack 
some restriction sites in samples from others datasets (Arnold, Corbett-
Detig, Hartl, & Bomblies, 2013). These factors might substantially bias 
results of population genetic analyses with GBS data depending on fil-
tering criteria, especially in regard to detection of SNP outliers.

To address the aforementioned concerns, we repeated GBS exper-
imentation with an independent library of Illumina sequencing using 
different randomly selected individuals of the same populations. Our 
goal was to see whether congruent results from various analyses would 
be obtained using data from DNA libraries of two experiments. We ob-
tained similar population demographic results. For instance, average 
observed heterozygosity of populations was consistently estimated to 
be 0.26, and average nucleotide diversity among the populations was 
estimated to be approximately 0.29 in both libraries. STRUCTURE and 
AMOVA tests consistently showed about 3% of genetic variation could 
be attributed to coastal vs. mainland group definitions, while the majority 
of genetic variation was attributable to differences between individuals 

Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B788 5255 36293 N/A 0.0189961, 
0.1527465, 
0.222877

Not significant 1.2484, 0.87097, 
0.15556

Not significant tmin1 No significant associations N/A N/A No

B82 415 2453 N/A Not significant 0.00520825, 
0.08608937, 0.340989

Not significant 1.1612, 0.94659,  
0.15342

No significant associations Elevation, health score (1–5), 
weight/volume (soil), 
potassium, sulfur, frost 
period, mean temp, growing 
period, tmin1, bio14, tmax7

N/A N/A No

B841 5708 21745 N/A 0.0226805, 
0.1527465, 
0.227598

0.00146995, 
0.07104953, 0.388837

Not significant Not significant Growing period, tmin1 Elevation, potassium, frost 
period, mean temp, growing 
period, bio14

N/A N/A No

B946 6496 23912 N/A 0.0138129, 
0.1129688, 
0.255514

Not significant 0.97626, 0.80596, 
0.12303

Not significant Weight/Volume (soil), 
envPC2

No significant associations N/A N/A No

B977 6670 14487 N/A 1.00E-07, 0, 
0.589429

0.00155769, 
0.07104953, 0.371962

1.6015, 1, 0.1911 Not significant Weight/volume (soil), frost 
period, mean temp, 
growing period, tmin1, 
envPC2

Mean temp, tmin1, prec6 N/A N/A No

B999 6820 48285 N/A 0.018734, 
0.1527465, 
0.240148

0.0252617, 0.1394642, 
0.226193

Not significant Not significant Growing period, tmin1 No significant associations N/A N/A No

TABLE  3  (Continued)



     |  461PAIS et al.

regardless of population, providing additional evidence for the genetic 
consequences of bird dispersal of flowering dogwood fruits (Call et al., 
2015; Hadziabdic et al., 2010). While demographic trends were relatively 
consistent when compared across both GBS datasets, there was only a 
small portion of candidate loci consistently detected between analyses 
of the two sequence libraries (Figure 6a), albeit the 54 loci considered 
candidates of selection (Table 3) showed largely consistent patterns of 
changes in allele frequencies among populations sampled (Table S1).

The total genotyped loci shared among library one and two ranged 
from approximately 75%–82% when compared to the opposing li-
brary, but the percentage of loci consistently identified to be under 
selection dropped to a range of approximately 23%–32% (see Defining 
Consistency, Supporting Information). Of the 43 candidate loci con-
sistently showing evidence of selection among the two libraries after 
additional SNP validation (Additional Validation of Environmental and 
SNP Data, Supporting Information), all but one of the candidates (locus 
5B) still showed evidence of selection when the combined library was 
reanalyzed (Figure 6B). The differences between the rate of consis-
tently genotyping a locus and the rate of consistently identifying the 
locus to be under selection could be a result of sequencing inconsis-
tency, differences in library quality, and differences in genotypes of 
individuals included in the two experiments (although from the same 
populations). Furthermore, both of the libraries were run with samples 
of other sequence experiments in different lanes, resulting in some 
mean differences of total utilized reads per sample. For instance, the 
average number of sequence reads per sample in library one was ap-
proximately 860,000 while the average was approximately 1.17 mil-
lion for library two. Additionally, sequencing efficiency differences 
across the two different flow cells might have resulted in slight mean 

differences in quality score. Some heterogeneity among samples could 
have occurred at the PCR enrichment step, and there might also be 
uncharacterized variation in genome size among natural populations, 
which could result in variation of total sequence reads among samples. 
Nonetheless, mean depth coverage per individual remained on aver-
age above 30×, which according to precedents aiming for an average 
of 20× coverage per RAD-tag (Malinsky et al., 2015), might be suffi-
cient to avoid most instances of allele dropout. Moreover, experimen-
tal and analytical procedures implemented in this study were designed 
to minimize downstream effects of the potential biases described.

In regard to library quality, we minimized biases using high-quality 
DNA of the same amount for each sample, and we selected fragments 
of 300 ± 36 bps for sequencing. Although sampling size might influ-
ence results, the sample size of our subdivided populations was still 
sufficiently large to accurately make population genetic inferences, ac-
cording to simulated study (Buerkle & Gompert, 2013). Despite poten-
tial biases and their causes, our approach placed greater credence in 
results that were consistent between the two libraries. This approach 
resulted in us considering a smaller number of locally adapted candi-
date SNPs, but it reduced false positives as demonstrated in Figure 4. 
A candidate SNP detected by analyses of data in one of the two li-
braries might either be a false positive due to highly differentiated se-
quence error or a true candidate locus for selection. Results from our 
comparison of two GBS libraries suggested caution in interpreting the 
adaptive significance of loci that were found to be highly differentiated 
in only one library. In order to flag loci as candidates under selection 
with higher certainty, we recommended experimental repetition and 
the use of multiple analyses, including various Fst outlier tests, GEA 
tests, and novel methods like GF.

Unifier 
ID

Library 
One ID

Library 
Two ID

Matching 
GenBank 
accession

Arlequin (Library1)  
significance  
(p, q, Fst)

Arlequin (Library2) 
significance (p, q, Fst)

BayeScan (Library1)  
significance (alpha, 
PP, Fst)

BayeScan (Library2)  
significance (alpha,  
PP, Fst)

Significant LFMM 
(Library1) environment 
function trait associations

Significant LFMM (Library2) 
environment function trait 
associations Sequence description Gene ontologies

Match to 
Cornus florida 
transcriptome

B788 5255 36293 N/A 0.0189961, 
0.1527465, 
0.222877

Not significant 1.2484, 0.87097, 
0.15556

Not significant tmin1 No significant associations N/A N/A No

B82 415 2453 N/A Not significant 0.00520825, 
0.08608937, 0.340989

Not significant 1.1612, 0.94659,  
0.15342

No significant associations Elevation, health score (1–5), 
weight/volume (soil), 
potassium, sulfur, frost 
period, mean temp, growing 
period, tmin1, bio14, tmax7

N/A N/A No

B841 5708 21745 N/A 0.0226805, 
0.1527465, 
0.227598

0.00146995, 
0.07104953, 0.388837

Not significant Not significant Growing period, tmin1 Elevation, potassium, frost 
period, mean temp, growing 
period, bio14

N/A N/A No

B946 6496 23912 N/A 0.0138129, 
0.1129688, 
0.255514

Not significant 0.97626, 0.80596, 
0.12303

Not significant Weight/Volume (soil), 
envPC2

No significant associations N/A N/A No

B977 6670 14487 N/A 1.00E-07, 0, 
0.589429

0.00155769, 
0.07104953, 0.371962

1.6015, 1, 0.1911 Not significant Weight/volume (soil), frost 
period, mean temp, 
growing period, tmin1, 
envPC2

Mean temp, tmin1, prec6 N/A N/A No

B999 6820 48285 N/A 0.018734, 
0.1527465, 
0.240148

0.0252617, 0.1394642, 
0.226193

Not significant Not significant Growing period, tmin1 No significant associations N/A N/A No
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5  | CONCLUSIONS AND FUTURE  
DIRECTIONS

Our GBS study of six populations of Cornus florida from three diver-
gent ecosystems representing the Atlantic Coastal Plains, Piedmont, 
and southern Appalachian Mountains found evidence of local adap-
tation. Several soil nutrients (K, Na, and P) and temperature during 
the growing season were important drivers of ecological and genetic 

divergence of the species. The study identified 54 putative candidate 
loci under selection for local adaptation. A few had annotated func-
tions in biological processes that might have adaptive roles such as in-
creased hardiness to drought and disease resistance. Several of these 
loci will serve as candidates for a broader scale and more thorough 
analysis to further support roles for genes of interest. We concluded 
high genetic variation within populations and significant allelic differ-
ences among ecologically heterogeneous regions readily predisposed 

F IGURE  7 Gradient forest plots of SNP-level compositional turnover. Highlighted and labeled functions indicate candidate SNPs with the 
highest cumulative importance, all of which retained signatures of being under selection when combined library of candidate and reference SNPs 
was reanalyzed with Arlequin, BayeScan, or LFMM. Functions labeled black are reference SNPs or candidate SNPs not contrasting from patterns 
of reference SNPs. Candidate and reference SNPs represented by 43 and 1,171 functions, respectively
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C. florida for local adaptation to ongoing climatic shifts. We expect 
some independent local adaptations to occur in other areas outside 
this pilot study’s scope, but the genetic and ecological patterns de-
tected here have provided hypotheses for an expanded study that 
will assess large-scale environmental gradients and genetic structure 
across the species range.
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