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The reliability of TMS effects both within and among studies is
one of the most problematic issues for TMS research and clinical
use. The most important factor for TMS effects is the stimulation
intensity (SI). SI defines TMS effect size (Pellegrini et al., 2018,
van de Ruit and Grey, 2016, Nazarova et al., 2021a, Raffin et al.,
2020, Padberg et al., 2002), TMS spatial resolution (Mutanen
et al., 2021), and TMS safety limits (Rossi et al., 2021). SI is usually
adjusted using ‘‘resting motor threshold” (RMT) (also called corti-
cal motor threshold), classically defined as a minimal intensity
needed to induce a motor evoked potential (MEP) in a relaxed mus-
cle in 50% of the stimuli applied to the contralateral motor cortex
(Rossini et al. 2015). RMT is currently used for SI determination
in motor and the majority of non-motor TMS applications (Turi
et al., 2021). Apart from scaling TMS effects, which were shown
for MEP amplitude (Pellegrini et al., 2018), muscle cortical repre-
sentation area (van de Ruit and Grey, 2016), and clinical effects
(Padberg et al., 2002), there may also be a non-linear influence of
the RMT. For example, in a large-scale TMS sample from multiple
studies, RMT predicted short-interval intracortical inhibition and
facilitation effects (Corp et al., 2021). Thus, TMS effects’ reliability
is greatly based upon RMT determination and its reliability.

Most authors are reporting good to excellent relative reliability
of RMT (Beaulieu et al., 2017). At the same time, the absolute reli-
ability of RMT varies greatly among studies (Beaulieu et al., 2017):
from the smallest detectable change of 1.1 % for abductor pollicis
brevis (Nazarova et al., 2021b) to 16.4% for the deltoid muscle
(Tedesco Triccas et al., 2018). Strikingly, in a recent retrospective
study of 374 patients from a therapeutic TMS depression program
(Cotovio et al., 2021) RMT changed more than 5% from day to day
in almost half of the sessions.

RMT search consists of two major steps: (1) hotspot hunting
and (2) RMT intensity selection at this hotspot. For the first step
of the process - hotspot hunting (sometimes also called ‘‘rough
mapping” (Krieg et al., 2017; Nazarova et al., 2021b) the following
key factors may vary: intensity used for rough mapping, the num-
ber of stimuli, the order of the stimuli applied along the cortex and
the timing of this process. The intensity used for hotspot hunting is
commonly based on expert agreement. For example, in IFCN TMS
diagnostic guide (mostly oriented on non-navigated TMS) the rec-
ommended SI is the one which results in MEPs with peak-to-peak
amplitudes of 500–1000 lV (Groppa et al., 2012), for MRI
navigated TMS, lower SI leading to MEPs with peak-to-peak ampli-
tude of 100–500 lV was recommended (Krieg et al., 2017), other
approaches with stimulation beginning with the minimal SI, which
is gradually increasing, are also used (for instance,
Sankarasubramanian et al., 2015). The next factor, the amount of
stimuli used for hotspot hunting, is rarely reported in TMS
research, but when it is, it is around several tens of stimuli
(Sollmann et al., 2013; Tervo et al., 2020). There were recent
advances in the hotspot hunting step, aimed to automatize the pro-
cess of the location (Harquel et al., 2017; Meincke et al., 2016) or
both location and orientation target choice (Tervo et al., 2020).
However, it is worth mentioning that even in case of a hotspot
defined by a comprehensive mapping (�170 points), the fluctua-
tions of hotspot position between two TMS sessions separated by
a week, are up to 1 cm (Nazarova et al., 2021b). The second step
of RMT search is RMT intensity selection. While the semi-automa-
tized adaptive option for RMT intensity selection was introduced
more than a decade ago (Awiszus, 2003), the manual relative fre-
quency approach (aka Rossini-Rothwell (Rossini et al., 2015)) is
still widely used (Turi et al., 2021), and no clear difference between
these approaches and their modifications was reported so far
(Groppa et al., 2012).

One important aspect, which is commonly overlooked during
RMT search, is the interstimulus interval (ISI) choice. While during
the main TMS procedure, such as TMS mapping or paired-pulse
TMS, the ISIs are usually reported, during RMT search steps – rough
mapping and RMT intensity selection - ISIs are rarely indicated. We
consider this a problem, as it has been already demonstrated that
MEP amplitudes can increase when increasing the ISIs up to 15 s
(Hassanzahraee et al., 2019). The work of Kallioniemi et al.
(2022) in this issue of Clinical Neurophysiology Practice was
dedicated to this generally overlooked problem with the effort to
compare cortical excitability in the motor cortex using Rossini-
Rothwell (Rossini et al., 2015) and threshold-hunting (Awiszus,
2003) approaches with ISIs longer than 5 s and using stimulus–re-
sponse curves (SRC) with shorter ISIs: 1.2–2, 2–3 and 3–4 s. SRCs
were investigated using 108 stimuli. The authors showed that at
the individual level, the MEP amplitudes in SRCs were highly
affected by the ISIs. Interestingly, there was no trend, which ISI
led to bigger MEP amplitudes, as it varied among subjects. The
study of Kallioniemi et al. highlights the importance of considering
ISIs while interpreting cortical excitability measures in TMS, and
indicates the need for further studies to answer questions of
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whether excitability dependence on ISI is individually specific, and
what is the optimal ISI for cortical excitability probing.

What can be recommended knowing the findings of Kallioniemi
et al.? Above all, we suppose that all the details of the RMT search
should be reported to make easier the process of studies meta-ana-
lysing and replication. Not only the method of RMT intensity selec-
tion but also ISIs used during RMT search steps should be clearly
indicated in TMS papers. Another practical consideration is that
ISIs, which are sometimes set as the default in TMS machines,
should not be too short (at least not shorter than 5 s). Finally, we
suppose that the issue of ISIs may be extrapolated to the intensity
adjustment other than RMT search, for example, for TMS-EEG
based excitability probing or for region-specific threshold assess-
ment such as, for instance, phosphene threshold determination.
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