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Abstract: The underlying molecular heterogeneity of cancer is responsible for the dynamic clinical
landscape of this disease. The combination of genomic and proteomic alterations, including both
inherited and acquired mutations, promotes tumor diversity and accounts for variable disease
progression, therapeutic response, and clinical outcome. Recent advances in high-throughput
proteogenomic profiling of tumor samples have resulted in the identification of novel oncogenic
drivers, tumor suppressors, and signaling networks; biomarkers for the prediction of drug sensitivity
and disease progression; and have contributed to the development of novel and more effective
treatment strategies. In this review, we will focus on the impact of historical and recent advances in
single platform and integrative proteogenomic studies in breast and ovarian cancer, which constitute
two of the most lethal forms of cancer for women, and discuss the molecular similarities of these
diseases, the impact of these findings on our understanding of tumor biology as well as the clinical
applicability of these discoveries.
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1. Introduction

Each year more than 1.8 million people are diagnosed with cancer in the United States
including more than 270,000 breast cancer patients and 21,000 ovarian cancer patients [1].
Despite advances in diagnostic tools, predictive biomarkers, and new therapies over the
past 20 years which have led to declining mortality rates, more than 285,000 people will die
each year in the US due to their disease, including more than 50,000 breast and 13,000 ovar-
ian cancer patients [1]. Enormous clinical variability, including disease progression and
response to therapy has been shown to exist for most forms of cancer. These observed
differences are driven, in part, by underlying genetic, genomic, and proteomic alterations
unique to each patient [2–5]. In essence, cancer is not a single disease but rather a collection
of genetically driven malignancies affecting a given tissue. As a result, all tumors, even
within a given tissue type, cannot be treated equally [6–12]. New tools, therapies, biomark-
ers, and treatment strategies are being developed or will need to be developed, to identify
and target those mutations and/or signaling pathways essential for each tumor to improve
clinical outcome and quality of life for each patient.

The underlying genetic heterogeneity within human cancers creates several challenges
both clinically and from a basic science perspective. From a mechanistic standpoint, vari-
ability in patterns of genomic and proteomic alterations create a challenge in separating
the key drivers of oncogenic signaling, tumor development, and progression from those
mutations that are tumor-promoting but non-transforming or that do not directly con-
tribute to tumorigenesis (i.e., passenger mutations). This is essential as not all mutated or
aberrantly expressed genes are required for tumorigenesis nor do they equally contribute to
therapeutic response [13,14]. As a result, there is a need to develop tools and approaches to
understand the interplay between altered genes and to determine how these genes or pro-
teins promote aberrant signaling, including the identification of novel signaling networks
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and cellular processes that contribute to tumor growth and progression. Finally, utilizing
the compendium of alterations across a given tumor type, we must develop approaches
to identify novel therapeutic targets and determine predictive biomarkers to recognize
patients that are likely to benefit from specific therapeutic regimens.

Over the past 20 years, beginning with the sequencing of the human genome to the
more recent development of next-generation sequencing (NGS), advances in genomics,
proteomics, and systems biology have allowed us to begin to catalogue, visualize, com-
pare and dissect patterns of DNA mutations and copy number alterations, mRNA and
miRNA expression patterns, protein and phosphorylated protein expression and epige-
netic alterations between individual patients, across specific forms of cancer and between
malignancies affecting different tissues [2–5,15,16]. These studies, coupled with functional
genomic studies, have begun to identify and provide insight into key drivers of oncogenic
signaling, mediators of specific tumor characteristics, including response to therapy, and
identify novel treatment strategies. In this review, we will examine historical and recent
advances in genome and proteome-wide analyses in breast and ovarian cancer and discuss
the impact of these findings on our understanding of tumor biology as well as the clinical
applicability of these discoveries.

2. Clinical Characterization of Breast and Ovarian Cancer

Breast cancer is the most commonly diagnosed and the second leading cause of
cancer-related mortality for women in the United States [1]. While it is estimated that
approximately 50,000 women in the US and 522,000 women worldwide will die from
this disease annually, survival rates have steadily increased by over 40% over the past
30 years [1,17]. Currently, more than 98% of patients diagnosed with early stage disease
are expected to live for at least 10 years and the current 5-year survival rate is ~90%
across all stages [1,17–19]. These improvements can be attributed, in part, to increased
early detection from earlier screening and improved imaging technology as well as the
development of novel therapeutic regimens incorporating chemotherapeutics, targeted
therapies, radiation, surgery, and immunotherapy [20–22]. Despite these advances, the
prognosis for patients with locally advanced and metastatic disease remains poor. Patients
with advanced metastatic disease have a 5-year survival rate of less than 30% and a
significant percentage of patients whose tumors are inoperable and/or refractory to current
therapies will succumb to their disease within 5 years irrespective of tumor stage at
diagnosis [18].

Part of the challenge in developing effective treatments for this disease lies in the
molecular and clinical heterogeneity that exists between each patient’s tumor. Clinically,
breast tumors are classified based on morphological features with ~70% of tumors be-
ing classified as invasive ductal carcinomas (IDC), ~15% categorized as invasive lobular
carcinoma (ILC), and the remaining tumors regarded as rare subtypes [18,23]. Prognosis
and treatment strategies are largely dictated by classical histopathologic features includ-
ing tumor size, histological grade and stage, lymph node status, and the expression of
hormone receptors or HER2 (human epidermal growth factor receptor 2) status [18,19].
Among the histological subtypes, estrogen receptor (ER), progesterone receptor (PR), and
HER2 status can be used to further delineate patients into ER+/PR+ (60–70% of patients),
HER2+ (10–20%), and triple negative breast cancer (TNBC, 15–20%). However, differences
in the prevalence of these histological subtypes are seen between women with different
ancestries. Notably, women of African American decent have a higher incidence of TNBC
when compared to American women of European ancestry (36.3% vs. 13.7%) [1,24,25].
Importantly, these biomarkers are used to direct current standard-of-care treatments with
endocrine-based therapies comprising the core of therapeutic regimens to treat hormone
receptor-positive (HR+) breast tumors; HER2-family inhibitors forming the foundation
for therapies used to treat HER2+ patients [26], and multi-agent cytotoxic chemotherapies
providing the basis for the treatment of TNBC patients [27,28]. While endocrine-based
therapies result in remission in the majority of patients with HR+ tumors, approximately
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30–50% of patients manifest primary or acquired resistance [29,30]. Recent studies have
reported that the emergence of hormone therapy resistance in ER+ breast cancers can arise
through four predominant mechanisms including ESR1 mutations (18%), altered MAPK
signaling (13%), MYC or transcription factor activation (9%), and other/unknown factors
(60%) [31]. The findings of multiple clinical trials have resulted in FDA and international
approval for use of the mTOR inhibitor everolimus in conjunction with exemestane for
the treatment of patients with advanced or metastatic ER+, PR+, HER2-negative, PIK3CA
mutant tumors [32]. Likewise, the PI3K inhibitor alpelisib has been approved for the
same patient population in combination with fulvestrant [33]. More recently, CDK4/6
inhibitors palbociclib, ribociclib, and abemaciclib have been approved and, in conjunction
with hormone therapy, have become the primary treatment regimen for HR+/HER2- treat-
ment naïve or hormone therapy treated metastatic breast cancer patients [34]. Finally, the
treatment of TNBC tumors has begun to evolve to include immune checkpoint inhibitors
while patients with BRCA mutations are treated with PARP inhibitors in conjunction with
chemotherapy [28,35,36].

In contrast to breast cancer, ovarian cancer is a less frequently diagnosed malignancy
with approximately 21,750 women in the US and 250,000 women worldwide being di-
agnosed with this disease annually [1]. Unfortunately, however ovarian cancer is the
most lethal form of gynecological cancer with an estimated 13,940 women dying from this
disease in the United States and more than 150,000 women dying worldwide in 2020 [1].
This translates to a death-to-case ratio of approximately 64%, far outpacing the lethality of
breast cancer [1].

Similar to breast cancer, the clinical complexity of ovarian cancer is due, in part, to
histological and molecular heterogeneity. Ovarian tumors are classified into four major
classes: high (70%) and low (4.1%) grade serous, endometrioid (8.3%), clear cell (9.5%)
and mucinous (3.2%) carcinoma [37–39]. Of note, a study by Beckmeyer-Borowko and
colleagues showed that non-Hispanic Black ovarian cancer patients were more likely to be
diagnosed with stage four HGSOC, clear cell or mucinous carcinomas when compared to
non-Hispanic White patients [40]. Beyond these classifications, ovarian epithelial tumors
have been divided into Type I and Type II tumors [41–44]. Type I tumors typically encom-
pass low-grade and indolent tumors including low-grade serous, low-grade endometrioid,
clear cell, and mucinous carcinomas that tend to present as stage I tumors while Type
II tumors include more aggressive and high-grade tumors including high-grade serous,
high-grade endometrioid, malignant mixed mesodermal tumors, and undifferentiated
carcinomas [42]. Genetically, Type I and II tumors are characterized by specific muta-
tions: mutations common to Type I tumors include KRAS, BRAF, ERBB2, CTNNB1, PTEN,
PIK3CA, ARID1A, and PPP2R1A, while Type II tumors have a high frequency of TP53
mutations (>95%) as well as mutation or aberrant expression of BRCA1 or BRCA2 [3,42–44].
Importantly, these mutations appear to be largely confined to each subtype with Type II
tumors rarely expressing Type I mutations and Type I tumors being largely wild-type for
TP53, except for low-grade mucinous tumors (~25%) [45].

While more than 92% of Stage I ovarian cancer patients are successfully treated, only
15% of patients are diagnosed with the early stage disease [1]. High-grade serous ovarian
cancer (HGSOC) is the most prominent form of ovarian cancer and accounts for 70% of
ovarian cancer-related deaths [46,47]. Although most patients will initially respond favor-
ably to standard-of-care cytoreduction surgery followed by platinum- and taxane-based
treatment, approximately 80% will eventually relapse and develop resistance in late stage
disease [39,48–51]. In addition, 25% of patients are inherently resistant to standard-of-care
therapy and demonstrate disease progression within six months of treatment [52]. More
recent studies have determined that HGSOC tumors are characterized by homologous
recombination deficiencies (HRD) which render these tumors sensitive to PARP inhibi-
tion [53–56]. As such, PARP inhibitors (olaparib, rucaparib, niraparib) were FDA approved
for treatment of platinum-sensitive recurrent, BRCA mutated, and HRD-positive epithe-
lial ovarian cancer [34,56–61]. In addition, olaparib in combination with bevacizumab
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has been approved for the treatment of patients with advanced epithelial ovarian cancer.
This combination treatment nearly doubled the progression-free survival in HRD-positive
tumors when compared to bevacizumab alone [62]. Finally, clinical trials examining the
impact of multiple novel combinatorial strategies, including VEGF inhibitors (VEGFi) in
combination with PARP inhibitors (PARPi) as well as anti-PD-1 inhibitors, alone or in
combination with VEGFi and/or PARPi, are ongoing [63]. While significant advances in
the molecular characterization of ovarian cancer have led to a better understanding of this
disease, the prognosis has not significantly improved over the past several decades; poor
prognosis is attributed to lack of early detection and resistance (inherent and acquired) to
platinum-/taxane-based therapies [3,46].

Despite the inherent differences in clinical manifestation between breast and ovarian
cancer, a portion of these malignancies are intrinsically linked, as women with specific
inherited germline mutations including BRCA1, BRCA2, PALB2, TP53, CDH1, and PTEN
have an increased lifetime risk of developing either disease [64,65]. BRCA1 or BRCA2
mutations are the most prevalent cause of high penetrance inherited breast or ovarian
cancers and have been shown to affect patients irrespective of race or ethnicity. Overall,
the rate for germline BRCA1 or BRCA2 mutations is relatively low with 4–6% of breast
and 8–15% of ovarian tumors expressing one of these mutations [66–73]. However, it is
estimated that 39–63% of women with a BRCA1 mutation will develop ovarian cancer
while 46–87% will develop breast cancer by age 70. Likewise, BRCA2 mutation carriers
are strongly predisposed to develop ovarian (17–27%) or breast (38–84%) cancer [65,74–77].
Clinically, BRCA1/2-mutated breast tumors tend to be classified as TNBC invasive ductal
carcinoma with high nuclear grade while BRCA1/2-mutated ovarian tumors are predomi-
nantly classified as HGSOC [78–80]. Although BRCA-mutated breast and ovarian tumors
are often highly aggressive, a number of studies suggest that these patients may achieve
a slightly better short-term therapeutic response (2–3 year overall survival) compared to
patients with wild-type BRCA1 or BRACA2, as these tumors may be more responsive
to DNA-damaging drugs; however, long-term survival and/or progression-free survival
differences remain unclear [65,79–82].

While inherited breast and ovarian cancers have similar features, including response
to specific inhibitors, as we will discuss below, non-familial ovarian and some subsets of
breast tumors also demonstrate striking genome- and proteome-wide similarities including
somatic mutations, patterns of copy number alterations, and expression of specific genes,
proteins and signaling pathways. By utilizing this information, more recent treatment
strategies for breast and ovarian cancers have begun to incorporate targeted therapies in
conjunction with standard-of-care treatments [18,19,21,83]. While these novel regimens
have improved clinical response and quality of life, as we have discussed, these treatments
are often limited to patients with specific genomic alterations or clinical subtypes and not
all patients will respond equally. These observations highlight the need to not only develop
new, more effective therapies but also illustrate that it is necessary to develop a genome- or
proteome-wide portrait of the underlying molecular heterogeneity of each of these diseases.
Gaining a more complex view of the underlying biological mechanisms driving disease
development, progression, and response to treatment will allow investigators to identify
and develop biomarkers that will enable the design and evolution of treatment regimens
based on the underlying biology of a given patient’s tumor.

3. Molecular Classification and Characterization of Breast Cancer

Seminal studies by Perou and colleagues used microarray-based gene expression
profiling and unsupervised hierarchical clustering to identify a 496 intrinsic gene list that
defined five molecularly distinct subtypes of breast cancer [84,85]. These subtypes clustered
largely along the estrogen receptor status with ER-positive tumors being classified into
luminal A (LumA) or luminal B (LumB) subtypes while ER-negative tumors were classified
as HER2 enriched (HER2E), basal like, or normal like [84–87] (Figure 1).
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Figure 1. Gene expression-based classification of breast and ovarian cancers. The major molecular classifications of breast
and ovarian cancers are depicted here. Further highlighted are the molecular similarities between high grade serous ovarian
and basal-like breast cancer.

The ER-positive luminal tumors express luminal cytokeratins 8 and 18 and are en-
riched for genes expressed by breast luminal epithelial cells, including GATA3, FOXA1,
ESR1, and MYB. Among luminal tumors, LumB tumors are defined by higher expression
of proliferation-related genes, high genomic risk, and poorer clinical outcome than LumA
tumors. HER2E tumors are predominantly ER negative, characterized by the amplification
of the HER2 gene on chromosome 17q12, and are associated with poor prognosis and
increased risk of metastasis. The basal-like subtype is largely synonymous with triple
negative breast cancer (TNBC). These tumors express basal epithelial cell markers keratin
5/6 and are characterized by enrichment of the genes expressed by breast basal or my-
oepithelial cells [2]. Basal-like tumors represent the most diverse subtype of breast cancer
and are associated with high proliferation rates, high mutational burden, higher risk of
metastasis, and poor survival rates [85,86]. Finally, the normal-like breast cancer subtype
has also been described and is typified by high expression of genes known to be expressed
by basal epithelial cells and adipose cells. However, the biological relevance and clinical
importance of this subtype remains unclear [84–87].

The association between molecular subtypes and disease-specific outcomes demon-
strate that tumor cell response to treatment is not determined by anatomical prognostic
factors but rather inherent molecular features, indicating the potential clinical value of
these expression-based patient classifications [84,85]. However, the ‘intrinsic’ gene set used
by Perou and group to experimentally categorize patients was not readily employable
in the clinic due to its relatively large size [84–87]. Utilizing microarray data and several
minimization methods, Parker et al. developed a reliable 50-gene signature to identify
breast cancer intrinsic subtypes [88]. Combined with common histologic criteria, such
as tumor grade and pathologic staging, the 50-gene signature (PAM50) provided signifi-
cant prognostic and predictive value through classification and generating risk-of-relapse
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(ROR) scores for all patients [88]. While the clinical implications of the PAM50 subtype
predictor remain to be fully resolved, the Prosigna assay, which is derived from the initial
intrinsic analyses, is used clinically to help predict risk of relapse and to guide therapeutic
intervention [89–91].

The recent advances in gene expression profiling platforms have led to the iden-
tification of additional molecular subtypes, further defining the biological and clinical
heterogeneity of breast cancer. The claudin-low subtype was identified to be predom-
inantly triple negative and poorly differentiated subgroup of breast tumors which are
enriched for cancer stem cell-like genomic signatures and immune response genes [92,93].
These tumors are characterized by low expression of luminal genes, proliferation genes,
and genes involved in tight junctions and cell–cell adhesion [92,93]. More recent gene
expression studies employed by Lehmann et al. initially categorized TNBC tumors into six
molecular subtypes, including BL1 and BL2 (basal-like), immunomodulatory (IM), mes-
enchymal (M), mesenchymal stem-like (MSL), and luminal androgen receptor (LAR) [94].
This classification has since been further refined to include the four (TNBCtype-4) tumor-
specific subtypes (BL1, BL2, M, and LAR) and exclude the IM and MSL subtypes due to the
identification of transcripts from infiltrating lymphocytes and tumor-associated stromal
cells, respectively [95]. The TNBC type-4 subtypes demonstrated significant differences
in histopathology, grade, and local and distant disease progression [95]. These subtypes
were characterized by unique identities of pathway activation which stimulated the use
of known inhibitors and therapies to exploit signaling vulnerabilities, exhibiting early
evidence of clinical applicability [94,95].

Decomposing vast amount of information from profiling studies represents a key step
in developing patient-specific therapeutic regimens. In light of this, pathway signatures
were developed as an underlying platform to provide a functional interpretation of the
gene expression data within each subtype and further dissect the heterogeneity of breast
cancer [96]. Integrated analysis using gene expression and pathway activation probabilities
contributed to stratifying tumor subtypes and characterizing distinct clinical and biological
features [96–100]. Along these lines, Gatza et al. utilized pathway activation probabilities
that reflect in vivo activity levels to identify subgroups that reflect the status of important
signaling pathways in breast tumors [97]. These subgroups corresponded to the intrinsic
subtypes and exhibited distinct patterns of pathway activation, DNA copy number changes
as well as clinical and biological characteristics [97,98].

While microarray-based gene expression profiling of breast tumors has been able
to distinguish tumor subgroups and begin to define underlying biological and clinical
diversity, these studies were limited in their ability to create true “molecular portraits”
of breast cancer. Large-scale integration of multiple proteogenomic platforms through
The Cancer Genome Atlas (TCGA) project provided a more comprehensive view of breast
cancer heterogeneity and underlying biology. The TCGA project (n = 1072) used data
from six different high-throughput technology platforms, including mRNA expression
microarrays (and mRNA sequencing), DNA methylation, genomic DNA copy number
arrays, microRNA sequencing, whole-exome sequencing, and reverse-phase protein array
(RPPA) to examine specific genetic, epigenetic, and proteomic alterations in breast cancer
and to link these alterations to clinical data and characteristics [2]. Intriguingly, while the
overall patterns of proteogenomic alterations were found to be variable amongst patients,
including between subtypes, intra-subtype variation was limited. Remarkably consistent
patterns of genomic and proteomic alterations were found to be associated with each of the
mRNA-based PAM50 subtypes.

Luminal tumors are characterized by an increased frequency and diversity of signifi-
cantly mutated genes in addition to a lower frequency of copy number alterations [2,101,102].
These tumors exhibit increased mutations in luminal genes including GATA3 and FOXA1,
as well as genes belonging to the p38-JNK pathway (MAP3K1 and MAP2K4), which were
mutated in a mutually exclusive manner. PIK3CA, which is the most frequently mutated
gene in breast cancer, was predominantly altered in luminal tumors and was mutated
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at a much higher frequency in LumA (45%) relative to LumB (29%) tumors. Despite the
high frequency of activating PIK3CA mutations in LumA subtype tumors, the PI3K/AKT
signaling axis has not been shown to be consistently upregulated in these tumors. In
contrast to LumA tumors, LumB tumors are characterized by higher inactivation of the
TP53 pathway associated with a higher rate of mutation in the TP53 gene, loss of ATM2,
and MDM2 amplification [2]. More recent integrative analysis using 52 gene expression
signatures that measure oncogenic signaling pathways identified a limited number of genes
that are amplified and overexpressed in aggressive luminal subtype tumors. Among these
genes, a subset (FGD5, METTL6, CPT1A, DTX3, MRPS23, EIF2S2, EIF6, and SLC2A10) was
found to be essential for cell growth and, in some instances, correlated with clinical out-
come [99,103–105]. This study further suggests that not only do LumA and LumB tumors
express unique mutation profiles, but that these alterations result in distinct patterns of
oncogenic signaling beyond differences in proliferation.

The HER2E subtype is characterized by high amplification of the HER2 amplicon
(80%) on chromosome 17q12. These tumors can be either ER negative or positive and
demonstrate increased expression of the HER2 oncogene as well as other genes on the
17q12-amplicon, including GRB7. However, not all clinically defined HER2-positive tumors
are categorized into this subtype, as some ER+/HER2+ tumors demonstrate increased
expression of specific luminal genes (i.e., GATA3, BCL2, and ESR1) and cluster largely
into the LumB subtype. TP53 (72%) and PIK3CA (39%) mutations are highly enriched in
this subtype and show significantly higher expression and activation of receptor tyrosine
kinases such as FGFR4, EGFR, and HER2 [2].

Basal-like breast cancers represent the most heterogeneous subtype with a high fre-
quency of TP53 mutations which are present in an overwhelming 80–90% of tumors. In
addition to TP53 truncating mutations, these tumors are characterized by loss of RB1
and BRCA1 along with amplification and hyperactivation of the MYC and FOXM1 genes.
Increased activation of PI3K/AKT signaling, relative to other subtypes is a distinguishing
feature of basal-like tumors despite a low incidence of PIK3CA (9%) mutations. Expression
of keratins 5, 6, and 17 and cell proliferation genes are significantly upregulated in these
tumors owing to the increased expression of FOXM1 as a transcriptional driver of this gene
signature [2].

Similar multiplatform analysis was also conducted to provide molecular context to in-
vasive lobular breast cancer, which is the second most commonly diagnosed invasive breast
cancer and comprise approximately 10–15% of all cases. Despite histological differences,
invasive lobular carcinomas (ILC) and ER+ invasive ductal carcinomas (IDC) patients have
historically been treated similarly, emphasizing the need to more robustly understand the
molecular underpinnings of the disease for better therapeutic interventions [106]. Multi-
platform studies carried out by the TCGA project and Desmedt et al. identified mutations
in the E-cadherin (CDH1) gene (63% in ILC vs. 2% in IDC) which is the hallmark feature
of ILCs. In addition to CDH1 loss, mutations in PTEN, TBX3, FOXA1, and ESR1 were
enriched in ILC relative to IDC tumors. Mutations in PIK3CA were reported in 48% of
ILC relative to 33% of IDC tumors which, along with loss of PTEN function, defines the
significant upregulation of PI3K signaling in ILC tumors [23,106]. Transcriptomic analysis
identified molecular ILC subtypes which were characterized by unique molecular profiles
and clinical outcomes with more proliferative tumors demonstrating a worse clinical prog-
nosis [23,106]. Overall, these multiplatform analyses not only better distinguished between
lobular and ductal carcinomas but also identified clinically relevant heterogeneity that may
help to better differentiate and treat these carcinomas. In addition to TCGA, the METABRIC
(Molecular taxonomy of breast cancer international consortium) study used an integrated
clustering approach to examine the genomic and transcriptomic architecture of 2000 breast
tumors (along with clinical data) and classify them into 10 integrative clusters (IntClust
1–10) which demonstrate distinct alterations and clinical outcomes [9,107]. Importantly,
this classification strategy demonstrated that incorporation of both mRNA and cDNA
copy number data identified additional granularity within the PAM50 subtypes as well
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as molecularly distinct entities based on the underlying genetic alterations. These data,
coupled with multi-platform orthogonal analyses performed by TCGA have provided
enormous insight into the underlying genetic framework of breast cancer; however, these
studies were limited in their ability to associate the genomic and transcriptomic features
with the proteome and phosphoproteome that drives the phenotypic characteristics of a
tumor. The RPPA platform used by TCGA for quantifying protein abundance and post-
translational modifications is limited by antibody quality and an inability to detect mutant
protein forms.

Consistent with this premise, analysis of the proteome and phosphoproteome was
performed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) using mass
spectrometry-based analyses to integrate and contextualize genome-scale alterations of
105 tumors and adjacent normal samples [5]. In breast cancer, these analyses resulted
in the identification of an average of more than 11,000 proteins and 26,000 phosphosites
per tumor significantly extending the previous work from TCGA where only 141 pro-
teins and 31 phosphosites were captured [2,5,23]. Phosphoproteomic analysis informed
the translational outcomes of PIK3CA mutations in breast cancer, which often are not
correlated with the transcriptional signature of breast tumors. These analyses resulted
in the identification of 62 different phosphosites in PIK3CA mutated breast tumors, in-
cluding RPS6KA5 and EIF2AK4, explaining the activation of the pathway and revealing
possible druggable kinases in this pathway [5]. The CPTAC project highlights the need
for integrating data across proteogenomic platforms to connect somatic mutations with
the activation of various oncogenic signaling pathways in tumors for better therapeutic
outcomes. In addition, CyTOF (Cytometry by Time of Flight), has been used for real-
time high-dimensional analysis of breast cancer [108–110]. For example, a recent study
by Ali et al. emphasized the significance of multiplatform analyses when coupled with
multidimensional imaging mass cytometry in highlighting the tumor heterogeneity both
on tumor-specific and tumor microenvironment levels which in turn affect the tumor
evolution, ecosystem and clinical outcomes [109]. Similarly, imaging mass cytometry has
been used to generate high-dimensional images of 281 human breast tumor samples in
order to identify the spatial architecture, and to define heterogeneity between intra and
inter-tumoral cell subpopulations [110].

4. Molecular Classification and Characterization of Ovarian Cancer

Similar to studies in breast cancer, studies by Tothill (n = 285) [111], the TCGA project
(n = 489) [3], Helland (n = 939) [112], and Konecny (n = 174) [113] utilized K-means clus-
tering and non-negative matrix factorization consensus clustering to classify HGSOC into
four distinct gene expression-based subtypes. These four molecularly distinct subtypes
(Figure 1) were termed immunoreactive, proliferative, mesenchymal, and differentiated
based on molecular and clinical characteristics [3]. However, in contrast to molecular
subtypes of breast cancer which have clear biological and clinical implications, these
relationships do not appear to be as robust in HGSOC.

Mesenchymal tumors have been reported to have the worst clinical prognosis of the
four HGSOC molecular subtypes [111,113,114]. These tumors are defined by low tumor
purity and demonstrate increased desmoplasia and reactive stromal components, includ-
ing CD3+ infiltrates [4,111,115]. Phenotypically, these tumors exhibit increased epithelial
to mesenchymal transition (EMT), angiogenesis, extracellular matrix (ECM) remodeling,
and proteolysis [113,115]. Consistent with these findings, mesenchymal subtype tumors
demonstrate increased expression of HOX genes which contribute to development regula-
tion as well as aberrant TGFβ, stromal-associated, wound response, and fos-jun signaling
as demonstrated by gene expression signatures [116]. Global proteomic analyses by the
CPTAC project further demonstrated that these tumors exhibit increased expression of
ECM and cytokine signaling at the protein level [4].

Similar to mesenchymal subtype tumors, immunoreactive tumors are defined by low
tumor purity [4]. However, immunoreactive subtype tumors are associated with a good
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clinical prognosis [111,113–115]. While these tumors do demonstrate infiltration of stromal
cells, immunoreactive tumors appear to be defined by increased immune signaling, likely
due to increased immune cell infiltration [117]. Gene and protein expression profiling stud-
ies have reported activation of the adaptive immune response as well as increased T and
B cell activation markers, antigen presentation, and chemokine signaling [3,111,113,115].
Consistent with these findings, it was reported that mesenchymal and immunoreactive
tumors are more closely related to each other, as compared to the proliferative or differen-
tiated subtypes, despite differences in patterns of signaling network activity and clinical
outcomes [113,118]. These similarities are likely due to the low tumor cell purity that is
apparent in mesenchymal and immunoreactive tumors, while the distinction between
these groups is driven by both underlying tumor biology as well as the composition of
infiltrating cell populations in the tumor microenvironment. Consistent with these ideas,
recent single-cell RNAseq studies have demonstrated that unique aspects of the tumor
microenvironment may define signaling within these subtypes; immunoreactive tumors
were shown to have immune-related cell clusters while mesenchymal tumors contained
cell clusters enriched for cancer-associated fibroblast signaling [117].

Tumors classified in the proliferative subtype are associated with poor overall sur-
vival [106,107,109]. In contrast to immunoreactive or mesenchymal tumors, these tumors ex-
hibit high tumor cellularity and low infiltration of CD3+ and CD45+ stromal cells [111,112].
Proliferative subtype tumors are defined by an undifferentiated phenotype and express
pro-proliferative signaling including increased expression of developmental transcription
factors, proliferation markers, ECM-related genes, and WNT/β-catenin signaling, as well
as increased expression of proteins involved in DNA replication [3,4,111,113]. In addition,
it has been noted that these tumors express low levels of ovarian cancer marker genes
(MUC1, MUC16, KLK6, KLK7, and KLK8) and high expression of the developmental tran-
scription factors HMGA2 and SOX1. These tumors were also associated with an increased
expression of FANC genes and homologous recombination [113,115].

Finally, differentiated subtype tumors have been shown to most closely resemble
normal fallopian tissue at the gene expression level [111,115]. At the genetic level, these
tumors are defined by increased expression of MUC1, MUC16, SLP1 (secretary fallopian
tube marker), epithelial cell differentiation markers, and folliculogenesis-related genes
which are indicative of increased tumor cell differentiation [3,113,115]. Proteomic analyses
from the CPTAC project were able to further dissect signaling networks activated in these
tumors to identify enrichment of protein expression programs associated with altered
tumor cell metabolism and increased cell-to-cell communication [4] providing additional
insight into subtype-specific mechanisms driving tumor development and progression.

Although these seminal studies were able to identify four largely concordant subtypes
based on gene expression profiling, a number of recent studies have suggested that these
subtypes are not consistent across platforms and populations [113–115,118]. These more
recent studies have observed that tumors were able to be more robustly classified into fewer
groups and/or that alternative strategies may provide additional insight into the underly-
ing biology of this disease. Notably, studies from the CPTAC project were able to utilize
proteome-wide data from 9600 proteins and 6769 phosphoproteins from 174 tumor samples
to identify altered signaling networks in the transcriptome based subtypes further refining
and validating the distinct signaling networks in these tumors, as well as identifying signal-
ing pathways correlated with homologous recombination deficiency phenotype and patient
survival [4]. However, in this proteogenomic analysis of ovarian tumors, Zhang et al. also
identified five distinct protein-based subtypes and were able to show that three of the five
subgroups were largely concordant with the TCGA mRNA-based subtypes. The remaining
two subgroups represented tumors defined by unique underlying biology that would not
be apparent by assessing mRNA data alone. Consistent with this premise, a number of
recent studies have attempted to move beyond mRNA- or protein-based approaches to
incorporate phosphoproteomic or glycoproteomic profiling to investigate the heterogeneity
of HGSOC tumors [119,120]. These studies have provided additional depth to our under-
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standing of HGSOC tumorigenesis by identifying subgroups defined by unique patterns
of active kinases and altered cell signaling which contributing to tumor development,
progression, and clinical outcome. Likewise, recent work by Karagoz et al. [116] assessed
patterns of oncogenic signaling using a panel of 62 gene expression-based signatures across
the four TCGA subtypes in three unique datasets [3,111,121]. As noted above, these studies
identified unique oncogenic and tumorigenic signaling pathways associated with each
mRNA-based subtype. However, in contrast to similar analyses in breast tumors which
demonstrated clear differences in pathway patterns between the PAM50 subtypes, the
distinctions amongst ovarian subtypes appeared to be more subtle and included increased
intra-subtype heterogeneity [99,116].

Collectively, these data reinforce the premise that ambiguity in HGSOC subtype
assignment could be a result of shared common biological underpinnings, the existence
of intermediate subtypes, or biased by tumor cellularity and/or composition. As such,
it is apparent that further refinement of the molecular subtypes, potentially through the
incorporation of multiple genomic or proteomic platforms, may be necessary for these
classification schemes to be clinically relevant.

At the molecular level, HGSOC has been classified as a C-class malignancy (chromo-
somally unstable) that is defined by extensive structural variants [102]. Consistent with
this classification, mutational profiling of HGSOC by the TCGA project using whole-exome
sequencing has identified a limited number of significantly mutated genes that define this
disease [3]. The most prominent among these is TP53 mutations which are evident in nearly
all patients and are believed to arise early in the transformation process [3,44,122–124].
Beyond altered p53 signaling, transforming oncogenic mutations in PIK3CA, BRAF, KRAS
and NRAS have been detected in HGSOC, albeit at low frequencies (<1%). Almost half of
HGSOC tumors are characterized by homologous recombination (HR) deficiency through
germline or somatic mutations in BRCA1/2 (20%), BRCA1 hypermethylation (11%), and/or
dysregulation of other HR genes including PTEN, ATM or ATR, RAD51C, EMSY and Fan-
coni anemia genes [3]. While few significant mutations are apparent in HGSOC, DNA copy
number alterations are more frequent in these tumors [3,102]. This includes amplification
of MECOM, MYC, and CCNE1 which are among the most significant focal amplifications
and found in more than 20% of HGSOC cases in addition to KRAS and MAPK1 which are
found in more than 10% of cases.

Interestingly, while specific genes are mutated at a low frequency in HGSOC, pathway
analyses incorporating orthogonal whole-exome sequencing and copy number data demon-
strated that HGSOC tumors are characterized by aberrant RB1/E2F (67%), PI3K/RAS (45%),
and NOTCH (22%) signaling as well as dysregulation of the FOXM1 transcription factor
network (87%) [3]. Further pathway analysis, based on phosphoproteomic profiles of
HGSOC tumors demonstrated differential expression of RhoA-regulatory, PDFRB, and
integrin-linked kinase pathways between poor and good prognostic HGSOC patients [4].

Finally, a number of recent studies have used integrative analyses to identify novel
oncogenes and tumor suppressors that promote HGSOC and biomarkers to predict ther-
apeutic response and risk. These studies relied on integrative analyses of DNA copy
number, methylation, and gene expression data to identify potential oncogenes and tumor
suppressor proteins in HGSOC and clear cell carcinoma [125–127]. Similarly, studies from
Karagoz et al. assessed orthogonal genomic and proteomic data from human HGSOC
tumors from the TCGA and CPTAC studies in the context of a prognosis gene expression
signature. These analyses, along with data from a genome-wide RNAi screen in ovarian
cancer cell lines, identified ADNP as a novel oncogene in HGSOC and in vitro studies
showed that this protein regulates cell survival through altered cell cycle checkpoints [116].
While the therapeutic potential of these genes remains unclear, studies by Kurimchak et al.
incorporated kinome profiling of human tumors and PDX models to identify MRCKA as
a potentially drug-able oncogene activated in a subset of HGSOC tumors. Subsequent
loss-of-function studies demonstrated that this gene could regulate HGSOC tumorigenesis
and could be pharmacologically inhibited suggesting it may have potential as a novel
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therapeutic target [128]. Finally, studies from Coscia et al. identified CT45 as a biomarker
for platinum-sensitivity in HGSOC using global proteomic profiling and demonstrated
that mRNA or protein expression was associated significantly with chemosensitivity and
disease-free survival [129].

5. Genetic and Genomic Relationship between Breast and Ovarian Tumors

As discussed above, both familial and non-inherited breast and ovarian cancers have
been shown to have similar genetic and genomic features (Figure 1). Beyond the previously
discussed correlation between inherited mutations and the increased risk of breast or
ovarian tumor development, analysis of human breast tumors demonstrated that HGSOC
tumors also express a basal-like gene expression signature [2]. This relationship was further
validated by multi-platform genomic analyses in which basal-like and HGSOC tumors
were found to have a strong genomic association based on global mRNA profiling and to
express a similar pattern of DNA copy number alterations [130]. While similar patterns
of gene expression between these two diseases were noted by Hoadley and colleagues
in a pan-cancer analysis of 12 tumor types and by the TCGA breast cancer paper, this
association was not as clear when studied within the context of 33 tumor types potentially
reflecting differences driven by tumor cell of origin, additional variability due to a more
diverse tumor population, or other technical or biological factors [2,130,131]. Regardless,
basal-like and high-grade serous ovarian tumors are classified as C-class malignancies and
are characterized by predominant recurrent copy number alterations [102]. Specifically,
these tumors share copy number gains of 1q, 3q, 8q, and 12p, and copy number losses of
4q, 5q, and 8p [2,100]. Among the commonly amplified genes are MYC (8p21.21), CCNE1
(19q13.2), MECOM (3q26.2), FGF3 (4p16.3), MCL1 (1q21.3) and ERBB3 (12q13.2) [43].
Additionally, basal-like and HGSOC tumors share RB1 loss in 20% and 10% of tumors,
respectively [2,3].

Beyond copy number alterations, these tumor subtypes have been shown to express
similar mutation profiles for a limited number of key oncogenes and tumor suppressor
genes. Basal-like and high-grade serous ovarian tumors are enriched for BRCA1/2 inacti-
vation and express TP53 mutations in 90–95% of tumors [2,3,5]. In addition, both tumor
types exhibit an increased frequency of genome breakpoints as well as a loss of heterozy-
gosity and allelic imbalance indicating genomic instability and homologous recombination
deficiency [132–134]. More recent studies have indicated that these tumors demonstrate
high homologous recombination deficiency (HRD) scores, accumulation of large-scale state
transitions, increased loss of heterozygosity (LOH), and telomeric allelic imbalance scar
signatures. Clinically, these alterations have been shown to be significantly correlated with
pathologic complete response and minimal residual disease in TNBC patients treated with
platinum-based therapies and with a better prognosis in HGSOC [36,135,136].

In addition to specific mutations and genomic alterations, basal-like breast and HG-
SOC tumors have been shown to express similar signaling networks including increased
activation of PI3K signaling [2,3,102,137–139]. While PIK3CA mutations are relatively rare
events in each tumor type, a number of unique alterations have emerged as contributing to
aberrant signaling [2,3,5]. In HGSOC, DNA copy number gains in PIK3CA (18%), AKT1 or
AKT2 (9% combined) and to a lesser extent, homozygous deletion of PTEN (7%) are the
main drivers for this pathway [3,140,141]. In contrast, basal-like tumors are regulated by
alterations in multiple genes (EGFR, IGFR1, AKT3) that occur at a low frequency (2–4%), as
well as a loss of PTEN (35%) or INPP4B (30%), SOX4 amplification and overexpression, and
MAGI3-AKT3 gene fusion [2,137,142,143]. Interestingly, these data indicate that while both
tumor types are characterized by high PI3K signaling, the mutations activating signaling
in each tumor type differed in prevalence and composition.

Similarly, on a pathway activity level, basal-like and HGSOC tumors share increased
FOXM1, HIF1-α, and MYC signaling [2]. Basal-like breast cancers have increased altered
cell cycle checkpoint regulation, DNA damage repair, MYC, and immune response sig-
naling [5], while proteins associated with recurrent copy number alterations in HGSOC
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converge on cell migration/invasion and immune regulation pathways [4]. Consistent with
common alterations between basal-like and high-grade serous ovarian tumors, Marcotte
and colleagues [144] used a genome-wide pooled shRNA screen in 29 breast and 15 ovarian
cancer cell lines to identify genes uniformly essential for cell viability as well as genes
required within each disease type. While cell line-specific genes were identified, these
analyses also identified 66 ovarian and 155 breast cancer-specific genes as well as 297 genes
that were essential for viability in the majority of cell lines irrespective of tissue type. While
the latter set of genes did not necessarily take into account distinctions between molecular
subtypes, these studies further reinforce the shared underlying biology of these diseases.

6. Advances in Genomic Analyses of Breast and Ovarian Cancer

Single-platform genomic and proteomic analyses have allowed for the identification
and cataloging of mutations; copy number alterations; and altered gene, miRNA, protein,
or phosphoprotein expression profiles [2,3,7,12,23,145–152]. As we have outlined above,
patterns of genomic and proteomic alterations can define tissue- and histological-specific
differences in underlying biology and can be used to define molecularly distinct subtypes
of cancer, including breast and ovarian cancer [2,3,11,23,97,118–120,136,153–155]. These
genomic and proteomic patterns can identify oncogenic mechanisms that contribute to
disease development, progression and in some instance can serve as therapeutic targets
or markers of therapeutic response [10,62,63,99,102,113,126,128,129,135,137,142,156–172].
However, single platform analyses can be limited in their ability to visualize altered signal-
ing networks and oncogenic processes. Given the complexity of mechanisms regulating
these processes, multiplatform analyses, incorporating orthogonal genomic and proteomic
data, enable the visualization of various types of alterations, in multiple key components
within a given network to better define the state of signaling within specific tumors types
and/or subtypes [102]. More importantly, integrative multiplatform analyses have led to
the comprehensive identification of actionable alterations through reverse engineering of
signaling pathways, while identifying upstream effectors and downstream targets using
multiple omics platforms [156,173–176] (Figure 2). Ultimately, integrative analyses have
resulted in the discovery of novel tumor-promoting mechanisms with higher confidence.

Breast and ovarian tumors are comprised of a complex collection of cell types including
multiple populations of tumor cells, stroma, immune cells, fibroblasts, and other cells
that encompass the tumor microenvironment [177,178]. As we have discussed, omics
technologies that rely on analysis of the entire tumor (i.e., bulk analysis) have provided an
enormous amount of insight into tumor biology; however, these approaches represent an
averaged view of the tumor landscape and do not allow for fine resolution at the single
cell level. Although a number of approaches including ESTIMATE, and others, have been
developed to delineate specific signaling networks that arise from discrete cell populations
or to estimate differences in cell composition within tumors using bulk sequencing or
proteomic data, these methodologies are unable to fully address these challenges [179].
Advances in single-cell omics have had a significant impact on our understanding of
tumor characteristics that are not apparent by bulk genomic, proteomic, or metabolomic
approaches. These methods have allowed us to identify and characterize unique cell
subpopulations, distinguish cell transition states, map molecular markers, identify novel and
previously unrecognized biological features, and in combination with other technologies,
are beginning to be used to spatially map tumor cell populations, identify circulating
tumor cells and provide mechanistic insight into tumorigenic processes including metastasis
and therapeutic response. Given spatial limitations, we point our readers to an excellent
collection of review articles that discuss these advances in depth [180–191].
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Figure 2. Use of single platform and integrative omics in cancer biology and medicine. The major contributions of single
and multi-platform omics studies as well as single cell omics are summarized here. Single platform studies enable cataloging
of mutation or alteration patterns, identifying signaling networks of interest and defining certain molecular subtypes.
Multiplatform studies can further expand single platform-defined molecular subtypes and identify signaling pathways by
identifying mutations in multiple genes representing multiple levels of pathway dysregulation. Single cell analyses allow
for analyses of tumor cell subpopulations, identify cell transition states, map molecular markers and cell populations and
identify circulating tumor cell populations. Orthogonal analysis of these data provides further context to genomic studies.
These approaches contribute to a greater understanding of tumor biology as well as clinical advancements in treating cancer.

A number of recent studies have employed single-cell RNA-sequencing (scRNA-seq)
analyses to examine tumor immune profiling [192–197]. These approaches have clear
implications for both our understanding of the role of the immune system in the tumor
microenvironment and for determining or predicting the efficacy of immunotherapy-based
treatments. Of note, a recent study by Azizi et al. demonstrated the wide variability in
immune cell type composition between breast cancer patient samples in addition to high-
lighting the phenotypic expansion of intratumoral immune cells using single-cell RNA and
T cell receptor sequencing [198]. Further studies by Savas and colleagues demonstrated
the association between tissue-resident memory T cell differentiation signature, devel-
oped using single-cell RNA-seq, and prognosis in early stage triple-negative breast [199].
Demonstrating the potential clinical implications and applicability of these approaches,
investigators have used these technologies to identity mechanisms of therapeutic resis-
tance [200]. Notably, recent work identified enrichment of immunosuppressive immature
myeloid cells (IMC) in anti-Her2 and CDK4/6 inhibitor-resistant HER2-positive breast
cancer, while combinatorial treatment with cabozantinib (IMC-targeting tyrosine kinase
inhibitor) and immune checkpoint blockade overcame resistance [201]. Moreover, scRNA-
seq has been used to develop gene-expression-signature of the myeloid-derived suppressor
cells (MDSCs) in addition to identifying CD84 as a surface biomarker for MDSCs in breast
cancer [202]. Similarly, Wan et al. reported reprogramming of inert natural killer and T cells
to a highly active cytotoxic state following bispecific anti-PD-1orPD-L1 antibody treatment
using single-cell RNA-seq analysis of HGSOC organoid co-cultures; this study identified
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a potential advantage of bispecific antibodies in immune checkpoint blockade therapy
in HGSOC [203]. Further analyses have identified inter- and intra-tumor heterogeneity
in cancer associated fibroblasts cell states in HGSOC and breast cancer [117,204]. Collec-
tively, immune profiling coupled with imaging and single-cell RNA-seq underscored the
importance of the spatial architecture of tumor niches in regulating immune infiltration
and activation [205–212].

A number of recent studies have employed single-cell analyses to investigate inter
and intra- tumoral heterogeneity [213–218]. Of note, recent work by Chung et al. linked
tumor-intrinsic and immune cells diversity with TNBC intratumoral heterogeneity while
studies by the Ellisen laboratory identified a connecting between intertumoral heterogene-
ity and clonality of inferred genomic copy number changes in these tumors. These latter
studies suggested that cellular genotype drives gene expression programs, including signa-
tures of treatment resistance and metastasis, in individual tumor cell populations [219,220].
Consistent with this premise, investigators have identified rare plastic pre-adapted cell
subpopulations in luminal breast tumors which showed resistance to acute endocrine
treatment [221]. Similarly, studies by Izar et al. and Geistlinger et al. used scRNA-seq
based analyses to link the transcriptomic-based subtype classification of HGSOC to tu-
mor cell type composition rather than intrinsic difference in gene expression patterns
present in tumor epithelial cells further highlighting the importance of considering spe-
cific subpopulations of cells and the impact of signaling from the microenvironment on
tumor characteristics [117,222]. More complex analyses integrating single-cell RNA-seq
coupled with cell lineage tracing has been used to detail tumor cell subpopulations that
contribute to various aspects of tumor evolution, including identifying pre-EMT (Epithelial
to Mesenchymal Transition) cells that are essential for metastasis initiation [223].

Beyond assessing the transcriptome, single-cell DNA sequencing approaches have
been developed and used to identify subpopulations of cells that express unique muta-
tional and CNA patterns in therapeutically actionable genes in a given breast tumor [224].
These findings have clear clinical implications as different subpopulations will be likely be
uniquely sensitive or resistant to specific therapeutic regimens and contribute to the evolu-
tion of the tumor and therapeutic sensitivity. Consistent with this premise, longitudinal
sequencing analyses of tumors have demonstrated the emergence and/or re-emergence
of clonal populations following treatment [225–227]. Complementary to these studies,
single-cell mass cytometry using CyTOF identified rare tumor subtypes in HGSOC in
addition to the dominant subsets and demonstrated that one of the identified rare subtypes
was enriched for EMT signaling and associated with increased tumor metastasis [228].
Finally, merging single cell proteomics with other omics analysis has enable investiga-
tors to capture tumor-immune interactions in breast tumors [212]. Collectively, single-cell
omics underscored intra- and inter-tumoral heterogeneity, identified subpopulation-specific
vulnerabilities and emphasized the importance of addressing these vulnerabilities with
combinatorial targeted therapeutic options [117,214,220,229–233].

Traditionally genome-wide RNAi and CRPSR/Cas9 screens have identified novel es-
sential genes and pathways [144,234,235]. These studies evolved to include chemo-genetic
screens which incorporate loss-of-function screens coupled with drugs or small molecule
inhibitors in order to identify drug-gene interactions, cancer genetic vulnerabilities, and
potential drug resistance mechanisms [21]. More recently, investigators have begun to
incorporate these studies with multi-dimensional genomic analyses of human tumors as
an added functional filter to identify clinically relevant cancer vulnerabilities and potential
novel therapeutic targets. For instance, Marctotte and colleague integrated a pooled shRNA
screen with genomic, transcriptomic and proteomic data from 77 breast cancer cell lines to
identify breast cancer subtype-specific vulnerabilities. In this study, PSMB3, PSMA6 and
ATP6V1B2 were identified as top ranked “basal-selective” essential genes [234]. Likewise,
integrative correlative studies between pathway-specific gene expression signature scores,
gene level DNA segment scores and RNAi shRNA abundance led to the identification of
21 amplified, essential and putative driver oncogenes in highly proliferative luminal breast
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cancers as well as the identification of SOX4 as a driver of PI3K signaling in basal-like
breast tumors [99,137]. Similarly, in ovarian cancer, systemic loss-of-function shRNA screen
identified 50 essential and amplified genes including CCNE1, PAX8, FRS2, PRKCE, and
RPTOR. Of note, PAX8 was found to be amplified in 16% of primary ovarian cancers while
shRNA mediated silencing of PAX8 lead to apoptosis in cell lines harboring either PAX8
amplification or overexpression [235]. Likewise, ubiquitin B (UBB) and ubiquitin C (UBC)
were identified as a paralog deficiency dependency in ovarian cancers, implying the essen-
tiality of UBC in cell lines with repressed UBB [166]; shRNA mediated silencing of UBC in
UBB repressed ovarian cancer xenograft model lead to tumor regression and prolonged
survival [160]. More recent studies have evolved to employ machine learning algorithms
for predicting functional cancer vulnerabilities while integrating shRNA (DEMETER2) or
CRISPR/Cas9 (DepMAp) screens coupled with genomic and proteomic profiling of cancer
cell lines [236]. Collectively, genome-wide RNAi and CRPSR/Cas9 loss-of-function screens
made a significant contribution in identifying cancer dependencies, and potential novel
therapeutic targets [166,237–239].

Unfortunately, spatial limitations prevent an in-depth discussion of the many tools,
algorithms, and computational approaches that have been developed for a single plat-
form and integrative analyses. However, biochemical and genetic-based studies as well
as large-scale proteogenomic analyses have demonstrated that despite enormous tumor
heterogeneity, molecular alterations often converge on a limited number of signaling
networks, reflecting pathway activity levels and their role in driving tumor progres-
sion [14,102,147,149,240,241]. As a result, a number of tools and approaches have been
developed, including the use of gene expression-based signatures, mutational signatures,
CNA (copy number alterations) signatures, and protein signatures to quantify pathway
activity [7,96,97,242–244]. These approaches include several that incorporate data from
multiple technical platforms and use statistical modeling driven by a priori knowledge of
signaling pathways and/or protein–protein interaction networks to cluster samples based
on similarity networks, detect enriched signaling networks across multi-omics platforms
and/or infer pathway activity from the expression or mutation profiles of established
pathway components [3,8,23,170,245,246].

As we have outlined, large-scale genomics and proteomics studies including those
from the TCGA, METABRIC, and CPTAC projects, as well as many other studies, have
enabled the cataloging molecular alterations and signaling pathways in breast and ovarian
cancers. While these studies have implications for our understanding of the underlying
molecular mechanisms of these diseases, they also highlight the need to personalize thera-
peutic approaches based on the biology of each patient’s disease [6,131,247]. Consistent
with this premise, the use of genomic profiling, including DNA sequencing gene panels
from Foundation Medicine and others, into clinical trials and practice has identified poten-
tial biomarkers, beyond standard immunohistochemistry (IHC)-based assays, to predict
response and provided a means to personalize treatment. In addition to DNA sequencing-
based assays, multiple molecular biomarkers are currently being used to monitor and
track the progression of both ovarian and breast cancer [167,248,249]. For ovarian cancer
patients, these biomarkers include single gene markers CEA (Carcinoembryonic Antigen),
CA125 (Cancer Antigen 125), and HE4 (Human Epididymis protein 4), as well as multi-
variate index assays including OVA1, ROMA, and OVERA [250–257]. Similarly, several
gene-expression based prognostic tests, including Oncotype DX [258], EndoPredict [259]
and MammaPrint [260] as well as the aforementioned Prosigna assays, have been FDA
approved to predict risk of recurrence in breast cancer and can be used to help guide
clinical decisions. Oncotype DX Recurrence Score is based on the expression level of a
panel of 21 genes, which is used to predict the likelihood of the 10-year tumor recurrence
and guiding the adjuvant treatment options while weighing the added benefit of adju-
vant chemotherapy versus treatment with hormonal therapy alone. Oncotype Recurrence
Score stratified patient samples into low-, intermediate- and high-risk groups, predicting
high likelihood of added benefit of adjuvant chemotherapy in the high-risk group patient
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cohort [258,261,262]. MammaPrint on the other hand is based on the gene expression
profile of a panel of 70 genes. This test is used in clinics for assessing clinical outcome
and predicting recurrence score in early stage breast cancer. Based on recurrence scores,
patient samples are stratified into low or high genomic risk. Studies showed that there is an
added benefit to adjuvant chemotherapy in the low genomic risk group when compared to
patients who did not receive chemotherapy [260,263]. Finally, emerging data supports the
role of analyses of circulating tumor DNA in routine clinical care [48,264–268]. The FDA
recently approved the FoundationOne Liquid CDx test, which is a circulating cell-free DNA
(cfDNA) based-assay as a companion diagnostic for treatment of BRCA mutant (germline
or somatic) ovarian cancer patients with the PARP inhibitor rucaparib as well as alpelisib
treatment of HR+/HER2-, PIK3CA mutated breast cancer patients [249].

7. Summary

Over the past twenty years, proteogenomic profiling of human tumors has drastically
expanded our understanding of breast and ovarian cancer biology. The identification of
molecular subtypes; novel oncogenes, tumor suppressor proteins and signaling networks;
as well as clinically relevant biomarkers have begun to contribute to the development of
novel and more effective treatment strategies. The next challenge will be to effectively
translate these efforts into the development of new clinical diagnostic tools, biomarkers, and
therapeutic strategies in order to personalize cancer treatment and improve the outcome
and quality of life for patients.
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