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Article

Both in psychology and education, norms are essential for 
understanding test performance from a substantive point of 
view. Without normative information, both professionals 
and the test takers themselves cannot obtain a meaningful 
picture of how well the test taker scores on the measured 
attribute (see, e.g., Downing & Haladyna, 2006; Linn, 
2000). Test norms can be either criterion-based or refer-
ence-based. Criterion-based norms are based on predefined 
performance levels. A criterion-referenced norm might, for 
instance, be that 60% of the items has to be answered cor-
rectly to pass the test. A person’s performance is thus eval-
uated independent of the performance of other persons. In 
reference-based norming, the person’s performance is 
evaluated relative to others. For example, using relative 
norms, we may conclude that a person’s score is among the 
5% highest scores in the population. Therefore, reference-
based norms are based on the distribution of scores in the 
population or norm group (Downing & Haladyna, 2006). 
Reference-based norms are very common, with examples 
including percentile ranks and normal curve equivalents 
(Oosterhuis, Van der Ark, & Sijtsma, 2015; Seo, Little, 
Shogren, & Lang, 2015; Van der Elst et al., 2013).

A prerequisite for using relative norms is a well-defined 
reference population. Norm groups can be defined from 
broad to very specific. For instance, a broad norm popula-
tion may include all possible testees. In other cases, how-
ever, one may want to compare a person with a well-defined 
subpopulation with similar background characteristics, for 
example, only males or females, or only persons with a 

certain psychological disorder. These are examples in which 
the population is divided in a few subgroups and norms can 
be derived per subgroup. However, the desired norm groups 
may also depend on a continuous background variable, 
most often age or a proxy of age, such as grade level. For 
example, when interpreting the performance on a vocabu-
lary test, it is only meaningful to compare children with 
other children of the same age. Whether test norms should 
be differentiated with respect to certain background charac-
teristics such as gender or age should be determined by tak-
ing theoretical, practical, and statistical arguments into 
consideration.

This article focusses on the construction of age-specific 
norms. Different methods for the development of age-spe-
cific norms were proposed in the literature (e.g., Angoff & 
Robertson, 1987; Seo et al., 2015; Tellegen & Laros, 1993; 
Van der Elst et al., 2013; Zachary & Gorsuch, 1985; Zhu & 
Chen, 2011). Most of these methods rely on quite restrictive 
assumptions and their application is therefore not entirely 
risk-free. An urgent need thus exists for research on the 
practicality and effectiveness of current continuous norm-
ing methods. Moreover, new norming methods are needed 
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which are more robust and can flexibly be used in different 
applications. In the present study, we introduce quantile 
regression as an innovative continuous norming method 
and compare its performance with two popular alternatives: 
traditional norming and mean (linear) regression-based 
norming. The article is organized as follows. First, we 
explain the traditional approach and regression approach. 
Second, we introduce quantile regression and argue why it 
is more flexible than current methods. Third, we present the 
results of a simulation study, and we end with a discussion.

Background

For the development of test norms, one needs information 
about the conditional distribution of the test scores given the 
chosen set of covariates. Traditionally, the continuous covari-
ate of interest (age) is first split into a limited number of dis-
crete groups. Data are then collected in samples from each 
group and the norms are subsequently determined for each 
group separately. The traditional norming method thus 
amounts to a discretization of the continuous background 
variable. This approach has two important drawbacks 
(Bechger, Hemker, & Maris, 2009; Oosterhuis et al., 2015; 
Van Breukelen & Vlaeyen, 2005; Zhu & Chen, 2011). First, 
it may result in undesirable differences in normed scores 
between individuals. For example, two persons with the same 
raw test score but with a minimal age difference may be 
assigned to different age groups and thus receive different 
normed scores. This phenomenon is known as the edge of 
cohort effect. Second, many observations are required to 
obtain norms that are sufficiently precise for each (age) 
group. Exactly how many observations are needed depends 
on the “stakes” or purpose of the test, but in general a total of 
300 observations or more are required per group to obtain 
norms that are sufficiently precise (see, e.g., Charter, 1999; 
Evers, Lucassen, Meijer, & Sijtsma, 2009). Moreover, a 
reciprocal relationship exists between the edge of cohort 
problem and the required number of observations. Merging 
groups to decrease the required total number of observations 
may increase the edge of cohort problem, and vice versa, 
increasing the number of age cohorts to alleviate the edge of 
cohort problem results in larger sample-size requirements.

In light of these two drawbacks, Zachary and Gorsuch 
(1985) first introduced a regression-based norming 
approach as an alternative, also known as continuous norm-
ing, which has been further developed by other researchers 
(Angoff & Robertson, 1987; Seo et al., 2015; Tellegen & 
Laros, 1993; Van der Elst et al., 2013; Zhu & Chen, 2011). 
In regression-based continuous norming, a regression 
model is used to derive norms as a function of continuous 
covariates such as age. However, the methods differ at the 
level at which they apply regression analysis. Zachary and 
Gorsuch (1985; see also Zhu & Chen, 2011), first create 
groups, then compute the mean and other moments 

(standard deviation, skewness, and kurtosis) per group, and 
finally regress these moments on age midpoints to obtain 
the norming functions. Van der Elst et al. (2013; see also 
Oosterhuis et al., 2015) first regress the tests sores on the 
covariate to obtain the conditional mean, then compute the 
residuals and use the residuals to determine the conditional 
standard deviation and the norms. The estimated moments 
of the group-specific score distributions can then be con-
verted into normed scores such as percentiles or normal 
curve equivalents.

Continuous norming potentially solves the edge of cohort 
problem and produces more precise norms than the tradi-
tional norming method. First, continuous norms are based on 
models that assume a smooth monotone continuous relation-
ship between the test scores and the covariate. This avoids 
sudden jumps between the norms for different groups and 
alleviates the edge of cohort problem, as long as the grouping 
results in meaningful groups to accurately represent the rela-
tionship between test performance and covariate. Second, 
continuous norming uses the observations of all persons in 
the sample to derive the norms for a subgroup. As a conse-
quence, continuous norming uses the observations more effi-
ciently than traditional norming, which generally results in 
more precise norms (e.g., Bechger et  al., 2009; Oosterhuis 
et al., 2015). Alternatively, the same precision can be realized 
with smaller sample sizes and lower costs.

We want to point out that even though the covariate age 
is theoretically a continuous variable, and could be modeled 
as such, in practice age is measured discretely (days, 
months, and years) and some form of grouping is almost 
always desired for practical test use and substantive rea-
sons. For example, student monitoring systems (SMS’s) 
may use grade-based age windows (i.e., students who are at 
the same grade) when interpreting test scores. We propose 
to apply the continuous norming methods using measure-
ments of age that align with the intended test use. For exam-
ple, if norms are required for each age year and age is 
measured in days, persons with different birth dates but the 
same age in years are grouped together, and these age 
groups are then used in the regression. Therefore, we will 
assume that there is some form of grouping.

Although continuous norming can effectively deal with 
the drawbacks of the traditional method of norming, the 
application of a continuous norming method is not entirely 
risk-free. That is, the efficiency in continuous norming is 
obtained through assumptions and it is uncertain whether 
these assumptions hold. It is generally assumed, for instance, 
that test scores have a normal distribution within each covari-
ate group, and that for all covariate groups the test scores 
have the same within-group variance (i.e., homoscedastic-
ity). In practice, the assumptions of normality and homosce-
dasticity are violated quite regularly, for instance in tests with 
floor or ceiling effects at the extremes of the test score distri-
bution (Lenhard, Lenhard, Suggate, & Segerer, 2016; 



Crompvoets et al.	 1737

Marsman, Maris, & Bechger, 2012). In addition, it is often 
assumed that the means and standard deviations for the dif-
ferent covariate groups can be estimated equally accurate. 
This is not true, however, if the number of observations var-
ies with covariate group. In light of these potential causes of 
bias in the norms, we sought an approach that solves the 
problems of traditional norming, but better accounts for (a) 
nonnormal shapes of the score distribution and (b) different 
numbers of observations among covariate groups. A specific 
form of regression analyses, in the literature also known as 
quantile regression (Koenker, 2015), provides opportunities.

If quantile regression is used as continuous norming 
method, the required (theoretical) percentile ranks are 
directly estimated as function of (age) group, rather than 
approximate the mean, standard deviation, and sometimes 
higher order moments of the score distribution by a polyno-
mial to obtain the percentile ranks in a second step. This 
approach offers a number of advantages as compared to the 
common ways of continuous norming. First, the analysis 
automatically accounts for unequal sample sizes within 
each covariate group. Second, quantile regression results 
are less prone to outliers and deviations from the normal 
distribution. Finally, in quantile regression, we directly 
attempt to deduce the information we are most interested in. 
In SMS’s, for instance, test developers and teachers want to 
know in which quintile or decile a student performs. In 
selection tests, cut scores are sometimes expressed in terms 
of a percentile rank. Such information can directly be 
obtained by using quantile regression without the necessity 
of making specific assumptions about the shape of the score 
distribution and/or the trend in means and standard devia-
tions. The application of quantile regression is thus promis-
ing when it comes to the development of age norms, but to 
date, it has not yet been used in the context of test norming. 
The practicality and effectiveness of quantile regression-
based norming is not tested yet, and it is not clear if, and if 
so in which applications, quantile regression outperforms 
other (continuous) norming methods that have been 
described in the literature. These characteristics were stud-
ied using simulations. In the present study, we used quantile 
regression as method to develop age norms and evaluated 
its performance in relation to two common alternatives: tra-
ditional norming and mean (linear) regression-based norm-
ing. By conducting a series of simulations, we examined the 
bias and precision (see, e.g., Lindgren, 1993) of the three 
norming methods in different conditions.

Simulation Study

Norming Methods

In general, to develop norms for different groups of persons, 
one needs information about the distribution of the test scores 
for all relevant subgroups based on the k covariates of 

interest. More specifically, let T  represent the random variable 
of test scores with realizations t, and let X represent the vector 
of k  theoretically relevant covariates. Furthermore, let 
F T( | )x  be the conditional cumulative density function of T  
given X = x. Norming then aims at finding for well-chosen x 
values the conditional distribution of test scores, that is 
F T( | )x , or descriptive statistics (e.g., mean, standard devia-
tion, and percentiles) of F T( | )x . Once the characteristics of 
the conditional score distributions are known, normed scores 
can easily be obtained for each individual given his/her values 
on X. The exact procedure depends on the norming method of 
choice, in this study traditional norming, (linear) mean regres-
sion-based norming or quantile regression-based norming.

Traditional Approach.  According to the traditional norming 
method, groups are first defined based on the covariate of 
interest. Data are then collected for samples from each 
covariate group, which provides the estimates of F T( | )x  
for discrete intervals on x. Norms are then determined for 
each group separately.

Mean Regression.  The mean regression-based norming 
method creates norms by regressing the test scores on x. 
The resulting regression equation provides estimates of the 
mean value of T  for all possible values of x. Then, assum-
ing homoscedasticity, one computes the standardized resid-
uals and by using these standardized residuals norms can be 
derived (Oosterhuis et al., 2015; Van Breukelen & Vlaeyen, 
2005; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 
2005; Van der Elst et al., 2013). In practice, this is accom-
plished as follows. Let mT( )x  be the mean in the population 
conditional on the covariate values. The means are assumed 
to be linearly related to the covariate, and the following lin-
ear regression model can first be used to estimate mT(X):

µ βT ( ) ,x x= +0 ββ 	 (1)

where parameters β0  (intercept) and ββ are obtained by min-
imizing the sum of squared residuals:

min
i
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( i N= …1, , ) and xi the vector of covariate values for that 
individual. The residuals ei are next obtained as 
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One may choose to linearly transform the standardized 
residuals to a scale with mean µ and standard deviation σ, 
or instead, the percentile values from the distribution of the 
observed residuals can be used as norming.

Quantile Regression.  For the quantile regression method, a 
regression model is determined for each percentile of inter-
est. Let τq ( )x denote the qth percentile of F T( | )x  and let 
τq ( )x  be the sample estimate. For example, τ. ( )50 x  then 
denotes the median of T within the subpopulation given x. 
Following Koenker and Hallock (2001), an additive regres-
sion model is postulated in which estimates of the conditional 
percentiles are obtained as a function of the k covariates:

τq ( ) ,x x= +β β0
* *

	 (4)

where * indicates that the regression coefficients are differ-
ent from those obtained with mean regression. Estimates of 
the regression parameters in Equation 4 are obtained by 
minimizing the weighted absolute residuals, that is,

min
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The predicted values for the percentiles given the covariate 
values provide normative data to which persons can be com-
pared. For example, given a particular person, one can deter-
mine whether his or her score is within a particular percentile 
range (e.g., between the 10th and 25th percentile).

Data Generation

The simulations were designed within the context of the 
Dutch Cito SMS for elementary education. In that system, 
students are routinely monitored from grade 1 (6- to 7-year-
olds) through Grade 6 (11- to 12-year-olds) on several cog-
nitive domains such as mathematics and reading 
comprehension. For each domain, item response theory 
calibrated item banks are available to evaluate the progress 
of individual students from year to year in relation to the 
progress of other students. For the simulations, we used 
SMS in mathematics as an example and considered the situ-
ation that separate norms are needed for six increasing 
grade levels.

In the SMS, students receive a well-chosen selection of 
items from an item bank of 300 items according to their grade 
level. Based on their performance on the selected items, they 

receive a score on the entire item bank as if they completed 
all items. Our simulations were based on the entire mathe-
matics item bank, as if the students actually completed all 
items in the bank, in order to minimize the confounding 
influence of item selection on bias and precision. The math-
ematics item bank consists of 300 items which are calibrated 
by the one parameter logistic model (OPLM; Verhelst & 
Glas, 1995). We used this model for data generation as well. 
The OPLM is a Rasch model with varying item discrimina-
tion values which are predefined by the user and therefore 
treated as known. Let Yj be the item-response variable, where 
j is the item number ( j = …1 300, , ) and where Y = 0  denotes 
an incorrect answer, and Y =1  a correct answer. Let θ denote 
the latent ability, let a j  denote the predefined discrimination 
of item j, which under the OPLM is an integer value, and  
let bj denote the difficulty of item j . The probability of 
answering item Yj correct is then defined by:
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Because the item discrimination parameters are treated as 
known, the weighted sum score is a sufficient statistic for 
the ability parameter θ in this model.

Test scores were generated as follows. For all conditions 
in the simulation setup described below, true scores were 
first drawn from the conditional test-score distribution and 
converted to latent abilities θ (see for details about the con-
version, Verhelst & Engelen, 1999). These latent abilities 
were then used to generate responses for the 300 mathemat-
ics items using the OPLM (Equation 6). In particular, for 
each θ and item j, a random number u  was drawn from the 
interval [0, 1] and this number is compared with p j ( )θ  
from OPLM. If pj(θ) ≥ u, the item was scored as correct, if 
not, the item was scored as incorrect. The unweighted sum 
of the responses for each θ was used as the observed (or 
simulated) test score. In each condition, M = 500  data sets 
were generated.

Design Factors

Data were simulated under different conditions of sample 
size, and conditional true-score distributions, in the follow-
ing way:

•• Sample size. In general, 50 observations per covari-
ate group is considered an absolute minimum for 
continuous norming (e.g., Bridges & Holler, 2007; 
Zhu & Chen, 2011). For traditional norming, 400 
observations per group are advised to obtain reliable 
norms (Charter, 1999; Evers et al., 2009). Therefore, 
group-level sample sizes n were set at 50, 100, 200, 
400, and 600 for all groups. For all norming 
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methods, precision was expected to increase with 
sample size (see also Oosterhuis et  al., 2015) and 
bias was expected to be unrelated to sample size.

•• Conditional true-score distributions. A total of 2 × 
2 = 4 score distribution conditions were considered. 
The true score distributions either had equal standard 
deviations across covariate groups or a decreasing 
standard deviation with increasing grade. A decreas-
ing standard deviation, also known as scale shrink-
age, regularly occurs in education (e.g., Dadey & 
Briggs, 2012) and can be a consequence of a ceiling 
effect for higher grades (Aunio, Hautamäki, Heiskari, 
& Van Luit, 2006). The standard deviation of the 
highest grade was two thirds of the standard devia-
tion of the lowest grade and the decline was linear. 
The true scores conditional on the covariate were 
further modeled using either a normal distribution or 
a gamma distribution. The gamma distribution was 
chosen to create a negatively skewed distribution for 
the higher grades, whereas the distributions of the 
lower grades were relatively symmetric. This trend 
reflects a ceiling effect for higher grades (Streiner, 
Norman, & Cairney, 2015). The different score 
distribution conditions are illustrated in Figure 1. 

The traditional norming method was expected to 
provide unbiased norms for all hypothesized score 
distributions. Whereas the mean-regression method 
was expected to only be unbiased for conditions with 
normal score distributions and equal variances in 
each covariate group, the newly tested quantile 
regression-based method was expected to outper-
form both the traditional norming method and the 
mean-regression method in terms of precision.

A total of 5 (sample size) × 4 (score distribution) = 20 
conditions were thus distinguished. In all simulations, it 
was assumed that test scores increased with 30 units per 
group/grade. That is, each group/grade was assumed to 
score on average 30 units higher than the previous group/
grade. All input, R-code, and output of the simulation can 
be found in the supplementary material (available online).

Evaluation Criteria

The simulations were used to examine the bias and preci-
sion of norms resulting from traditional norming, mean 
regression-based norming and quantile regression-based 
norming in 20 different conditions. Bias was defined as the 

Figure 1.  True score distributions with separate lines for the covariate groups.
Note. The panels show the symmetric (upper row), skewed (lower row), equal standard deviation (left column), and decreasing standard deviation 
(right column) score distribution conditions.
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deviation between the mean of the percentile estimates over 
M replications and the population percentile (i.e., τq ( )x ). 
That is,

Bias τ

τ
τ



q

m

M
q

m
qMx

x
x( )

==




 −

∑ 1
( )

( ).

To also be able to draw conclusions on practical importance 
of the bias, the outcome was standardized in the following 

manner: Z SD T
q qBias Bias |
τ τ x x

x
( ) ( )= ÷ ( ).  The population 

percentiles τq ( )x  and standard deviations of the observed 
score distributions were obtained by simulating 1,000,000 
test scores per covariate group. The 5th, 10th, 25th, 50th, 
75th, 90th, 95th percentile, and the standard deviations 
were computed per group based on these observations. 
Separate population percentiles were derived for different 
levels of the conditional on the test-score distribution. 
Because the population percentiles and the percentile esti-
mates were both based on the observed score distribution 
they were on the same (observed score) scale.

Precision was defined as standard deviation of estimated 
percentiles over the M  replications (i.e., the standard error). 
Precision thus reflected variation in the estimated percen-
tiles due to sampling fluctuations. If τqrepresents the mean 
estimate across M  replications, precision was computed as 

follows: SE
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Smaller values indicate higher precision. As for the bias, out-

comes were rescaled to the unit standard deviation of the score 
distribution of the population in order to be able to interpret the 
precision in absolute terms: Z SE SD TSE

q
qτ τ




x
x

x
( ) ( )= / ( | ) .

Results

Bias

Figure 2 illustratively shows bias as a function of sample 
size for the 95th percentile for Group 3. As expected, sam-
ple size did not influence bias. These results are representa-
tive for all percentiles and all groups. Sample size should 
only affect the amount of variation around the systematic 
deviation and not the magnitude of the systematic deviation 
itself, which is exactly what is observed. For this reason, the 
results for bias are here only displayed for the largest sam-
ple size (i.e., n = 600 per group). This result and the other 
bias results can be viewed in interactive figures at https://
ecrshiny.shinyapps.io/NormBias/. Another result consistent 
across conditions is that the traditional norming method 
was unbiased. This result was consistently found across all 
sample sizes and score distribution conditions, and 

naturally makes the use of the traditional norming method 
favorable in terms of systematic deviation.

Although the traditional norming method was unaffected 
by the group-specific theta distribution, the mean regres-
sion method and the quantile regression method were 
affected. For the symmetric distributions, equal standard 
deviations across groups resulted in no bias for all three 
methods, whereas a decreasing standard deviation resulted 
in small bias ( | |Bias max= .03 SD) for percentiles 10, 25, 75, 
and 90 using the mean regression method (see Figure 3). 
This bias was the result of violation of the homoscedasticity 
assumption: standard deviations decreased over groups. For 
increasingly skewed distributions, both the mean regression 
and the quantile regression method resulted in biased per-
centile estimates, as displayed in Figure 4 for distributions 
with equal standard deviation. Although the bias for increas-
ingly skewed distributions with decreasing standard devia-
tion was slightly different, the overall trend was the same. 
The two regression methods can be seen to both fit a wrong 
line, yet a different wrong line. Over all groups and percen-
tiles, bias of the mean regression-based norming method 
( Biasτ r  = .04, | |Biasτ r max= .19) turned out to be worse than 
the bias of the quantile regression-based norming method 
( Biasτ r

= .02, | |Biasτ r max
= .07). If bias occurred, it was 

mostly for the highest and lowest (age-)group and for 
extreme percentiles (e.g., see Figure 4).

Precision

The precision for 50 and 600 observations per group is 
presented in Figure 5 for several group distribution con-
ditions and in Figure 6 for several percentiles. In general, 
the standard error of the traditional norming method was 
largest (i.e., traditional norming was least precise), fol-
lowed by the standard error of the mean regression-based 
norming method. The quantile regression-based norming 
method had the lowest standard error (i.e., was most pre-
cise), but there were a few exceptions, see, e.g., Figure 7 
subplot “Skew, Equal SD” with 600 observations for 
Group 1. In addition, precision was higher when more 
data surrounded the percentile due to larger sample size, 
as hypothesized, but also due to the shape of the score 
distribution. Hence, precision was highest around the 
median for symmetric distributions (see Figure 6) and at 
somewhat higher percentiles for (negatively) skewed 
distributions (see Figure 8). For increasingly skewed dis-
tributions, this trend also resulted in lower precision in 
the upper groups/grades compared with lower groups/
grades for low percentiles and vice versa for the upper 
percentiles, because the higher groups/grades had fewer 
observations in the lower tail and more observations in 
the upper tail. Last, the absolute differences in precision 
between the three norming methods and the effect of the 
distribution on these differences turned out to be smaller 
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with increasing sample size (see Figure 5). However, 
comparison of the relative precision (i.e., the precision 
proportional to the traditional norming method) showed 
that the effects of the norming methods and differences 

in the distributions did not interact with sample size (see 
Figure 7).

With respect to the different conditional true-score dis-
tributions, several trends were observed. For symmetric 

Figure 2.  Bias of the three norming methods for four group distributions.
Note. SD = standard deviation. Results for the 95th percentile of Group 3. Means in SDs of population groups based on 500 replications.
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distributions, the precision of both the traditional norming 
method and the mean regression-based norming method 
were stable across all groups. The precision of the quantile 
regression method, on the other hand, was higher for the 
middle groups/grades than for outer groups/grades (see 
Figures 6 and 7). Differences in the precision of the quantile 
regression-based norming method across groups can be 
explained by variation in the regression coefficient as this 
variance influences the percentiles for the outer groups the 
most. These results were found in both standard deviation 
conditions, with quantile regression-based norming being at 
least 1.19 times more precise than traditional norming. For 
increasingly skewed distributions, precision differed 
between the two standard deviation conditions, although 
differences were small. In the decreasing standard deviation 
condition, the group trend in precision was tilted slightly 
more upward (or less downward) than in the equal standard 
deviation condition (see Figure 5 for the 5th percentile). All 
results with regard to precision can be viewed in interactive 
figures at https://ecrshiny.shinyapps.io/NormPrecision/.

Discussion

In this study, a new innovative quantile regression-based 
continuous norming method was introduced that is more 
realistic as it is less restrictive with respect to assumptions 
about score distributions than other continuous norming 
methods. Its performance was compared with the traditional 

way of norming and mean regression-based norming. In 
this manner, it was possible to interpret the performance of 
quantile regression-based norming to what is familiar, a 
comparison that is also required in common systems for the 
evaluation of the quality of tests (see, e.g., Evers et  al., 
2009). The norming methods were studied in light of one 
continuous covariate (age/grade level), but all three meth-
ods can also facilitate multiple covariates, including cate-
gorical covariates.

The performance of the norming methods under study 
was evaluated in perspective of bias and precision. In this 
way, it was possible to weight bias and precision sepa-
rately depending on the situation at hand, something that 
is not possible when bias and precision would be dis-
cussed together in terms of efficiency. For symmetric dis-
tributions, all norming methods proved unbiased, with the 
exception of some percentiles that were slightly biased if 
they were derived by applying mean regression in condi-
tions where the standard deviations were smaller for 
higher groups (or grade levels). For increasingly skewed 
distributions, the unbiased traditional norming method 
clearly outperformed the two continuous norming meth-
ods, which both seemed to fit a different wrong line. As a 
result, bias in the continuous norming methods depended 
on the subgroup and percentile combination investigated, 
ranging from no bias to substantial bias in either direction 
(positive or negative). If bias was present, it was mostly 
for the highest and lowest groups/grades and for extreme 

Figure 3.  Bias of the three norming methods for 7 percentiles.
Note. SD = standard deviation. Group distributions were symmetric. Results for Group 3 using 600 observations per group. Means in SDs of 
population groups based on 500 replications.
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percentiles. In general, precision was higher when more 
data were observed around the percentile. For example, if 
ceiling effects occurred, low percentiles were estimated 
less precisely, while high percentiles were estimated more 
precisely. Among the methods studied here, quantile 
regression-based norming proved the best method in 
terms of precision, followed by the mean regression-
based norming method and the traditional norming 
method, respectively. 

As stated before, the traditional norming method was 
unbiased in all conditions. This observation is in agree-
ment with our expectations and does make sense as the 
traditional way of norming does not involve any assump-
tions about the data. The mean regression-based norming 
method and the quantile regression-based norming method 
were biased for increasingly skewed distributions, which 
was caused by fitting a wrong line. In these conditions, the 
percentiles did not increase linearly with age, which is an 
explicit assumption in both methods. The models could 
therefore not capture the relationship between age and 
tests cores well and that clearly affected the accuracy of 
the norms. Model fit could probably have been improved 
by adding a quadratic term or by adding the standard devi-
ation of the group into the regression equation, but it is 
unknown how that affects bias and precision. For instance, 
precision might be negatively affected due to the larger 
number of parameters to be estimated, and because addi-
tional restrictions might be required to identify more com-
plex models, one should be very careful with such 
alterations. More complex models were already sparsely 
applied. These models involved, for example, regression 
of normalized scores on a higher order polynomial of raw 
scores and covariates (Tellegen & Laros, 1993), regres-
sion of raw scores on a higher order polynomial of normed 
scores and covariates (Lenhard et  al., 2016), norming a 
theoretical distribution that is obtained by regression of 
the mean, standard deviation, and sometimes higher order 
moments on the covariates (Van der Elst et al., 2013; Zhu 
& Chen, 2011), generalized additive models for location, 
scale and shape (Voncken et al., 2017, 2019), or structural 
equation modeling with latent variables (Seo et al., 2015). 
The practicality and effectiveness of such norming meth-
ods has not yet been thoroughly studied, however, and that 
is needed first before these models can safely be applied in 
real-life testing applications.

Quantile regression-based norming proved the best 
method if the underlying group distributions were symmet-
ric. While all three methods were unbiased in this condition, 
the quantile regression-based norming method clearly 
resulted in the highest precision. Alternatively, quantile 
regression could also be used to obtain the same precision 
as the other methods but with a smaller sample. Even with 
samples which are 1.19 times smaller than the sample that 
would be used in traditional norming, the norms for the 

middle groups (or grade levels) are more accurate. Quantile 
regression-based norming should therefore be the method 
of choice if the underlying group distributions are expected 
to be symmetric. When the underlying group distributions 
are expected to be increasingly (or decreasingly) skewed, 
for example, when ceiling (or floor) effects occur, it is much 
less straightforward to choose a method. While the mean 
regression-based norming method should not be preferred 
in these circumstances due to the combination of a large 
bias and only medium precision, the results are contradic-
tory when it comes to traditional norming or quantile regres-
sion. Traditional norming is unbiased but not very precise, 
while on the other hand, quantile regression is very precise 
but biased.

The norming methods used in the present study can be 
applied to all tests with a single test score in both educa-
tional and psychological measurement. A range of realistic 
scenarios using varying conditional score distributions that 
are typical for many tests (e.g., including floor or ceiling 
effects) was studied, and the simulation study was based on 
a real item bank. Therefore, it can be expected that our find-
ings can easily be generalized to other tests. Of course, 
every simulation study does have its limitations because it 
is impossible to investigate all factors. It is still unclear, for 
instance, whether our results also generalize to tests with 
multiple outcomes such as number correct, number of 
errors, and time to complete. The performance of these 
norming methods for those types of tests is a topic for future 
research.

In practice, a well-considered choice for a norming 
method must be made, both when designing a norming a 
study as well as in deriving the norms from the actual data. 
Test developers should base their choice on (a) the 
intended use of the test, (b) information from previous 
experiences with similar tests measuring the same attri-
bute, (c) theory and literature about the construct to be 
measured and tests to measure the attribute, (d) available 
resources for the norming procedure, and (e) the level 
(group or individual) and importance of the decisions that 
can be made based on the test results. For example, if a test 
developer wants to make an arithmetic test for an SMS in 
primary education, knows that the conditional score distri-
butions of the attribute show ceiling effects from previous 
versions of the SMS, and has limited resources for the 
norming procedure of the test, quantile regression may be 
the norming method of preference. Another test developer 
may require norms for a working memory test that is used 
for important individual decisions in clinical psychology, 
has no information about the score distribution of most of 
the targeted populations, and has sufficient resources to 
obtain 400 observations per group, may want to use tradi-
tional norming. As described before, mean regression-
based norming may not provide percentile norms as 
precise as quantile regression-based norming. However, 
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we should note that mean regression-based norming may 
be very effective if one is interested in means and standard 
deviations rather than percentiles (e.g., with intelligence 
scores), as this is the primary output of this method, given 
that the assumption of normal score distributions is not 
violated.

End-users of tests should be able to rely on the norms of 
the test as they are presented, irrespective of the norming 
method that was used. However, we recommend that test 
users should only rely on the norms if a solid foundation for 
the norming method used is also provided with the norms. 
For test developers, this means that they should not only 
make a well-informed decision on which norming method 
to use, but also give a solid argumentation for the chosen 
method. This is important because adequate norms are a 
vital part of valid decision making, and test results may 
have high impact on individuals both in education and psy-
chology. If adequate argumentation of the norming method 
is lacking, this might be a reason for end-users to give less 
weight to the results of the test in making a clinical or edu-
cational decision, because the norms might not be as accu-
rate as desired.

In conclusion, quantile regression-based norming can be 
considered a promising method to take continuous back-
ground variables into account when percentiles are the 
norms of interest. However, when the underlying distribu-
tions conditional on the background variable(s) are increas-
ingly or decreasingly skewed, for example, due to ceiling or 
floor effects, the method shows systematic bias. Of course, 
the underlying group distributions are never known in real-
ity, but as stated before, it might be possible to make an 
educated guess. It is strongly discouraged to simply choose 
one method over the other. Perhaps continuous norming 
could be the new standard in the future as soon as the rela-
tionship between model specification and accuracy mea-
sures like bias and precision are thoroughly mapped. Until 
then, the main options are unbiased traditional norming, 
favoring bias due to sampling fluctuations over systematic 
bias, or precise quantile regression-based norming, favoring 
systematic bias over bias due to sampling fluctuations.
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